JOURNAL OF COLLOID AND INTERFACE SCIENCE 167, 320-331 (1994)

Dynamic Surface Tension of Solutions of Surfactant Mixtures
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A quantitative theory of the dynamic surface tenston for 2
multicomponent mixture of surfactants obeying the Langmuir
adsorption isotherms with constant difTusion coeflicients in the
bulk and in the adsorbed layer is developed for dilfusion-con-
trolled and diffusion-convective-controlled adsorption maodels,
The effect of the mutual diffusion in the adsorbed layer and the
effect of the convective transfer are estimated in an analytical
form for the short-time and long-time approximations. It is con-
cluded that the dynamic surface tension can be described by the
diffusion-convective-controlled model. It is shown that the
equation F(v(1)) = log[(vo — v()/(v(t} — ve}] = m log(t/tre)
is valid over a wide range of time for the multicomponent mixture
of surfactants. Because the diffusion-controlled and diffusion-
convective-controlled adsorption models are shown to be
asymptotical, correlation # equals one-half. Simple formulae are
derived to calculate the parameters n and f,, and the dynamic
surface tension over a wide range of time for adsorption iso-
therms of multicomponent mixtures obeying the Langmuir ad-
sorption isotherms. © 1994 Academic Press, Inc.

INTRODUCTION

Many important phenomena, such as interfacial turbu-
tence, thin film stability, high wetting or foaming, and re-
tardation of drop motion, are consequences of the fact that
surlace tension varies with surface concentration and time.
In these processes eguilibrium concentrations are not at-
tained and dynamic processes play a major role,

Time-dependent surface tension, known as dynamic sur-
face tension, has been investigated by many authors for the
individual and mixture surfactants (1-31). The suggestion
that surfactant diffusion to the surface is the cause of dynamic
surface tension was first made by Milner (1) and described
by Langmuir and Schaefer (3). Diffusion-controlled adsorp-
tion for an individual surfactant was first analyzed quanti-
tatively by Ward and Tordat using an integral equation (5).
Hansen (7) has found analytical solutions in the form of
three terms for the short-time approximation and in the form
of the first term for the systems obeying the Langmuir iso-
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therms. A critical analysis of numerical solutions has been
conducted by Borwankar and Wasan ( 19) for the individual
surfactant and by Miller and co-workers ( 30) for multicom-
ponent mixtures. These authors analyzed the different nu-
merical schemes and showed that numerical solutions of the
nonlinear equations may be obtained only by making sets
of simplifying assumptions. The dynamic surface tension
for a two-component mixture of surfactants has been studied
experimentally by Joos and Van den Bogaert (11). As shown
in (235, 26, 29}, a relaxation equation, Eq. {1}, may be used
to describe surface tension over a wide range of time as a
function of time and two adjustable parameters,

log{[vo — (D1 {¥(1) — vel}

= plog{t) — nlog(te), [1]
where v, is the solvent surface tension, (!} is the surface
tension at time ¢, v, is the equilibrium surface tension of the
solution, and n (dimensionless) and {4 (units of time} are
constants. It is reasonabie to analyze the theoretical foun-
dations of the relaxation equation in terms of the diffusion-
controlled adsorption and diffusion-convective-controlled
models.

Forced convection decreases the adsorption at the surface
of a drop or bubble rclative o a static aging surfacc. The
diffusion-convective model for growing drops and bubbles
was first formulated by Ilkovic {32, 33). The approximate
solution for this model was derived by Delahay er al. (34,
35). The convective transfer of surfactant from the bulk to
the expanding surface is accounted for by a convective term
in (36, 37). Application of the theory of diffusion-convective
kinetics to experimental data is based on using the first term
for the short-time approximation (16, 27, 29, 36). There is
no first term for the long-time approximation of diffusion-
convective kinetics.

We examine the analytical approaches and the simplifying
assumptions of the carlier investigations. Despite several at-
tempts, there is no treatment of the problem which achieves
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a general analytical approach for solving the nonlinear equa-
tions for multicomponent mixtures of surfactants, without
making sets of simplifying assumptions (36 ). Therefore, we
present a general formulation of the problem and a simple
analytical scheme to solve the resulting nonlinear equations
for both the diffusion-controlled and the diffusion-convec-
tive-controlled models of adsorption kinetics.

The purposes of this paper are (a) to develop a theory of
the dynamic surface tension over a wide range of time for
multicomponent mixtures of surfactants, (b) to estimate the
effects of the mutual diffusion in the adsorbed layer and the
convective transfer in an analytical form for the short-time
and long-time approximations, {(c) to justify theoretically
that Eq. [1] may be useful to describe dynamic surface tension
in a wide time range for multicomponent mixtures of sur-
factants, and (d} to derive simple formulae to calculate the
parameters 7 and 7., in the relaxation equation [1].

