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Abstract-In this paper we show that the production of ice by convection cooling followed by contact 
melting can be maximized by properly selecting the frequency of the intermittent freezing and removal 
cycle. In the first part of the paper, this principle is illustrated in three configurations : water freezing inside 
a tube cooled externally by convection, freezing on the outside of a tube cooled internally by convection, 
and freezing on a plane wall with convection cooling on the back side. The proper dimensionless groups 
are identifiecl, and the optimal regime of intermittent operation is reported in dimensionless charts. The 
second part of the paper focuses on the contact melting process that occurs during the gravitational removal 
of the ice piece. This time-dependent process is the result of the coupling between the thin-film fluid 
mechanics, the acceleration of the ice piece and the variable length of the direct contact region. The ice fall 
time predicted by the contact melting analysis was validated by experiments with ice columns falling from 

vertical tubes heated from the side. 

1. INTRODUCTION 

The large-scale production of ice continues to be an 
important engineer] ng objective, because, in addition 
to the traditional applications (food processing and 
storage), the repeated freezing and melting of ice is an 
attractive method of exergy storage [l] (called “the 
ice harvesting method”) and seawater desalination [2]. 
Two of the most common methods of ice manu- 
facturing are the ice in tube method (Fig. l), and the 
ice on tube method (Fig. 6). 

In this paper we describe the most fundamental heat 
transfer features of these ice manufacturing processes. 
The first objective is to show how the frequency of the 
intermittent freezing and ice removal cycle can be 
selected such that the time-averaged production of 
ice is maximized. This manufacturing optimization 
principle is applicable to the production of other solid 
materials, not just ice. The second objective is to con- 
struct an analysis of the time-dependent contact meit- 
ing process that occurs during the gravitational fall of 
each ice piece. The third objective is to test in the 
laboratory the predictions made based on the contact 
melting analysis. 

2. FREEZING INSIDE A TUBE COOLED 
EXTERNA.LLY BY CONVECTION 

Consider the configuration sketched in Fig. 1, in 
which ice forms on the inner side of a cylindrical wall 
cooled on the outsidle by convection. In the beginning, 
the cylinder is filled with water at the freezing point, 

t Author to whom correspondence should be addressed. 

Fig. 1. The freezing of water inside a round tube cooled 
externally. 

T,. The outer wall of the cylinder is exposed to a 
coolant (T, < T,) when t > 0. The heat transfer 
coefficient between the wall and the coolant, h, is 
assumed constant. The water movement can be neg- 
lected because the buoyancy effect is zero (the liquid 
is isothermal at T,). The heat transfer through the ice 
shell and the tube wall are by quasi-steady conduction, 
which occurs when the ice Stefan number is small [3]. 

The relation between the inner radius of the ice 
annulus (r) and time (t) is obtained by writing that 
the conduction and convection heat transfer rate from 
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NOMENCLATURE 

A cross-sectional area Th temperature of hot fluid, Fig. 10 
X cross-sectional area TlTl melting point 
b thickness of tube wall TCC temperature of cold fluid, Figs. 1 
B dimensionless group, equation (29) and 6 
Bi generalized Biot number, equation (5) X dimensionless radial position, r/R 
Bi generalized Biot number, equation Y dimensionless radial position, r/R, 

(20) Z longitudinal ice travel during removal, 
C specific heat of liquid water Fig. 10. 
C dimensionless group, equation (15) 
D diameter of ice sample Greek symbols 
gL gravitational acceleration in the z c? thermal diffusivity of air 

direction, Fig. 10 EC” thermal diffusivity of copper 
G dimensionless group, equation (30) 
h heat transfer coefficient ;r 

dimensionless time, equation (27) 
dimensionless ice fall time, equation 

h 
; 

latent heat of melting (31) 
length of ice column 6 ice layer thickness on plane wall 

k water thermal conductivity d dimensionless ice thickness, equation 
k, ice thermal conductivity (14) 
k, wall thermal conductivity A, thickness of plane wall 
m mass of ice column AT wall-ambient temperature difference 
P wetted perimeter of ice column i dimensionless ice travel, z/H 
r radial position, Figs. 1 and 6 8 relative freezing time, equation (10) 
R inner radius of round tube, Figs. 1 3, thickness of thin water film, Fig. 10 

and 6 x dimensionless film thickness, equation 
& outer radius of round tube, Figs. 1 (28) 

and 6 P water viscosity 
Ra Rayleigh number P density of ice or water 
t time z dimensionless time, equation (4) 
t, time to steady conduction z” dimensionless time, equation (19) 
tf ice fall time 20 time when the tube cross-section fills 
t “C time to steady natural convection with ice, equation (6) 
tl time of ice formation r,, Z, time of ice formation 
t2 time of ice removal z2, Z; time of ice removal. 

