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Econometrica, Vol. 60, No. 2, (March, 1992), 423-433 

NOTES AND COMMENTS 

INTEGRATION VERSUS TREND STATIONARITY IN TIME SERIES 

BY DAVID N. DEJONG, JOHN C. NANKERVIS, N. E. SAVIN, 
AND CHARLES H. WHITEMAN 1 

1. INTRODUCTION 

A WELL-KNOWN APPROACH to modeling macroeconomic time series is to assume that the 
natural logarithm of the series can be represented by the sum of a deterministic time 
trend and a stochastic term. The trend need not literally be part of the data generation 
process, but may be viewed as a substitute for a complicated and unknown function of 
population, capital accumulation, technical progress, etc. Within this approach there are 
two competing models; in the trend-stationary specification the stochastic term follows a 
stationary process, while in the integrated specification the stochastic term follows a 
random walk. The essential difference between the models is the nature of the process 
driving the stochastic component, not whether the series is trended. The conclusion of 
this study is that it is difficult to discriminate between the two models using classical 
testing methods. This is the consequence of low power: the powers of integration tests 
against plausible trend-stationary alternatives can be quite low, as can the powers of 
trend-stationarity tests against integrated alternatives. Our analysis thus suggests that it 
is premature to accept the integration hypothesis as a stylized fact of macroeconomic 
time series. 

The leading case we examine is a model with linear trend and iid normal innovations, 
which we use to study the power of integration and trend-stationarity tests. This strategy 
is motivated by the idea that the study should begin with the case which is most favorable 
to high power; the presumption is that the finite sample powers of tests designed for this 
case are superior to the powers of tests designed for models with more general 
innovation sequences. 

2. LEADING CASE 

Let the time series {yj} be the stochastic process generated by the linear model 

(2.1) yt = ao + alt +xt (t = O, 1+ ... 

and the first-order autoregressive (AR) process 

(2.2) xt=xt_1 +ut (t= 1,2,'...) 

It is assumed that the innovation sequence {u,} is iid N(0,u 2), and x0 is an unknown 
constant. Thus model (2.1)-(2.2) can be interpreted as a random walk about a linear 
trend when : = 1 and an asymptotically stationary AR(1) process about a linear trend 
when 1p I < 1. In either case, the standardized initial displacement plays an important 
role below, and will be denoted by x0* xol/o = (y0 - a0)/l. This parameter measures 
the distance (in units of innovation standard deviations) between the initial value y0 and 
the trend line. 

'We thank John Kennan, Doug McManus, Forrest Nelson, Joon Park, Peter Schmidt, two 
referees, and associate and co-editors for helpful comments. This is a revision of Working Papers 
88-27 (December, 1988) and 89-31 (December, 1989), which carried similar titles. 

423 
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424 D. N. DEJONG, J. C. NANKERVIS, N. E. SAVIN, AND C. H. WHITEMAN 

Substituting (2.2) into (2.1) and rearranging gives 

(2.3) yt=y+St+PytJ1+ut (t=192,. ..) 

where y [ ao(l - p3) + af1i3] and 8 = a (1 - f3). Equation (2.3) is a rearrangement of the 
quasi-first-difference transform of (2.1). The coefficients of interest are a0, a1, and f; 
equation (2.3) is viewed as the reduced form of (2.1)-(2.2), and the coefficients y and 8 
are treated as reduced-form parameters. This approach was presented in Dickey (1984), 
and was followed by Bhargava (1986), Park and Choi (1988), and Schmidt and Phillips 
(1989). 

A. Unit Root Tests 

The integration (unit root) hypothesis is 

(2.4) H: ,3 = 1. 