THEORY

Surface Tension Relations of Surfactant Mixtures for
Langmuir Adsorption Isotherms

The change in the equilibrium surface tension is related
to the adsorption by the Gibbs equation (Eq. [2]) (38)

2 T(e)dpy

k=1

dy = —

n

= — 2 Tileg, 6, ..
k=t

e RTdefo, 1 <k<sn, [2]

where I, is the amount of adsorption for the kth mixture
component, ¢y is the concentration of the Ath mixture com-
ponent, # is the number of mixture components, R is the
gas constant, and T is the absolute temperature.

For the Langmuir adsorption isotherm in the dimensional
and dimensionless forms, respectively,

Ti(c) = TRKic/[1 + V(o)], T(C)
=(1+ V}C/[1 + VO,
TW(C) = Tilc)/ Tok, Dox = TRB/ (1 + Vo), ¥y

[3a]

Cr = i co

=2 b, V(c) = Z Kice, V(C) = 2 bCr  [3b]

k=1 k=1 k=1

bszECDk,OSCk, N=sl,1sk=< i, [3c]

where K7 is the equilibrium constant for the kth mixture
component, I',, is the maximum adsorption, and ¢y is the
concentration of the kth mixture component in the bulk.
Strictly the Gibbs equation should be applied only to
gquilibrium cases, However, if the reduction in surface ten-
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sion is assumed to result only from the adsorption of sur-
factant, then the resulting surface tension relationships for
each adsorption isotherm respectively can be written, with
¥(t) replacing .,

(1) = vo — RTTSIn[1 + V(c(:))],

Yo — ve = RTTIn(1 + V). [4]

The Diffusion-Controlled Model

The adsorption process takes place in a thin layer on a
planar interface. In general this process is governed by the
diffusion and mutual diffusion of molecules of the mixture
components in the adsorption layer, Therefore, the adsorp-
tion processes on a planar surface may be described for the
one-dimensional model as {38, 39)

ack(xa I)/at = z 6[ij(cla Czy 00 e

i=t

, Cn)

Xdclx, t}fox]fox, 1<k, j<n

{31

Fk(f):\[) [ex{x. 1) —coxldx, 1=sk<n (6]

with the initial [ 7] and bdundary [ 8] conditions, respectively,

G(x>0,0) = cor, Te(0) = 0, cxlo0, )y = o {7]

dUu (Y dt= 2 Difdcy, 2y o0y €n)3ci(0, £)/0x, [8]

i=1

where ¢, (x, ¢) is the concentration of the kth mixture com-
ponent at coordinate x normal to the surface (x = 0), (0,
¢) is the surface concentration of the £th mixture component
on an interface, ¢y is the bulk concentration of the £th mix-
ture compenent, Dy (c) and D, { c) are the coefficients of
diffusion (k£ = j) and mutual diffusion {k # j) of the kth and
Jth mixture components, and I'y is the adsorption of the kth
mixture component on a planar interface. The diffusional
transport of surfactant molecules in the bulk is described by
Fick’s second law in the form of Eq. [5]. For high adsorbate
concentrations the diffusion coefficients, Dy ;(¢1, ¢, ..., ),
depend on the adsorbate concentrations, ¢, (38, 39). The
boundary conditions Eq. { 8] are drawn from Fick’s first law,
which describes the flux at a place x = 0. The adsorbed layer
is not homogeneous, as the adsorbate concentrations, ¢;(x,
t}, depend on the distance x from the surface (x = 0). There-
fore, the adsorbed amount per unit of surface, I'y(¢), for the
kth mixture components, using the Gibbs convention (38),
is given by Eq. [8], where [cx(0, 1) — cqi] is the excess con-
centration of the Ath mixture component adsorbate in the
adsorbed layer (mass per volume unit).
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The inhomogeneous adsorption model in the form of Eqs.
[5] through [8] is complex and it is reasonable to consider
the simplified homogeneous adsorption model, which may
be written (29, 40) as

dee(x, 1)/8t = DY ci(x, )/3x2, 1<k, jsn [9]
dU(t)/di = 3 D¥ac(0,1)/ox, 1<k, j=sn, [10]

=1

where DY, are the diffusion coefficients of the kth mixture
component in the bulk, and D¢ are the diffusion coefficients
of the kth mixture component in the adsorbed layer. This
approach has been already introduced by Ravera and co-
workers (40); the authors interpreted the diffusion coeffi-
cients, D, in the framework of an interfacial potential bar-
rier in the adsorbed monolayer. For the simplified adsorption
model the diffusion coefficients, D, in the bulk are assumed
to be constant. Inhomogeneity taking place within the ad-
sorbed layer is assumed to be estimated by using the ho-
mogeneous model with constant diffusion coefficients,
Dij—i, depending on the interaction between adsorbate mol-
ecules in the adsorbed laver and the architecture of the ad-
sorbed layer. For low surfactant concentrations the mutual
diffusion in the bulk can be neglected. The role of the mutual
diffusion, Dﬁj—‘ (k # j), in the adsorbed laver can become
important due to the interaction of surfactant molecules in
the adsorbed layer.
The system of equations [9] and [10] may be reduced to
a system of integral Volterra equations by using the Laplace
transform (29, 35). By using the Laplace transform
o0
Grlx, p) = fo cx(x, )exp(—pt)di, [11]
where p is the parameter of the Laplace transform, the system
of equations [6], [9], and [10]} may be written as

&0, P) = con/p — 2 [(PD%) D) 1T5( p),

j=1

Ik, j=n, [12]

where (D*")};! is the reciprocal matrix of D
The inverse Laplace transform of Eqgs. [11] and [12] may
be reduced to the integral Volterra equations

TW(t) = X 2[ D/ (D% ?]