T,,, to T, is matched by the rate of freezing at the r(t) 
interface : 

1 -’ 

h2nR, 1 
= ph,, 2xr. (1) 

This equation can be integrated from t = 0, when 
r = R, to obtain an implicit relation between time and 
inner ice radius, 

x2 x2 x2 1 r=Tlnx----+-+-!- 
4 2Bi 4 2Bi (2) 

in which the dimensionless variables are defined by 

X,ll 
R 

tki(Tm - Tco) Z= 
phs,R ’ 

Bi=F[l+ffj$h(%)l’. (5) 

The cylinder cross-section fills with ice when x = 0, or 
cf. equation (2), 

1 1 
ro =4+=. 

The newly formed ice column continues to be sub- 
cooled as z increases above zo. 

Let us assume that the sequence of operations 
associated with removing the ice column lasts t2 
seconds, which in dimensionless terms corresponds to 
the constant 

(7) 

The question we address first is how long should the 
ice forming process be allowed to run, so that the 
time-averaged rate of ice production is maximum? Let 
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Bi 
Fig. 2. The optimal freezing time ratio Oop, as a function of 
the ice-removal time and the Biot number (freezing inside 

tube). 

t, be the unknown duration of the ice forming process 
described by equation (2). The amount of ice formed 
at t = t, is proportllonal to the annular cross-sectional 
area 

A = nR2 -nr2 = xR’(1 -x:) (8) 
where x, = x(zJ. This is the amount produced over 
the total time interval t, + t2, i.e. during one cycle of 
freezing followed by ice removal. The average rate of 
ice production is proportional to 

A nR2 1 -x:(e) 

7i+72 72 e+1 

where 0 is the relative freezing interval 

The function x, (0) is given by equation (2) : 

8.7, =G 
(\ 
‘lnx,-i-t 

> 
+i+&. (11) 

The right side of equation (9) shows that the aver- 
age rate of ice production varies as the function 
(1 -x:)/(0+ l), which depends on 8, 72 and Bi. The 
optimal freezing interval 8,,, that maximizes this func- 
tion was determined numerically and plotted in Fig. 
2. The ice removal time constant 72 can be expected 
to be smaller than 1. For example, if t2 = 20 seconds, 
T,- T, = 3O”C, and R = 2 cm, the z2 value is 0.011. 

The results developed in the preceding section reach 
a particularly simple form in the limit in which the 
tube radius R is sufficiently large that the ice layer is 
always thin relative to R. In this limit the convection- 
driven freezing process is the same as on a plane wall 
of thickness A, and thermal conductivity k,, with an 
ice layer of instantaneous thickness 6. The connection 
between this geometry and the R >> (Ro-R) limit of 
Fig. 1 is represented by A, = R. -R and 6 = R-r. 

Since the analysis follows the steps presented in 
Section 2, we omit the analytical details and list only 

When the ice removal time 22 is fixed, the optimal 
freezing time decreases as the external heat transfer 
coefficient (Bi) increases. For example, if Bi = 1 and 
z2 = 0.1 the optimal time ratio is eopt = 3.96, which 
means that the freezing interval should last approxi- 
mately four times longer than the ice removal interval. 

lo5 

The optimal inner radius of the final ice annulus, 
%pt = x(0,& is only a function of z2, and is shown in 
Fig. 3. The results of Figs. 2 and 3 are valid when the 
ice front does not reach the centerline of the cylinder, 
i.e. when t < z,,, or 0 < 7&Z. In the preceding numeri- 
cal example (Bi = 1, z2 = 0. l), the optimal final inner 
radius of the ice annulus is x,~, = 0.592, or 
r,,, = 0.592R. 

1o-3mO 

Bi 
Fig. 4. The optimal freezing time 5,.opt as a function of the 
ice-removal time and the Biot number (freezing inside tube). 

