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Abstract--The mechanism of heat transfer from a wall to a fluid in a turbulent boundary layer is discussed. 
A simplified model of heat transfer in the near-wall region is proposed, taking into account bursting 
phenomenon. The effect of bursts on the rate of heat transfer from a solid wall to the fluid is estimated. 

INTRODUCTION 

The standard analysis of heat transfer in turbulent 
boundary layer (e.g. see Grrber et al. [1], Kays [2], 
Bejan [3], etc.), is based on simplified models of tur- 
bulence which do not account for any mechanisms of 
near-wall flow. This does not allow one to reveal the 
true mechanism of heat removal in turbulent bound- 
ary layer, and makes it difficult to propose a rational 
theory of this process. 

The investigations done during the last decades 
(beginning with K line et al. [4]) showed that near-wall 
flow possesses a rather complicated structure which 
results from strong interaction between large-scale 
vortices emerging in turbulent boundary layer, and 
low-speed streaks existing in its sublayer. This process 
is accompanied by burst formation leading to 
enhancement of heat removal from the wall. There 
are two key issues which arise: (i) what is the real 
mechanism of heat removal from a solid wall to the 
fluid in turbulent boundary layerand (ii) what is the 
role played by bursts in this mechanism and what is 
its effect on the rate of heat removal? An associated 
issue to the latter one is: can heat transfer from a solid 
wall to fluid flowing over it be modulated through, say, 
modulation of the bursting frequency? Experimental 
evidence of the events taking place in the near wall 
region allow one lo develop a more realistic (from the 
hydrodynamic point of view) scenario of the heat 
removal in a turbulent boundary layer. 

We propose a rLew approach to the analysis of heat 
transfer in a turbulent boundary layer, and aim to 
answer the above questions. In this paper we focus on 
the mechanism of heat removal from the wall in a 
turbulent boundary layer. Our interpretation of this 
phenomenon is based on the assumption of a domi- 
nant role of the bursts, leading to formation of zones 
with very small thermal resistance in the sublayer of 
the turbulent boundary layer. We also discuss briefly 
some details of lhe description of heat removal in 
turbulent boundary layer accounting for bursting pro- 
cess as described by Kaftori et al. [5]. 

FUNNEL VORTICES 

It is well known that the viscous sublayer plays an 
important role in the transport processes occurring in 
the near-wall flow. Destruction of this layer at the 
moment of burst formation leads to a drastic change 
in the conditions of heat removal from the wall. Burst 
formation leads to a decrease in the thickness of the 
sublayer which, in its turn, decreases thermal resist- 
ance in the domain where the burst is born. As a 
consequence, in the sublayer of turbulent boundary 
layer some zones have very little thermal resistance, 
and the heat is carried away from the wall by funnel 
vortices or by vigorous bursting. We assume that the 
amount of heat removed from the wall in turbulent 
boundary layer is determined primarily by these 
coherent structures. 

The structure of turbulent boundary layer in the 
domain of burst formation is shown schematically in 
Fig. 1. The fluid moving to the wall in the peripheral 
zone of burst has a temperature close to the tem- 
perature of the free stream T~. The fluid moving in 
the central zone of burst has the temperature Tm close 
to the temperature of the wall Tw. The nonuniform 
distributions of temperature T and transversal com- 
ponent of velocity v in the cross-section of the burst are 
due to its interaction with the wall and surrounding 
fluid. These distributions may be presented in the fol- 
lowing form: V/Vm =f(r/),  AT/ATm = ~p(r/) where f 
and tp are some functions of the variable r/; r /= ~/(o, 
3o and ~ are the radius of burst and current radius, 
respectively, subscript m corresponds to the burst axis. 
It should be stressed that the shape of the burst 
assumed here is quite arbitrary. The results which are 
obtained below are quite independent of this shape. 

HEAT TRANSFER COEFFICIENT 

Consider a non-gradient flow of viscous incom- 
pressible fluid along the x-axis (Fig. 1). The velocity 
variation at a fixed point of the near-wall region of 
turbulent boundary layer is shown in Fig. 2, as a 
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NOMENCLATURE 

A the constant in equation (8) t 
B the constant in equation (14) t~ 
b the constant in equation (11) t2 
Cp specific heat of the fluid at constant Tm 

pressure Tw 
AT difference of the local fluid T~ 

temperature and fluid temperature at the 
outer boundary of the boundary layer u, v 

ATm difference of the local fluid 
temperature at the burst axis and that of 
the outer boundary of the boundary u~ 
layer 

I the integral in equation (7) Vm 
L characteristic length scale 
n the power in equation (8) x, y 
Nu the Nusselt number 
Nu~ the Nusselt number in quasi-laminar xb 

flow 
Nux local value of the Nusselt number 
Nux, local value of the Nusselt number in 

quasi-laminar flow 
Pex local value of the Peclet number /~ 
Q total amount of heat removed from the 7 

wall during the time between bursts 
Q I amount of heat removed from the wall e 

during period of quasi-laminar flow r/ 
Q2 amount of heat removed from the wall 2 

during burst v 
Re the Reynolds number 
Rex local value of the Reynolds number p 
s cross sectional area of the burst 

time between bursts 
duration of the quasi-laminar flow 
burst duration 
fluid temperature at the burst axis 
temperature of the wall 
fluid temperature at the outer 
boundary of the boundary layer 
longitudinal and transversal 
components of fluid velocity in the 
boundary layer 
fluid velocity at the outer boundary of 
the boundary layer 
transversal velocity of fluid at the burst 
axis 
longitudinal and transversal Cartesian 
coordinates 
coordinate of burst location. 