Dickey (1976), Fuller (1976), and Dickey and Fuller (1981) introduced tests of (2.4) based 
on statistics obtained from applying ordinary least squares (OLS) to (2.3). For a sample 
of size T the reduced form (2.3) can be written as 

(2.5) y = yt + ST + 13Y-1 + u, 

where y = (Y1 Y2, .. I, YT)' Y-1 = (YO, Yl, * * YT-1), t (1, 1, ..., 1)', i (1, 2,..., T), 
and u (u1, U 2, ..., UT)', with u N(O, o21). Writing (2.5) in matrix notation, we have 

(2.6) y = W7T + u, 

where W=(t, i,y_1) and ir=(y,8, f3)'. The OLS estimator of 7r is (y ,,i)' = 

(W'W)-1W'y. Let 52 = (T- 3)-1(y - W7r)'(y - W0r), and let Gi denote the ith diago- 
nal element of (W'W)'. The test statistics proposed by Dickey and Fuller for testing 
H: ,3 = 1 are2 

(2.7) K(1) = T(13 - 1), 

the conventional regression t statistic, 

(2.8) t(1) =3 1)((s2 G3) 
12 

and the F statistic for testing the joint hypothesis H*: 8 = 0, 83 = 1, 

(2.9) F(O, 1) = (Q7r - c)I[s2Q (W'W)1Q] (Q'*-i -C) 

the joint hypothesis can be written as Q' 7r = c where Q' is a 2 x 3 matrix whose first 
column is the zero vector and whose second and third columns form an identity matrix, 
and c = (0, 1)'. In Dickey and Fuller (1981), K(1), t(1), and F(O, 1) correspond to 
T(p - 1), r,, and P3. 

The t(1) statistic (2.8) is the Wald statistic which employs the Hessian-based estimator 
of the standard error, and the F(0, 1) statistic is a transform of the likelihood ratio 
statistic. Note that p = 1 implies that the reduced-form coefficient 8 = 0, and hence the 
unit root hypothesis (2.4) implies the joint hypothesis H*. 

Under the unit root hypothesis, the Dickey-Fuller statistics have nonstandard distribu- 
tions: K(1) and t(1) are not asymptotically distributed as standard normal, and the 
asymptotic distribution of F(0, 1) is not proportional to a chi-square distribution. Dickey 
(1976) and Fuller (1976, Table 8.5.2) give Monte Carlo critical values for the K(1) and 
t(1) tests; our Table la provides exact critical values for K(1); and Dickey and Fuller 

2Normalization by T rather than FT is necessitated by the nonstationarity of {Yt} under the null. 
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INTEGRATION VS. TREND STATIONARITY 425 

(1981, Table VI) provide critical values for F(O, 1). Under the unit root hypothesis, the 
distributions of K(1), t(1), and F(O, 1) do not depend upon "nuisance parameters;" i.e., 
under (2.4) the Dickey-Fuller tests are similar with respect to a0, a1, and a. This 
property is established as a consequence of a more general result in Section 3 on the 
invariance of the distributions of the test statistics under the null and the alternative.3 
Similarity is achieved in these tests by adding time as an extraneous regressor in (2.3) 
(recall that under (2.4), 8 = 0). 

B. Tests for Trend Stationarity 

The trend-stationarity hypothesis is 

(2.10) H: 3 =o3, Igo I < 1. 

For example, Phillips and Perron (1988) consider testing the unit root hypothesis against 
the alternative g0 = 0.85. As in the unit root case, tests of (2.10) can be similar, though 
direct translation of unit root tests to the trend-stationary case yields tests which are 
nonsimilar with respect to a0 and a. We introduce similar tests to overcome the low 
power of the nonsimilar tests. 

Nonsimilar tests. To construct a size a nonsimilar test, one finds the critical value for 
which the rejection probability does not exceed a for any value of the nuisance 
parameters. Since the size is the maximum rejection probability across alternative 
nuisance parameter values, the actual rejection probability can be substantially smaller; 
this can cause low power. 

The upper-tail nonsimilar tests of the trend-stationarity hypothesis against the alterna- 
tive H: f3 = 1 are based on the statistic4 

(2.11) S(g0) = T'/2(,3- Po)/(1 -g2) 

which is the analogue of K(1), and the conventional t statistic 

(2.12) t(f30) = (i-,8o)1(S2G3)1/2 

Nonsimilar tests can be based either on small-a or large-T asymptotic theory. Under 
(2.10), small a-asymptotic theory (Nankervis and Savin (1985, 1987)) implies that as x* 
increases in absolute value the distribution of t(30o) converges (with T fixed) to Student's 
t with T - 3 degrees of freedom; hence the critical value of an upper-tail nonsimilar test 
based on t(0o) is the 1 - a quantile of the t distribution with T - 3 degrees of freedom. 
For the sample sizes to be considered below, this is practically the large-T asymptotic 
critical value (from the N(0, 1) distribution). However, our calculations indicate that for 
relevant values of x*, this critical value produces a test with a size which is much too 
small even for samples of T = 100. 