=

4
X[Cﬂjtll‘zf CJ(O,t—p)dp”z [13]
0

F7 B
a0, 1) = cor — a > J; Ti(t — p)dp
Jj=1

1<k, j<n.

X [(DY)HD*) 1/ (xp) 2, (14]

FILIPPOV

As will be shown below, to describe the adsorption process
over a wide range of times, it is reasonable to use the system
of equations [13] for short times (see Eqgs. [16]) and the
system of equations [14] for long times (see Eqs. [21]). The
solution of the system of equations [13] and [14] overa wide
range of times may be found by using the relaxation function
F(1), which may be written in the form (235, 26, 29)

F(v(1)) = log[(vo — y(t))/(¥{(2) = 7ve)]

nlo%([/zrel)s [15]

where £, is the relaxation time characterizing the rate of
adsorption processes on the interface and in the adsorption
layer, and # is the slope of the relaxation function F(¢) versus
log(r). In fact, Eq. [15] is in a form similar to the Fourier
transform of a correlation function, often used in relaxation
theory (41, 42).

Arbitrary adsorption isotherms such as those of Langmuir,
Volmer, and Van der Waals, excepting Freundlich adsorp-
tion isotherms, do not have the singularity at C = 0; i.e., dT°
(C =0)/dC is bounded. For these adsorption isotherms the
solution of Eqs. [13] for short times (£ = 0} may be found
in the form

TW(t) = 2 agt’?, (0, 1) = X byt'?,

i=t i=1

1 <ks=

n,j=1. [l6]
Substituting Eqs. [16]into Eq. [13] and establishing the coef-

ficients in the power series by means of Eqs. [16], we find

apy = 2/7'2 2 (DY ey, Di; = (D¥)?/ D,

=1

1k, j=n [17a]
ey = — o (D201 + 5/2)/TI(s + 3)/2],
i=1
szlL1sk j<n, [17b]

where I'( k) is the gamma function (41, 43).
For the Langmuir adsorption isotherms [3a] the coefh-
cients in Eqs. [16] are equal to

ap = 2/x"2 T (DI ey, bry = 2/ (7 PTOKR)
Jj=1

X > (D) ey, 1<k, j<n [l18a)]

i=1
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My = —w'212 T (DE) by, bry = by (2 K8hy)

j=1 s=1

— ®2J(2TSKR) T (D) by [18b)

=1

a3 = —4/(3x?) T (DE) by

i=1

[18c]

b= —4/(3x'TLKY) ¥ (DE) by

=1

+ by 2 KBbo + bl 2 KPP — (2 K}?bjn)zl- [18d]
s=1

s=1 r=1

From Eqgs. [4] and [16] through [18], the dynamic surface
tension for the Langmuir adsorption isotherms for short
times (¢ — 0) is given as

¥() = vo = RTTRIn[l + V(D1 V(1) = X 42,
k=1

A= S KPhy, 1<k s<n [19]

s=1
According to Eq. [19], for the Langmuir adsorption iso-

therms for short times Eqs. [4] and [15] reduce, respectively,
1o

[vo = ¥(D1/{(vo — ¥e) = Sot'’2,

So=2/[="*In(t + Vo)l = i (DE)' e/ T,

[20a]
k=1 j=1
F(y(8)) = nolog(1/t34), no = 0.5,
F(y(t}) = 0.5 log(¢t) + s, [20b]
1% = 1/8%, so = log(.Sy) (short times),  [20c]

where Sy is the slope of the straight line [vo — ¥(2)1/(ve —
v.) versus /2 and s, is the shift of the straight line F(y(¢))
versus log(¢) for short times.

As a first approximation for the Langmuir adsorption iso-
therms from Eq. [14] for long times { = o0 ), we find

al0,0) = co —afi /i, apy = 12

X 2 To{ DR)'A(D g, 1<k, j<n [2ia]

i=t

Ty =To — 72 3 a®dTwlcors Cozs - - - » Con)/0c;  [21D]

Jj=1
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[’Y(t) - Te]/(‘YO - ‘YE) ~ Smtiuzs
Se =7 V21 + Vp)n(! + V)]

X X ¥ KRl D&)2(D*)  [21c]
k=1 j=1
F(y(1)) = nylog(t/t3), ne = 0.5,
F(v()=051og(t) + 5, [21d]
15 =8% 5, =~ log(85,) (long times), [2le]

where S, is the slope of the straight line [v(7) — v.)1/{Yo
— %) versus 1~V and s,, is the shift of the straight line
F(~v()) versus log(¢) for long times.