Greek symbols 
thermal transfer coefficient 
the constant in equation (13) 
the ratio of the time of burst duration 
to the time between bursts 
the constant in equation (14) 
nondimensional coordinate 
thermal conductivity of the fluid 
kinematic viscosity of fluid 
current radius of burst 
density of fluid 
time. 

/7 v 

X 

Fig. 1. Schematic description of a turbulent boundary layer. 

function of time. This graph illustrates one of the most 
important features of the near-wall flow: existence of 
two distinct forms of fluid motion corresponding to 
the quasi-laminar and bursting flow occurring at dis- 
tinct periods of time t~ and t2, respectively. At the first 
period the value of v/u (v and u are the longitudinal 

and transversal components of velocity) is smaller 
than one; at the second period these components have 
the same order of magnitude (v ~ u) and the ratio v/u 
is of order one. 

To estimate the heat transfer from the wall to the 
fluid, we use a thermal balance for a small area s equal 
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Fig. 2. Velocity variation at a fixed point in the sublayer. 

to the area of the cross-section of a burst. In the quasi- 
stationary approximation the balance equation is : 

Q = Q, +Q2 (1) 

where Q is the total amount  of heat removed from the 
wall during the time t = t~ + t:; tl is durat ion of the 
quasi-laminar flow over this area or the low velocity 
streaks, tz is the burst duration; Q~ is the amount  of 
heat removed flora the wall during the period of the 
quasi-laminar flow t~; Q2 is the amount  of heat 
removed from the wall by burst during the time t 2. 

The total amount  of heat removed from the wall 
during the time t is customarily written as : 

Q = ~(Tw - T~) x s x t (2) 

where ct is the heal: transfer coefficient, Tw and T~ are 
the temperatures of the wall and fluid in the free 
stream, respectively. 

The amount  of heat removed from the wall in the 
quasi-laminar regime is 

Q , =  \~-yyL=o x s  x tl (3/ 

where 2 is the thermal conductivity of the fluid and y 
is the coordinate normal  to the wall. 

To estimate the amount  of heat removed by a burst 
of  a coherent str~acture from the wall, we propose 
the following model: suppose the coherent structure 
leaves the wall as ;an axially symmetrical jet of radius 
~o, which has a centerline at some location Xb. We 
reiterate that the shape which is assumed here for the 
burst is unimpor tant  to the end result. The velocity 
distribution and lemperature distribution of the jet 
can later be assumed to have another shape, but  the 
results are quite independent on this assumption. 

The energy which is transferred from the wall in the 
coherent structure is: 

where ~ = x -  xb, xb is the coordinate of the coherent 
structure, ~o = (s/r0°s; P is the fluid density, Cp is the 
heat capacity and v is the velocity away from the wall. 

We rearrange equation (4) as follows : 

Qz = 2pCpvmATm v ~ m r l d r l  x s x t 2  (5) 

where vm and Tm are the velocity and temperature at 
the axis of the jet, AT = T -  To~. ATm = T m -  Too. 

As assumed above, that in the central part of the 
burst the flow is upwards along the y axis (Fig. 1). In 
the periphery of the burst, the direction of flow is 
opposite: the fluid moves towards the wall, as follows 
from continuity. Since the burst develops practically 
in the bulk of the fluid, it may be modelled as a 
submerged jet. Using the results of  the theory of tur- 
bulent jets of  Abramovich [6] we assume the following 
forms of velocity and temperature profiles in the burst 

U/U m = (1--F]3/2) 2 A T I A T  m = (1--r/3/2) 2w (6) 

where Pr is the Prandtl  number.  
Substitution of (6) in (5) yields 

where 

Q2 = 2pCpvmATmstzI (7) 

I = J0 (1 - q3/z)20 +vr)tl drl. 

The integral in the expression (7) is a function of 
the Prandtl  number.  This integral was evaluated 
numerically and the results are approximated (with 
accuracy of 12%) by: 

I = A/Pr  ~ (8) 

where A = 0 . 0 6 6 7 ;  n = 0 . 1 5 5  for 0.01 < P r < 0 . 1 ;  
n = 0 . 2  for 0.1 < P r < 0 . 7 ;  n = 0 . 5 7  for 0 . 7 <  
Pr < 3; n = 0.8 for 3 < Pr < 8. 