Critical values for the S test are also problematic. The upper 0.05 critical value of the 
S distribution first increases, then decreases, as x* increases, and in the limit the 
distribution is degenerate. For large T the critical value of a size-a test may be 
approximated by the 1 - a quantile of the standard normal. However, our calculations 
indicate that this approximation produces a test with a size which is too small even for 
samples of T = 100: the actual size of the nominal 5% test is less than 0.01 for 

0X* < 10. 

3The similarity of K(1) and t(1) with respect to y was established by Dickey (1976), and the 
similarity of F(O, 1) by Dickey and Fuller (1981). That these results could be used to establish 
similarity with respect to a1 apparently has not previously been noted (under the null -that 8 = 1, 
only a1 influences y). 

4"S" for "stationarity" (the null). 

This content downloaded from 195.221.106.47 on Wed, 1 Oct 2014 09:11:22 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp
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TABLE Iaa 

ExAcr QUANTILES OF K(1) 

K(1) 
T .01 .025 .05 .1 .5 .9 .95 .975 .99 

50 - 25.23 - 21.97 - 19.34 - 16.53 - 8.629 - 3.643 - 2.555 - 1.667 - 0.687 
100 - 27.17 - 23.43 - 20.47 - 17.35 - 8.859 - 3.705 - 2.615 - 1.736 - 0.774 
200 - 28.23 - 24.22 - 21.08 - 17.79 - 8.979 - 3.736 - 2.644 - 1.768 - 0.814 

Table lb 

ExAcr QUANTILES OF SA(,1) TEST OF TREND-STATIONARITY FOR T = 100: 
AUGMENTED REGRESSION MODEL WITH WHITE NOISE ERRORS 

SA(P) 
p0 .01 .025 .05 .1 .5 .9 .95 .975 .99 

.80 - 4.62 -3.95 -3.41 -2.81 -1.01 0.353 0.667 0.916 1.181 

.85 -5.28 - 4.53 -3.91 -3.25 -1.26 0.184 0.506 0.758 1.024 

.90 - 6.50 - 5.58 - 4.85 -4.05 -1.73 -0.116 0.232 0.502 0.787 

.95 - 9.53 - 8.25 - 7.23 - 6.13 -2.97 -0.862 -0.417 -0.068 0.308 

Table Ic 

QUANTILES OF tA(,3) TEST OF TREND-STATIONARITY FOR T = 100: 
AUGMENTED REGRESSION MODEL WITH WHITE NOISE ERRORS 

tA(P) 
p .01 .025 .05 .1 .5 .9 .95 .975 .99 

.80 -3.23 -2.84 -2.52 -2.16 -0.88 0.38 0.75 1.05 1.40 

.85 - 3.37 -2.99 - 2.68 -2.32 -1.05 0.20 0.56 0.84 1.21 

.90 -3.60 -3.21 - 2.90 -2.55 -1.32 -0.10 0.24 0.53 0.87 

.95 -3.94 -3.57 -3.28 -2.94 -1.78 -0.67 -0.34 -0.07 0.25 

s.e. 0.04 0.03 0.02 0.01 0.01 0.02 0.02 0.03 0.05 

Estimates obtained from 20,000 replications. 

aThe exact quantiles and powers were calculated by numerical integration using a Fortran version of Davies 
(1980) where the accuracy was set at 0.5 x 104. The other quantiles and powers were calculated by the crude 
Monte Carlo method; see Nankervis and Savin (1987). Monte Carlo power calculations were significantly 
accelerated by (i) reusing random numbers across cells; (ii) calculating the statistics expressed in terms of sums of 
squares and cross-products of My-, and Mu with M =1 IZ(Z'Z)- Z', Z = (t*), and where r* is the 
demeaned time trend. We used the fact that My_l = xOMCd + MCu where d = (1,0,...,O) and C = L(I- L)-I 
so that terms involving MCd were calculated once only for each value of p and terms involving MCu were 
calculated once in each replication for every value of p. Each extra row of the power tables then just required a 
few scalar operations and so was virtually costless. 