The consistent time scale (CTS) approach may be used
to find solutions of the system of equations [13] and [14] in
the analytical form for arbitrary adsorption isotherms with-
out the mutual diffusion in the adsorbed layer (D% = 0, k
# /). The CTS approach is based on the preceding analysis
and the following assumptions (44):

{A) The surface concentration of an individual adsorbate,
c (0, t), is described by using the function g{({;) in the form
of Eq. [22]. As shown in (29}, in the simplest case, when
the equilibrium adsorption obeys the linear Henry law, from
the inverse Laplace transform of Eq. [11], the adsorption in
terms of the relative time 1, = 1/1y; 18

a0, 1) eoy = T1(8)/To = g(11), & = t]tp [22a]

tor = (Tar/cor)?/ DYy, DYy = (DY)?/ DY, [22b]

gty =1 — exp(t))erfc(s}/?) [22¢]
erfc(py) = 1 — erf(y), erf(y)

- @) [ (-2, (224]

where erf(y) is the error function (37) and D7, is the effective
diffusion coefficient, which was first introduced by Ravera
and co-workers (40},

(B) The adsorption of the kth mixture component, T';(¢,,
Ca, ..., Cn}, and the consistent time scales, ¢, and £(¢,), ac-
cording to the preceding relations and the CTS approach,
may be written as

(0, 1) = cng(&(nx)), 1<k<n [23a]
Tiler, €2y o ooy o) = Dllco1 (1)), co28(8(2)), .. .,
cong(§(1x))], 1< k=<n [23b]

= ttor, tor = (Tox/ con) " DU/(DR)?, 1 <k < n [23c]

(1) = t{cong(te)/ Tilcorg( ), cng(ta), . . ., con8 (1) 1}7,
l<ksn. [23d]
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The relations [23b] and [23c] made the time scales, £(1;),
consistent with the local time scales, ty:, because for any
adsorption isotherms the local time scales depend on (T'/
ci)? of mixture components in the form of [Tx(g)/g(¢)]>.

For the Langmuir adsorption isotherm [3] the solutions
[23] reduce to

a0, 1) = coug(Etx)), l<sk<n [24a]
Te(1) = TL Kreag(£(6))/[1 + V(£)],
V(E) = 2 Kicwgl&(tk)), l<k=<n [24b]
k=1

Y1) = vo— RTT%In[l + V()] [24¢]

=t tox = [TQKR/(1 + Vo) 12D/ (D)2,
l<sk=sn [24d]
i) = {1+ V(O (1L+ Vo)}2 1<k<n [24e]

The preceding equations may be used to describe the surface
concentration, ¢;(0, ¢), the adsorption, I'y(¢), and the dy-
namic surface tension, +(t), over a wide range of time for
the diffusion-controlled adsorption model without mutual
diffusion in the adsorbed layer.

The Diffusion-Convective-Controlled Model

The surface age of a bubble or drop undergoing continuous
surface expansion is less than the drop or bubble interval
(16}. Convective transfer of surfactant from the bulk to the
surface is an additional mechanism of adsorption onto a
drop or bubble surface. The concentration of surfactant at
the expanding surface for the simplified homogeneous ad-
sorption model is governed by the diffusion-convective
equations {32-37)

dci(x, 1)/at — (2x/30)dc(x, t)/dx
= DYd%c(x, 1)/9x%, c(x, 0) = ci(co, 1) = cor. [25a]

[u(0) = 0, dTy/dt + (2/30)T = 3 DFICHO, 1)/dx,

J=1

l=<k j=sn [25b]

By using Le\:ich’s transformation ( 36, 37 ) and the new vari-
ables X and ¢, defined as

=¥ 1=3/707, [26]

the diffusion-convective equations become

FILIPPOV

8c, /0t = DL e/ OxE, c(# > 0, 0) = euloo, 1) = cor,

lsk=<n [27a]
I(0)=0, 3 D ac(0, 1)/6%
k=1
= dH (1)/dt, H (1) = (7/3)*7(127T,).  [27b]

The solution to Eqgs. [27a] and [27b] may be found by the
Laplace transform

&k, p) = fo (%, Dexp(—pdl.  [28]
The bounded solution for Eqs. [27a] and [27b] is
&(0, ) = cau/ P — 2 [(BDU) (D) 1HH),
J=1
<k, j<n, [29a]

or in the equivalent form which is suitable for finding the
solution at short times,

A(P) = 2 (D) et PP — &40, p)/5V?]. [29b]

j=i

With substitution of Eq. [26] into Eq. [29b], the solution
becomes

Iy(t) = Zn: 2[DENH(wDU) P Lo (3/T0)1 1 — 172
j=1

-

X ft ci0, r—p)dp'?]. [30]
o

For arbitrary adsorption isotherms the solution of Eq. [30]
for short times (t — 0} may be found in the form