01 
1o-4 

, ,_ ,,,,, , , ,,,,,,, , , ,,,,, ~, , ,, 
1o-3 1o-2 10-l 1 

Fig. 3. The optimal inner radius of the ice shell just before 
removal, as a function of the time of removal (freezing inside 

tube). 

An alternative to the 0,,&Bi, z2) function of Fig. 2 
is the optimal freezing time z,+&B~, ZJ shown in Fig. 
4. This is obtained by multiplying the ordinate of Fig. 
2 by ‘t2, because z ,,opt = &t2. Figure 4 shows that the 
optimal freezing interval z,,,,~~ decreases when the ice 
removal time Q decreases at constant Bi. 

To summarize, the ice production cycle is described 
by the time of ice formation 7,, followed by the time 
of ice removal 72. The physical impact of the cycle 
optimization procedure is to maximize the rate of ice 
production averaged over time. 

3. FREEZING ON A PLANE WALL COOLED BY 

CONVECTION ON THE BACK SIDE 



2836 J. V. C. VARGAS and A. BEJAN 

the results. In place of equation (2) we obtain the 
implicit function s(t) given by 

This can be nondimensionalized as the function b(0). 

e=;b*+cJ (13) 

by using the notation 0 = t,/t2, equation (10) and 

I/* 

S=S 
[ 

P&f 
t2kCTm- rco> 1 

(14) 

C = g + ~)[t2(;~~~~)l’:2. (15) 

The problem of determining the optimal freezing 
time t, (or (3,) reduces to maximizing the function 
8(0)/(0+ 1) with respect to 0. The result is given by 

&rt = 1+2”2C (16) 

which is illustrated in Fig. 5. The optimal freezing time 
increases monotonically as the C constant increases. 

Noteworthy is the limit C = 0 in which eopt = 1. 
This limit means that when the thermal resistance 
between the water (r,) and the coolant (T,) is domi- 
nated by the ice layer, the optimal freezing time equals 
the time required to remove the ice layer. In the 
opposite limit, C -+ co, the optimal freezing time 
behaves as Qopt = 2”*C. Note finally that the present 
results have a simpler form than in Section 2, because 
in Fig. 5 Qopt is a function of a single parameter (C). 
The corresponding eopt results for freezing inside a 
tube (Fig. 2) depend on two independent parameters 
(r2, Bi). 

4. FREEZING ON THE OUTSIDE OF A TUBE 

COOLED INTERNALLY BY CONVECTION 

The production of ice on the outside of a tube 
cooled internally by convection can be maximized by 
applying the method of Section 2 to the geometry 

20 

0.1 1 10 

C 
Fig. 5. The optimal freezing time ratio eopf when the ice layer 

is formed on a plane wall. 

r 

Fig. 6. The freezing of water on the outside of a tube cooled 
internally. 

presented in Fig. 6. We skip the analytical details and 
report that the position of the freezing front is now 
given by 

2 2 2 

i=f’“‘-f+&+i-$ 
i (17) 

where 

y+ (18) 
0 

(19) 

L%=~[l+~ln@)1’. (20) 

At the end of the freezing time interval t,, the cross 
sectional area of the ice annulus is A” = nRi(y: - l), 
where y, = y(z”,) in accordance with equation (17). 
The average rate of ice production is 

A” Y: (0) - 1 &i .- 
f, +%* z; e+i (21) 

where 0 is the relative freezing time, 0 = tl/t2 = fJf,, 
and the function yr(0) is given by equation (17) : 

Y: O*fZ =T 
i 

1 1 
lny,-2ZZ 

> 

1 1 
+4-=. (22) 

The function (y: - l)/(S+ 1) identified in equation 
(21) was maximized numerically, and the results are 
reported in Figs. 7-9. The trends are similar to those 
seen in Figs. 24 for freezing inside tubes. These simi- 
larities are enhanced by the fact that the dimensionless 
groups employed in this section (y, f, k) were care- 
fully selected to be the analogs of the groups (x, r, Si) 
employed in Section 2. The limit where the optimal 
thickness of the ice shell is small relative to R. is 
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?T--- 10 
ii 

Fig. 7. The optimal freezing time ratio cop, for freezing on 
the outside of a tube. 
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22 