Similar tests. The probability that a similar test rejects under the null is equal to the 
size a for all values of the nuisance parameters. Recall that under the unit root 
hypothesis, K(1), t(1), and F(O, 1) are similar with respect to y when time is included as 
an extraneous regressor in (2.3). Similar tests of trend-stationarity can also be obtained 
by introducing the appropriate extraneous regressor in (2.3). 

Consider the augmented reduced-form model 

(2.13) y =yt +Sr+ r+f3y_1 +u, 

where r is the extraneous regressor (f = 0). The vector r is defined by r = COt, where 
CO = L(I - go3L) 1 and L is a lag matrix (a T x T matrix with a principal subdiagonal of 
ones and zeros elsewhere). Thus the typical element of r is rt = Etf-30 = (1- _ f3)' 
x(1 -0 0 (If a constant is included in the regression, the regressor Pt is sufficient.) 
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INTEGRATION VS. TREND STATIONARITY 427 

Statistics for constructing similar tests of H: /3 = [g are obtained by applying OLS to 
the augmented model (2.13): the test statistic based on the OLS estimator of [3 in (2.13) 
is denoted by SA(Qo), and the conventional t statistic for f3 in (2.13) is denoted by 
tA(130).5 The statistics SA(3o) and tA(30) yield similar tests. (See DeJong, Nankervis, 
Savin, and Whiteman (1988) for details of constructing similar tests in AR(1) models with 
arbitrary exogenous regressors.) To conduct a similar test it is sufficient to know the 
quantiles of the SA(130) and tA(3o) statistics under the null, with a0 = a1 = 0 (y = a = 0). 
These quantiles are given in Table lb and Table Ic for T = 100. 

3. INVARIANCE AND SYMMETRY 

The model (2.1)-(2.2) is a special case of a linear regression with exogeneous 
regressors and a first-order AR error process. For stationary error processes, it is well 
known that under certain regularity conditions the asymptotic distribution of the maxi- 
mum likelihood (ML) estimator of the regression coefficients is independent of the 
asymptotic distribution of the ML estimator of the AR parameter; for example, see 
Dhrymes (1981, pp. 77-96). Moreover, for (2.1)-(2.2), the asymptotic variance of ,3 
depends on U2 and [, but not ao and a1. Thus the asymptotic distribution of the ML 
estimator of ,B is independent of ao and a1. This asymptotic result is appealing since 
intuitively the distribution of an estimator of [3 should not depend upon the intercept 
and slope of the trend line. However, a commonly-held belief is that the finite sample 
distribution of the ML estimator of [3 depends on both a0 and al. Note that the ML 
estimator of [3 in (2.1)-(2.2) is the same as the OLS estimator of [3 in the reduced form 
(2.3). 

On the basis of a Monte Carlo experiment conducted under a slightly different setup, 
Dickey (1984) reported that empirical powers of K(1), t(1), and F(0, 1) do not depend on 
a 0 and a 1. Similarly, Schmidt and Phillips (1989) noted that the empirical powers of the 
K(1) and t(1) tests appear not to depend upon the value of a1, and conjectured that the 
finite-sample distributions of K(1) and t(1) do not depend upon the value of a1 whatever 
the value of [3. We now prove a generalization of these conjectures and discuss its 
implications. 

THEOREM (Invariance): The statistics K(1), t([3o) S([30), tA([o), SA([o), and F(O, 1) 
depend only on [3 and x* for fixed T, where x* = (yo - ao)/1. When [ = 1, the statistics 
are invariant with respect to x*. When I8 = /0, tA([o) and SA([o) are invariant with respect 
to x*. This also holds for the higher-order trends case. 