Tty = 2 abt'?, (0, 1) = > bl 1'?,

=1 k=1

l<k=sn s=1. [31]
Substituting Eqs. [53] into Eq. [52] and establishing the
cocfficients in the power series by means of Egs. [53], we

find

adi = oy 2 (D) Peoyy o = (12/77)12 = 0.739,

i=1

l<k,j=n [32a]
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n
0 _ *4i/270
Aeys+1y = —Qge1y Z (ij) ! bjs: Qs+l
j=l

= (3/7)'PT(1 + 3s/14)/T(3/2 + 35/14), s= 1, [32b]

where T'( x) is the gamma function (41, 43).
For the Langmuir adsorption isotherms [3a] the coefhi-
cients in Egs. [31] are equal to

aE; =a 2 (DE)HZC();, bgl = al/(Fﬂsz)

i=1

n
X 2ADM ey, 1 sk, j<n

[33a]
i=1
022 = Ty Z (D;’{—})”Zb}’., bgz = bgl( Z K?bgl)
j=1 s=1
~ ay/(THKT) T (D) b [33b]
j=1
023 =—a3 2 (DIZ)UZb,?z [33c]
j=1
b3 = —as/(THKD) 2 (Di)'2b% + bl T KDBY,
j=1 5=1
+OU[ 2 KPb — (2 KPBY)?L. [33d]

r=] s=1I

From Eqgs. [4] and [31] through [33], the dynamic surface
tension for the Langmuir adsorption isotherms for short
times {t = 0) is given as

Y1) = vo = RTTRIn(1 + V()), V(1) = X AR ¥,

k=1

M =

A= 2 K%, 1<k, s<n. [34]

5=1

According to Eq. [34], for the Langmuir adsorption iso-
therms for short times Eqgs. [4] and [15] reduce, respectively,
10

[vo = ¥(D1/{vo = ve) =~ ST t'/2, ST = (12)'7%/

[(7m) (i + V)] 5 3 (D) e/ TS [35a]

k=1 j=1
F(y(1)) = nolog(t/1%"), np = 0.5,

F(y(t) = 0.5 log{t) + s
£l = 1/(S5)2, 5§ = log(S¥) (short times),

[35b]
[35c]

where 87 is the slope of the straight line [v — v(£)]/(vo —
Ye) versus £'/2 and sg is the shift of the straight line F(y(¢))
versus log(#) for short times.

325

Now we consider the solution of Eq. [2%9a] at long times
(t = oo). Equation [29a] is reduced to Eq. [36], which is
suitable for finding solutions at long times:;
Ac(t) = cor — (1), Tu(t) = Tor — Ti(2),

l<sk<n

[36a]
A1) = b 112 — j“; fo ‘ z (D% (D™
X AH(p)[=(f — p)]7'dp [36b]
b:l =B Z [(ng)uz(Dad);jl]POj,
J=1
B = (7/3)*T(9/7YT(11/14)
AH (1) = (1737137 AT(D)],

[36¢]
[36d]

1 <k=<n.

For arbitrary adsorption isotherms the solution of Eq. [36b]
will be found in the form

ATw(0y = 3 al/0%, Ac(t) = X b/ 12,

k=1 =1

| =k=<n.

[37]
Substituting Eqs. [37] in Eqs. [36b] and establishing the

coeflicients in the power series by means of Eqs. [37], we
find

n

b, = B 2 (ng)l'fz(Dad)EleOja 8

=1

=(T/3'T(9/T/T(11/14), 1<k, j<n [38a]
bty = —Biny 2 (D)D)t a,
j=1
1<k, j<n s=1 [38b]
By = (3/7)”2[(“ — 35)/14]
X T[(18 — 35)/14)]/T[(25 — 35)/14] [38¢c]
By =~ 1.162, 8, = 0.945, 8; ~= 0.676,
Bs =~ 0.326, 85 = —0.214, [38d]

where I'( x) is the gamma function (41, 43).
For the Langmuir adsorption isotherms [3a] the coeffi-
cients in Eqgs. [37] are equal to
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M n
ai = BT KL(1 + Vo) o X K2 2 (D)2

5=1 j=1
7
X (D) ' To— (1 + Vo) Z (DE) 2 (D*)ie! Torl,
r=1

l<sk,s,j,r<n

[39a]

a2 = TRKE(L + Vo) 2 {[(1 + V°) e T KEOR — b1 ]

5=t

n n
X Z KPbH + oo 20 K5b%E:

r=1 s=1

[39b]

n
agy = TOKR(1 + Vo) 2 {cor 2 KBb%

s=1

+(1+ Vo) (2 K2hR)( X KT bjt)

r=1 J=1

+ oo 2 KBOY — (14 VOBEI(T + Vo) S KPb)

s=1 i=1

FOS KEBRR1/(L+ Vo)) [39%]

n

by =81 Z (DY) MDY/ Ty, 1<k, j<n [39d]
i=1
bium = _|8(5+1) Z (ng)lﬂ(Dad)Ejl ﬂ};:
i=1
l<sk,jsn,s5=21. [39e]

From Eqs. [4] and [ 37] through [ 39] the dynamic surface
tension for the Lamgmuir adsorption isotherms for long
times (f = oo )} is given as

¥(1) = vo — RTTRIn{l + V(1)], V(1) = Vq

n
AR Ap =S KPbY, I <k s<n.