Taking into account equations (2), (3), (7) and (8) 
we can write the thermal balance equation (1) in the 
form 

/ \ d T  

(9) 

where Y = t2/t. 
Multiplying the left and right sides of equation (9) 

by L/2 (Tw-  T~) and assuming that ATm = (Tw-- T~) 
and Vm is proportional to the free velocity away from 
the wall (Vm = eU~, e < I) we get at 7 << I the following 
expression 

Nu = Nul + 2A~Pr I -"Rey (10) 

where L is a characteristic length and where 

Nu = T Nu~ (Tw--T~) =0' 

Nu~ is the Nusselt number  for the quasi-laminar 
flow, i.e. for the low velocity streaks. 

To estimate the value of the parameter 7, i.e. the 
dimensionless burst duration, we consider a number  
of investigations in which an average time between 
bursts was measured (Kline et al. [4], Kaftori  et al. 
[5], Kim et al. [7], Blackwelder and Haritonidis [8], 
Komori  et al. [9], etc.). These data show that the 
nondimensional  average time between bursts 
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t + = t(u*2/v)  = 91.5 (u* is the friction velocity, v is 
the kinemat ic  viscosity) approximate ly  is a constant .  

A t  present,  da ta  on the value of  t2 are unavailable.  
To estimate t2 we use the following dimensional  con- 
siderations. F r o m  the physical point  of  view it is clear 
tha t  t2 should be dependent  on  the 'outer '  parameters  
of  the flow. Therefore,  we can write 

t2 = bv/u  2 (11) 

where b is an  u n k n o w n  empirical coefficient. 
F r o m  equat ion  (11) and  the expression for the fric- 

t ion velocity on  a plate (Schlichting [10]) 

(u*/u~,) 2 = 0.0296 Re?, -°2 (12) 

with Rex = u ~ x / v  (x  is iongi tudinal  coordinate)  we 
obta in  

7 = fiRe× °2 (13) 

where 

h 
/~ = 9-i5.5" 0.0296. 

Subst i tu t ion of  (13) in the thermal  balance equa t ion  
(10) yields the following expression for the local 
Nussel t  n u m b e r  (at  L = x) 

Nux = Nuxl + B P r  I -nRe°'S (14) 

where 

Nux = ~ -  NUxl - ( T w S T ~ )  .=0 

and  B = 2A/~e is a constant .  
Taking into account  the value of  n in the expression 

(8) we obta in  the following correlat ions for the Nus-  
selt n u m b e r  at var ious values of  P r t  

Nux = NUxl + B P  °s  for0.01 < Pr  < 0.7 (15) 

Nux = NUxl + BPr°43 R e  °s  for0.7 < Pr  < 3 

(16) 

and  

Nux = Nuxl + B P r ° 2  Re  °s  for3  < P r  < 8 (17) 

where Pe is the Peclet number .  
The first of  these correlat ions corresponds  to flows 

of  fluid with small thermal  conduct ivi ty  (for example, 
liquid metal);  the second and  the third ones may be 
applied, for example to flows of  air and  water,  respec- 
tively. It is seen tha t  equat ions  (15) (17) agree fairly 
well with the k n o w n  expressions describing numerous  
experimental  da ta  on heat  removal  in tu rbulen t  
bounda ry  layers at  var ious Prandt l  numbers .  Since 
the dependence NUxl on Rex is comparat ively  weak 

tSlmilarly, we can find correlations for the Nusselt number 
in a pipe flow (assuming L = d, d is the pipe diameter and 
using the corresponding expression tbr the friction velocity). 

++To obtain this estimate we used the expression of 
Pohlhausen [11] for Nux~ and the experimental value of the 
coefficient B = 0.0296 for the fully developed turbulent flow. 

(Nuxt ~ Re  °5)  in the quas i - laminar  flow, the second 
term on the r.h.s, in equat ions  (15)-(17) is the domi-  
nan t  one, at large values of  Rex. Hence, in fully 
developed turbulen t  flow the basic role in the heat  
removal  f rom a solid wall to a fluid is played by the 
burs t ing process. Fo r  example, at  the flow of  water  in 
a channel  at  x = 3 m, u = 0.1 m s ~, v = 1 0  - 6  m 2 s -~ 

the rat io of  the first to the second terms in equat ion  
(17) approximate ly  is equal  to 0.3.~ 

CONCLUSIONS 

We propose  a simple model  of  heat  removal  f rom 
the wall in a tu rbulen t  bounda ry  layer. This model  is 
based on  the assumpt ion  tha t  the dominan t  mech- 
anism of  heat  t ransfer  f rom the wall is the burs t ing 
of  coherent  structures f rom the wall region into the 
mains t ream.  Indeed, we assume tha t  bursts  lead to the 
emergence of  special zones with very small thermal  
resistance in the near  wall flow, which determine the 
heat  t ransfer  intensity. This model  leads to the results 
which agree fairly well with numerous  exper imental  
da ta  on heat  removal  in tu rbulen t  bounda ry  layer at 
various values of  the Prand t l  number .  The approach  
developed here may be used as a founda t ion  for a 
theory of  heat  t ransfer  in tu rbulen t  bounda ry  layer 
consis tent  with the known  experimental  evidences on 
the internal  mechan ism of  the flow. 
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