PROOF: We prove the theorem for the linear trend case. Generalization to the higher 
order case is straightforward. Substitute (2.2) into (2.1) to obtain 

(3.1) yt = ao + alt + [xt- 1 + ut , 

and then recursively substitute for xt-1 using (2.2) to get 

(3.2) Yt=ao+alt+[ 3[t-lxo+ E[t-?+luj +ut. I L ~ k=O 

Finally, dividing both sides by the constant a yields 

(3.3) yt/a=a0/a+ (al/a)t+[ [t-1X* + E[t`+1E1] +S, 
frs 

5"4A" for the "augmented" regression from which the statistics are computed. 
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where Et = ut/a N(O, 1). When [ = 1, 
_ t-1 

(3-4) yt1a =act1/+x0 + (a11a)t + E Ej + Et. 
k =O 

Observe that regression equation (2.3) is equivalent to (3.3). Applying partitioned 
regression, the least squares estimator of f3 and the associated standard error can be 
thought of as being computed using the residuals from two detrending regressions. The 
regressand is the residual from the projection of yt/l against a constant and trend, 
which does not depend on a0 and at by the least squares orthogonality conditions. The 
regressor is the residual from the projection of the bracketed expression in (3.3) against a 
constant and trend, which is independent of a0 and a1 by construction. Thus the least 
squares estimator of f3 and the associated standard error can depend only on the 
properties of the regressor and {EJ, which implies that K(1), S(30), and t(f3o) depend 
only on f3 and x*. These results are not affected if P"1 is added as a regressor, so 
tA(13o) and SA(Qo) also depend only on f3 and x4. Further, when 3 =o, adding the 
regressor gt-1 purges the bracketed variable of its dependence on x, which implies 
that tA(13o) and SA(130) are invariant to x* when f3 = [o. 

Next consider testing H*: 8 = 0, f = 1 using F(0, 1). This statistic can be written 
F = [(T - 3)/2][SSR/SSU - 1] where SSR and SSU are the restricted and unrestricted 
sums of squared residuals. From above, SSU depends only on p and x*; SSR is obtained 
from the regression of yt - yt on a constant. But using (3.1) and (2.2), 

(3.5) (yt -yt-)/a =a/la + (3 - 1)xt_ /a +EtI 

Thus SSR depends only on the properties of {xt_ 1) and {Et)-only on f3 and x. 
Finally, note that when p = 1, the bracketed variable in (3.4) does not depend on x*. 

Thus again applying the partitioned regression argument, it follows that the statistics are 
invariant to x* when p = 1. Q.E.D. 

COROLLARY (Symmetry): If {utj is symmetrically distributed about zero, then the 
distributions of K(1), t([0), tA([30), S([30), and F(0, 1) depend only upon [3 and 1X*4I for 
fixed T. This also holds for the higher-order trends case. 

PROOF: If {ut) is symmetrically distributed about zero, the same holds for (Et). Hence 
8 and -8 have the same distribution, and any function f(x *, 8) has the same distribution 
as f(x*, -8). Moreover, the statistics ([3-,[) and t([3o) depend upon x* only through 
the bracketed term in (3.3). But evaluation of this term at (-x*, E) merely changes the 
sign of the regressor. Thus ([3- [3) evaluated at (x*, 8) is equal to ([3- [3) evaluated at 
(-Xo, -), and the symmetry result for K(1) and S([30) is established. The symmetry 
results for t([o), tA([30), SA([o), F(0, 1), and higher order trends can be established 
similarly. Q.E.D. 