5=1

INAE:]

[40]
k

According to Egs. [40], for the Langmuir adsorption iso-
therms for long times Eqs. [4] and [15] reduce, respectively,
to

[7(8) = vel/ (Yo — ve) = SEL712, 8% = B1/[(1 + Vp)

XIn(1+ V)] 2 Kk 2 (DR)2(D*),' Ty [41a]
k=1 j=1
F(y(1)) = nelog(t/t%), Ae = 0.5,
F{~(t))y = 0.5 log(f) + 5%
th™ = (S%)2, s* = —log(S5*) (long times),

[41b]
[41c]
where S%, is the slope of the straight line [v(1) — v.1/(ve —

v.) versus ¢ ~'/2 and 5% is the shift of the straight line F{~y(?))
versus log(¢) for long times.
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For the diffusion-convective model the CTS approach may
be used to find the solutions of the system of Egs. [30] and
[36a] in the analytical form for arbitrary adsorption iso-
therms without mutual diffusion in the adsorbed layer
(D3 = 0, k # j). The surface concentrations of individual
surfactants, ¢;{0, {), are described using the function A(#)
in the form of Eq. [42]. As shown in (29), in the simplest
case, when the equilibrium obeys the linear Henry law and
als = b, ats = bz (1 <k < n, s= 1), from Egs. [31],
[32],[37], and [38], for the diffusion-convective-controlled
model the adsorption in terms of the relative time t, = 1/,
may be written as

(0, r)fcor = I (e}/Vor = A(t1), & =1t/te [42a]
tor = (o1 /cor)?/ DTy, DY = (D3)?/DS  [42b]
hO%t), O0<t <1
ht) = (1) ‘ [42¢]
he(t), =1

n
Ro(1) = 2 (=1 DsRek2, 5) =
k=1 i

ageny ={3/7)°T(1 + 3j/14)/T(3/2 + 3j/14) [42d]
s9 = 0.739, 59 = 0.483, 5% ~ 0.287,
53 = 0.158, 57 =~ 0.04

C\!J,',

[

1

[42e]

he(n) = 1= 3 (=D Dspii2, sp =T 8;  [42]
k=t j=1
Byeny = (3/T)PTL(11 — 3)/14)1/T1(25 — 3j)/14]
ST = 1162, 57 =~ 1.1, 57 ~ 0.74,

53 =~ (.24, 5¥ =~ —0.05. [42g]
For the diffusion-convective-controlled adsorption model
obeying the Langmuir adsorption isotherm [ 3] without mu-
tual diffusion in the adsorbed layer (D} = 0, k # j), the
solutions of Eqgs. [30] and [ 36b] may be written as

Cip = Cokh(tk), l1<sk<n [433]

Tw(1) = TLKRco(EHu))/[1 + V(D)],
V(€)= 2 Kicah(&n)), 1<k<sn [43b]

k=1

v(1) = vo — RTTHIn[1 + V(£)] [43c]

e = tow, tor = [TRKR/(1 + Vo)1?Dh/ (D)2,
l<k<n [43d]
) = uf{[l + V(O + V) 1<sksn [43e]
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The preceding equations may be used to describe the surface
concentration, ¢ (0, t), the adsorption, I'y(¢), and the dy-
namic surface tension, ¥{7), over a wide range of time for
the diffusion-convective-controlled adsorption model with-
out mutual diffusion in the adsorbed layer.

DISCUSSION

We apply the theory of multicomponent adsorption ki-
netics to estimate the time dependence of dvnamic surface
tension over a wide range of time without and with the mu-
tual diffusion in the adsorbed layer.

Below we consider in detail the multicomponent mixture
for the Langmuir adsorption isotherms. For short times
(t = 0) from Eqs. [20a] and [35a] the relative dynamic
surface tension is given as

[vo = YD)/ (vo — ¥e) = Sot'/? (short times) [44a]
So = aldo, ol = 2/[x2In(1 + V)],
Ap= 2 Z (DI e/ T%, 1<k, j<sn [44b]

k=1 j=1

M
So =ald5, 45 = 2 (DR Pt T, 1 €k < n [44c]
k=1

S8 = aldy, af = 2/[(7/3%)*In(1 + V)],

Ay =2 ZADE) /TS, 1<k, jsn

k=1 j=1

[44d]

h
So* = aldg*, 45 = 2 (D) Peor/ T,
k=1

|l <k<n,

[44e]

where S, [44b], St [44d] and S5 [44c], S5 * [44e] are the
slope of the straight line [yo — 4(£)}]/(vo — 7.) versus ¢1/2
for the diffusion-controlled and diffusion-convective-con-
trolled models with and without mutual diffusion in the ad-
sorbed layer, respectively.