Fig. 8. The optimal outer radius of the ice shell formed on 
the outside of a tube. 
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Fig. 9. The optimal freezing time Q,,O,, for freezing on the 
outside of a tube. 

covered by the “ice: on plane wall” results reported in 
the preceding section. 

d*z P dz 
ms = ms,-(H-z)pj z (24) 

To summarize, when the ice is made inside a vertical in which m is the mass of the piece of ice, and p is the 
tube, 2, is the time of the solidification process, and 7,, wetted perimeter of the contact melting surface (e.g. 
the time when the ice front reaches the centerline. p = 2 n R inside a round tube). By using m and p 
When z, < 70, the produced ice is a cylindrical tube, (instead of R, T,,, H) in the analysis, we extend the 
and when 7l > 7,, it is a subcooled rod. The present applicability of this analysis to the contact-melting 
optimization results are valid for 7, < zo, because the removal of ice columns of any cross-section, and to 
objective is to produce a maximum amount of solid ice shells that form on the outside of vertical walls of 
(ice), not subcooled solid. any shape. In equation (24) it is assumed that m is a 

5. CONTACT MELTING AND FALL OF THE 

PIECE OF ICE 

A new and interesting contact melting phenomenon 
occurs during the fall of the ice piece from the wall on 
which it was made. As shown in Fig. 10, the ice can 
be removed by gravity while heating the wall con- 
vectively (h, Th) starting at t = 0. The ice piece slides 
downward while rubbing against a film of water. The 
time until the ice leaves completely the wall surface 
can be anticipated based on contact melting theory [4]. 
Although Fig. 10 shows the removal of the ice formed 
inside a tube, the results reported in this section apply 
to ice formed on vertical wails of any shape, e.g. on 
the outside of tubes, or on plane walls. 

The contact melting phenomenon of Fig. 10 is new 
relative to the current state of contact melting heat 
transfer research, which was reviewed recently [4]. In 
brief, the published studies dealt with melting inside 
heated capsules [5-lo], and the movement of heated 
bodies through solid phase-change media [ 11, 121. The 
melting heat transfer along plane surfaces with relative 
motion was studied as well [ 131. 

The thin-film assumptions on which contact melting 
analyses are based are well documented (see, for 
example, Roy and Sengupta [S]), and are not repeated 
here. To these we add two more simplifying assump- 
tions : 

(a) The water Stefan number is small, 
c(T,,- T,,,)/hsf -K 1, such that the temperature dis- 
tribution across the melt water film thickness 1 is 
linear. 

(b) The wall is thin and conductive enough such 
that the transient conduction effect in the wall can 
be neglected. The heat transfer through the wall is 
quasisteady because the temperature of the inner and 
outer surfaces of the wall vary as the melt film thick- 
ness increases from 1 = 0 at t = 0. 

Assumption (b) allows us to express the instan- 
taneous heat flux from the heat source (T,,) to the ice 

(T,) as 

dl 
&rz = Vi, - r,) 

1 ln(R,/R) 1 -’ 
k + 2Rk, + 2?rR,h 

I 

(23) 

The downward travel of the ice z(t) is governed by 
Newton’s second law of motion, 
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wall 

\ 

r water film, k 

hot fluid 

h, Th 

H 

Fig. 10. The removal of the piece of ice by heating the wall. 

constant during the ice removal process, or that the 
thin-film melting process does not erode significantly 
the piece of ice. The last term in equation (24) 
accounts for the total friction force due to Couette 
flow in the melt film, where (H-z)p is the instan- 
taneous contact area. 

Integrated in time, equations (23) and (24) deliver 
the film thickness A(t) and vertical position of the 
falling ice z(t). We performed this operation numeri- 
cally, by nondimensionalizing equation (23) (inte- 
grated in time) and equation (24) as 

~=x’+Gx (25) 

d21 B d< -=1-(1-Q 
dB2 

where 

(26) 

p = f g 0 “2 +; 
2 = A($‘4[2&‘~ ,)I” (28) 

B = T [2k(;‘z T,,)]i’2 (29) 

G = ln(&IR) + 1 

I[ 

2kph,, 1 l/2 ~ __ 
2nk, 2nW (r,, - Tm)(H/gz)“2 . 