From the preceding analysis it follows that for short times,
due to mutual diffusion in the adsorbed layer, the rate of
change of the dynamic surface tension increases because the
following inequalities are valid:

So> S5, S§ > Sp* (short times). [45]

For long times (¢ - <0 ), from Eqs. [2lc] and [41a], the
relative dynamic surface tension is given as
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[¥(8) — vel/(vo — Ye) = St ™' (long times) [46a]
So= B?Bm,ﬁl = w’”zVﬂ/[( 1+ Vo)ln(l + Vo) l,
Bo= 2 2 KD} *(Dag)ii Toj [46b]
k=1j=1
S% =8B, B, = 2 Ki(DU)Y(D* i T,
k=1
lsk=sn [46¢]
S = BUBX, 8T =(7/3)Vel9/T)/
[TV /14)( 1 + FpXn(l + Vo)l,
BY: =3 ¥ KuDW)'H(D*i' Ty [46d]
k=1 j=1
Sz* = BYBL¥, B = 2 K D% (D" Tk,
k=1
l<k=n, [46e]

where S, [46b], 8% [46d] and S, [46c], S.F [46e] are
the slope of the straight line [y(¢) — v.]/{vyo — ve) versus
t~'/2 for the diffusion-controlled and diffusion-convective-
controlled models with and without mutual diffusion in the
adsorbed layer, respectively.

From the preceding analysis it follows that for long times,
due to mutual diffusion in the adsorbed layer, the rate of
change of the dynamic surface tension for the multicom-
ponent mixture may decrease when the inequalities [47a]
are valid, or increase when the inequalities [47b] are valid:

S < 5%,
S > S5,

S* < 5% (long times) [47a]

S% > Sz* (long times).  [47b]

In particular, for the two-component mixture we have

BZ* = KY(DY)'V?/ D3 + K3(D%) /D% [48a]
BX = [KU(DY)'2(D¥ - D + K
X (D%) (D3 — D3H/(DY DY — D3$D%]). [48b]
If D3 =0, then
B* = KU(DY)'?/ DY + K3(DIH'"?
X (DY — DY/ (D D). [48c]

From Eqgs. [48a] and [48¢] it follows that the inequalities
[47a] are valid when D% < D#, and the inequalities [47b]
are valid when D% > D% Thus, for long times, the rate of
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FIG. 1. Change of the relative adsorption (A), relative dynamic surface tension (B), and relaxation function {C) for the diffusion-controlled and
y

diffusion-convective-controlled models with the parameters {49], according to Eqgs. [16], [18], [19], [21], and [24] and [31], [33], [34]. [37]1, [39].

[40], and [43], for a two-component mixture of surfactants.

change of the dynamic surface tension depends on the values
of the mutual diffusion coefficients in the adsorbed layer.

Equations [44] through [46] may be used to estimate the
mutual diffusion coefficient, D' (k # j, | <k, ;< 2), in the
adsorbed layer for a two-component mixture. In this case the
diffusion coefficients in the bulk, D% (k = 1, 2), must be
found first. The diffusion coefficient, DI (k = 1, 2), in the
adsorbed layer for the individual surfactants must be found by
using Eqs. [44] through [46] and experimental data for the
dvnamic surface tension for the individual surfactants.

Now we consider the dynamic surface tension for multi-
component mixtures obeying the Langmuir adsorption iso-
therms. Figures 1 and 2 show the adsorption, relative dy-
namic surface tension, and relaxation function for the dif-
fusion-controlled and diffusion-convective-controlled models
for the parameters

T% =5 x 107" mol/cm?, ¢

107¢ mol/em?, ¢y = 107® mol/ecm®  [49a]

DY = D% = 107% em?/s, DY

— D% = 2.24 X 1075 cm?/s, (49b]
K} = 10% em®/mol, K5

= 108 em3/mol, D3 = D3 =0. [49¢]

As shown in Fig, 1 the lightly adsorbed first component of
the two-component mixture is displaced by the strongly ad-
sorbed second component of the mixture. Therefore, the time
dependence of adsorption for the lightly adsorbed first com-
ponent is a nonmonotone function. The degree of the re-
placement depends on the ratio of adsorption of components.
In case [48] this ratio is equal to K5/K5 = 100.