(30) 

The calculated ice travel history is illustrated in Fig. 
11 for G = 104, which is the G order of magnitude 
relevant to the experiments described in the next 
section. The piece of ice starts its travel extremely 
slowly, and accelerates its fall dramatically after it 
executes about 20% of its total travel. The time when 
the trailing end of the falling ice leaves the tube is the 
fl value marked by the i(p) curve on the abscissa of 
Fig. 11. In other words, the ice fall time /$ is defined 
by 

i(A) = 1 (31) 

and the & (B, G) curves that emerge are reported in 
Fig. 12. The ice fall time increases monotonically with 
the dimensionless group B, i.e. as the contact area 
pH increases, or as the driving temperature difference 
decreases. This time increases also as the thermal 
resistance (G) associated with the wall and the exter- 
nal flow becomes significant. In the B and G range Equations (25) and (26) were integrated starting from 

[ = d[/dfi = 0 at fi = 0. Equation (26) was integrated covered by Fig. 12, the numerical /?r values displayed 

using a Runge-Kutta method of 4th-5th order with 
controlled step size, while keeping the local truncation 
error below a prescribed tolerance of lO-‘j [14]. Equa- 
tion (25) shows that j = 0 represents a singularity 
point in equation (26). This singularity was avoided 
by starting the integration from /I = 10m4 where both 
[ and d[/db are approximately zero. Since in the begin- 
ning the [(/?) curve is very flat, numerical stability 
required the use of sufficiently small step size that was 
adjusted according to the local truncation error. In 
this way the solution was generated using little com- 
putational time. 
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0.8 4 

Fig. 11. The downward travel of the piece of ice removed by 
contact melting from the side. 

‘“k-- 1 10 
B 

Fig. 12. The time until the ice leaves completely the wall 
heated from the side. 

in the figure are correlated within 5% by the 
expression 

/Ir = 0.35G’ 6’Bo.5. 

It is important ‘to note that the ice fall time tf (or 
/$), predicted by contact melting analysis is not the 
same as the removal time t2, which was regarded as a 
constant in Sections 2-4. The time t2 accounts for a 
considerably longer series of operations that begins 
with interrupting the coolant flow, replacing the cool- 
ant with a flow heating agent, allowing for an interval 
longer than tf to make sure that every single ice piece 
falls off the heated wall, replacing the heating agent 
with coolant, and cooling the wall long enough to 
make the start of the ice making phase (t,) possible. 

6. EXPERIMENTAL MEASUREMENT OF THE ICE 

FALL TIME 

The ice fall time obtained by solving numerically 
equations (29, (26) and (31) was validated through 
measurements made in the laboratory. Two ice sample 
sizes were used in these experiments, Table 1. The 
procedure consisted of freezing water in a tube (height 
H, inside diameter D, wall thickness b), bringing the 
ice sample to the isothermal state near the melting 

point, and measuring the time until the ice sample fell 
out of the vertical tube. 

Each ice sample was made in a commercial copper 
tube placed in a freezer at - 8°C. Two thermocouples 
were placed at mid-height in the ice sample, one on 
the centerline, and the other at the surface. Before 
each contact melting run, the tube (with ice in it) 
was immersed for approximately 3 h in an insulated 
container filled with a mixture of crushed ice and 
water. The ice sample temperature was monitored 
until the readings of both thermocouples indicated 
0°C. At that moment the tube was taken out of the 
container and suspended vertically in a support in 
the laboratory atmosphere. This move, which lasted 
about 1 s, marked the beginning of the contact melting 
run, t = 0. 

Ten runs were executed for each of the sample sizes 
listed in Table 1. The precision limit Pt was calculated 
as twice the standard deviation exhibited by the set of 
ice-fall time measurements obtained with one sample 
size (cf. ref. [15]). The bias limit of the chronometer 
used in the measurements was kO.01 s. The uncer- 
tainty for t was calculated using the formula 
U, = (P: +B:)“*. 

The outer surface of the tube was heated by natural 
convection. The h coefficient [needed to estimate G, 
equation (30)] was calculated based on Lienhard’s 
approximate formula [ 161. This approximate estimate 
was more than adequate because it is not critical to 
know G very accurately in order to estimate the ice 
fall time. For example, if D = 5 cm, H = 25 cm and 
b = 1.5 mm, an error of 30% in the estimation of h 
leads to an error of 11.5% in the theoretical prediction 
of the ice fall time based on Fig. 12. 