For the diffusion-controlied model without the mutual
diffusion in the adsorbed layer the system of Eqs. {9] and
[10] were integrated numerically by Miller and co-workers
(30) with parameters [ 48 ]. However, it should be noted that
computer analysis of the behavior of the dynamic surface
tension over a wide range of time {four or more orders of
magnitude ) is a complex problem (15, 19, 30). As just men-
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FIG. 2. Change of the relaxation function for the diffusion-convective-
contrelled models with the parameters [49], according to Eqgs. {31], [33],
[341, [37], [39], [40], [43]. and [50], for a two-component mixture of
surfactants.

tioned, the choice of mesh size, Az, AC, and AT is important
in the application of finite difference methods for the nu-
merical integration of Egs. [9], [10],and [27al, [27b] using
a computer. Therefore, the correct numerical integration of
nonlinear equations requires special mathematical analysis.

The role of convective transfer over a wide range of time
may be estimated using Egs. [19], [20], [34], [35], [40],
[41], [44], and [46] and data shown in Figs. 1C and 2.
According to Egs. 11, [19], [20], [34]. [35], [40], [41],
{44], and [46], it follows that in the framework of diffusion-
convective-controlled adsorption three linear equations in
the form of Eq. [50a] may be used to describe the time
dependence of dynamic surface tension over a wide range
of times:

0.5 log(t) + sg, 0=ty

F('Y(l)) = nmidlc’g(” + S;idy llcr == Laer [5021]
0.5 log(r) + 5%, =

108(f1er) = (S%ia — 58)/(0.5 = Atmia) [50b]

log{tze,) = ($%ia — 55)/(0.5 ~ nyia). [50c]

The values of 53 and s* are found from Eqs. [35¢] and
[41c], respectively. According to Egs. [11, [4], [34], [40],
and [43], the values of ny, and 5%;4 are given as

= —0.5 102( mia}, fmia

= dF(y{tmia) Y d 1og (1), ¥(tmia) = (Yo + ve)/ 2.

§mid
[51]

From the preceding analysis and Fig. 2 it follows that ng =
Ho = 05, Amig < 0.5.

Diffusion-controlled and diffusion-convective-controlled
adsorption are used in the literature to describe dynamic
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surface tension { 16-30), Therefore, it is reasonable to com-
pare these models and to estimate the effect of the convective
transfer. In Fig. 2 the time dependence is shown for the dy-
namic surface tension of the diffusion-controlled adsorption
and the diffusion-convective-controlled adsorption of the
Langmuir adsorption isotherms over a wide range of time.
According to Eq. [ 50a], the functions F{~v({t)) versus log(¢)
for the diffusion-controlled adsorption and diffusion-con-
vective-controlled adsorption are the straight lines at short
and long times. The shifts of Asy; and As, between these
lines at short and long times, respectively, characterize the
effect of the convective transfer due to the growing surface
during the formation of the bubbles or drops. From Eqgs.
[20a],[20c], [21c],[21e], [35a],[35¢c], [38a], {41a], and
[41c], for multicomponent mixtures of surfactants, the val-
ues of shift, As, and As,, are equal to, respectively,

Asg = log(sy/sa) = 0.5 log(7/3) =~ 0.18  [52a]
Asy = —log(s,/5%)
= log[(7x/3)*T(9/7)/T(11/14)] =~ 0.31. [52b]

From Egs. [50a], [52a], and [ 52b] and Fig. 2 it follows that
the effect of the convective term for the multicomponent
mixture of surfactants takes place over a wide range of times.
Thus, to describe the experimental dynamic surface tension,
diffusion-convective-controlled adsorption must be used.
Equation [50a] may be useful to describe the dynamic sur-
face tension for multicomponent mixtures of surfactants over
a wide range of time.

Now we consider the dynamic surface tension for the three-
component mixture obeying the Langmuir adsorption iso-
therms. Figure 3 shows the adsorption, relative dynamic sur-
face tension, and relaxation function for the diffusion-con-
trolled model for the parameters

I'% = 35X 107" mol/cm?, co; = 107° mol/em?,

¢z = 107" mol/em?, ¢p3 = 1078 mol/em? [53a}]
D% = DY = DY = 10"% emiys,

D = D3 =DY=224.10"° cm?/s [533b]
K{ = 10% em?/mol, K5 = 107 cm?/mol,

K% = 10% cm?/mol. [53¢]

As shown in Fig. 3, the lightly adsorbed first and second
components of the three-component mixture are displaced
by the strongly adsorbed third component of the mixture.
Therefore, the time-dependent adsorption for the light-ad-
sorbed first and second components is a nonmonotone func-
tion. The degree of replacement depends on the ratio of ad-
sorption of the components of the mixture.
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FIG. 3. Change of the relative adsorption (A), relative dynamic surface tension (B}, and relaxation function {C) for a three-component mixture of
surfactants for the diffusion-controlled model with the parameters [53], according to Egs. [16], [18], [19], [21], and [24].

In conclusion, we note that in the framework of the dif-
fusion-convective-controlled model with constant diffusion
coefficients in the bulk and in the adsorbed layer, Eqs. {50]
may be applied to predict the dynamic surface tension for
multicomponent mixtures of different surfactants with and
without mutual diffusion in the adsorbed layer over a wide
range of times.
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