The calculation of h was based on the assumption 
that the boundary layer natural convection on the 
outside of the tube is in the steady state. This assump- 
tion is justified because the time scale associated with 
the establishment of steady natural convection is small 
relative to the duration of the contact melting process. 
That time scale is t,, N (H’/a)Ra-‘I*, where Ra is the 
Rayleigh number based on height and wall-ambient 
AT [17]. For example, when H = 25 cm, AT = 25°C 
and the air properties are evaluated at 12”C, we obtain 
t nC - 0.4 s. When the tube is shorter, H = 8 cm, the 
boundary layer reaches steady state after t,, N 2 s. 

The theory tested in these experiments is based also 
on the assumption that the conduction through the 
wall of the copper tube is steady. The conduction 
steady state is achieved after a time of order 
t, - b*lac,, which means that t, - 0.02 s when 
b = 0.15 cm, and tc - 0.01 s when b = 0.1 cm. These 
time estimates show that during the experiments of 
Table 1 the conduction through the tube wall was 
steady. 

Table 1 shows that there is good quantitative agree- 
ment between the predicted and measured times for 
the fall of the ice sample. Furthermore, both the pre- 
dicted and measured times decrease from the first set 
of runs to the second. The fact that the measured times 
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Table 1. Comparison between the measured and predicted times of when the ice sample falls out of a vertical tube 

Ice fall times [s] 

H [cm1 D km1 b [mm] B G Pf Predicted Measured P, Bt u, 

25 5 1.5 0.54 14000 87.31 13.94 17.83 4.00 0.01 4.00 
8 3 1 0.9 13000 118.7 10.72 15.01 4.62 0.01 4.62 

are longer than the predicted times can be attributed to 
a small degree of subcooling that may still be present 
at the start of the contact melting run, or to the wall 
roughness of the commercial tubes employed. 
Another, less likely explanation is that some of the 
liquid film drains and leaves spotty air gaps, which 
decrease the heat transfer and cause a slower drop 
rate. 

7. CONCLUSIONS 

There are two main ideas in the work we have just 
reported. First, the production of ice by intermittent 
freezing can be maximized by selecting the frequency 
of the freezing and removal cycle. We illustrated this 
principle in three ice-making configurations : freezing 
inside a tube with convection cooling on the outside, 
freezing on the outside of a tube with convection 
cooling on the inside, and freezing on a plane wall 
with convection cooling on the back side. This design 
optimization principle appears to be general, in other 
words, the time-averaged production of ice can be 
maximized in other geometric configurations. 

The second idea is that when the ice piece is removed 
gravitationally by heating the wall, the motion is gov- 
erned by a time dependent contact melting process. 
The fundamental feature that distinguishes the present 
contact melting process from the other contact melt- 
ing cases documented in the literature [4], is that it is 
time-dependent (not quasisteady). Its evolution is tied 
to the dynamics of the ice piece and to the time- 
dependent size of the contact region. This contact 
melting process is one in a potentially long list of 
contact melting configurations in which the melting 
material moves with acceleration (falls) along the 
heater surface. Examples are the fall of ice from the 
fins and tubes of the evaporator of a defrosting 
refrigerator and freezer [ 181, and, outdoors, from elec- 
tric cables, tree branches and buildings. This new class 
of time-dependent contact melting phenomena 
deserves attention in future studies. 

The solidification analyses of equations (l)-(22) are 
based on the assumption that the conduction proces 
is quasisteady. As shown in ref. [3] this classical 
assumption is valid when the ice Stefan number is 
small, ci,(T,- r,)/& << 1. It is particularly appro- 
priate for ice making processes, where, for example, 
T, - T, = 8 K corresponds to Ste,, = 0.049. The sol- 
idification processes discussed in this paper are to be 
distinguished from rapid solidification processes. The 
latter are receiving considerable attention (e.g. Kang 

et al. [19]), and are employed in the production of 
special alloys, where the objective is to generate a fine 
grain structure in the final product. In spite of the 
different Stefan number, the idea that the sol- 
idification and removal cycle can be optimized for 
maximum production of solid continues to be valid, 
and deserves to be applied to rapid solidification pro- 
cesses as well. In such applications the solid Stefan 
number will appear as an additional group in the 
nondimensional reporting of the final results. 
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