The theorem extends a result of Evans and Savin (1981): they considered a special 
case of model (2.1)-(2.2), where it is known that a 0 = a1 = 0, and hence yt =xt; they 
showed that the power of the K(1) test depends only upon [3 and x*. The essential 
difference between the Evans-Savin study and the present study is that here a0 and a1 
are unknown, hence xt is not observable. While Dickey (1984) conjectured invariance to 
ao and- a1, he did not discuss dependence of the test statistics on x*; he had in fact fixed 
x*. Our theorem establishes that for all of the tests, powers do not depend upon the time 
trend coefficient a1-the average exponential growth rate in the series if y is measured 
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INTEGRATION VS. TREND STATIONARITY 429 

in logarithms. A practical consequence of the theorem is that the presentation of the 
power tables can be very substantially simplified-only two-dimensional tables (x* and 
f3) are needed.6 

Another approach to modeling trend stationarity is to assume that (xj is a strictly 
stationary process when Io 3 < 1.0. In this case x* is a random variable which is 
distributed as N(0,(1 -,2) 1); hence the powers of the Dickey-Fuller tests depend only 
upon P3. In fact, Dickey and Fuller (1981) also report the powers of their tests under this 
random start-up assumption. 

4. POWERS 

A. Unit Root Tests 

The powers of 0.05-size Dickey-Fuller tests are reported in Table II for T = 100. The 
powers of the K(1) and t(l) tests are for a one-sided test of H: f3 = 1, where the 
alternatives are f3 < 1; the powers of the F(0, 1) test are for a two-sided test of H: 8 = 0, 
f3 = 1. Three features of the power tables are of interest. First, for a given value of 
/3 > 0.8, the power of the K(1) test decreases as jx* I increases, while for f3 = 0.75, the 
power increases as Ix* I increases. The reason for this is that K(1) can be written as 

K(1) = T[(-) + (-1)] = T[(c(13-13)/c) + ([3- 1)] 

where the normalization factor c = (w'Mw)112, with M = I - Z(Z'Z)- 1Z', Z = (tr), and 
w=(I-/L)1x d, d=(1,0,...,0)'. As xo increases, c(f -f8) converges to N(0, 1) 
and c diverges to infinity, hence the first term in square brackets converges to 0. Thus as 
1x* I increases, for fixed T, the distribution of K(1) converges in probability to T(3 - 1).7 

Note that for T = 100 the critical value of the a = 0.05 size K(1) test is - 20.47, and that 
100(X3 - 1) = -20.47 implies 8 = 0.7953. Hence for T = 100, as jx* I increases, the 
power of K(1) goes to 0 when 8 > 0.7953 and to unity when 8 < 0.7953. 

Second, the tabled powers of the t(1) and F(0, 1) tests do not decrease with 4x* 1. 
Although it is not apparent from Table II, when p is very close to unity the power of the 
t(1) test first declines and then increases. For example, at [ = 0.99 the minimum power 
of the t(1) test is 0.02 and this occurs at about Ix* I = 350. Hence, like K(1), the t(1) test 
is in fact biased. 

Third, the power surfaces of the tests cross. For example, for [3= 0.85 the K(1) test 
has the highest power among all the Dickey-Fuller tests when Jx* I S 3; the t(1) test has 
higher power than the K(1) test when Ix* I > 4; and the F(0, 1) test has the highest 
power among all the Dickey-Fuller tests when Jx* I > 8. 

Schmidt and Phillips (1989) report powers of the LM tests for / > 0.8; these tests have 
the property that for a given value of 3 the powers decline as 4x1 I increases. As is 
expected, LM tests have more power than the K(1) and t(1) tests when /3 is close to 
unity and Ixo I is small, say / > 0.95, and Ix4 I < 1.0. By contrast, at [3= 0.9 and Ixo I = 5 
the powers of the Dickey-Fuller tests are larger. 

Given that the dependence of the powers on x* is not significant until jx* I > 2, it is 
useful to recognize that such values are quite likely. When 3 < 1, in treating x* as fixed 
we are conditioning on a drawing from a Gaussian distribution with mean zero and 
variance (1 _ /2)-Y1. Thus with / = 0.85, such a drawing is one standard deviation away 
from its mean at 1.9, two standard deviations at 3.8, three standard deviations at 5.7. 

6Schmidt and Phillips (1989) show that the distributions of related LM test statistics depend only 
upon f8 and x*, and note that the empirical powers of the LM tests depend only upon the absolute 
value of x. 

7This feature of the limiting distribution of K(1) is confirmed by the small-o asymptotic theory in 
Evans and Savin (1984). 
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TABLE II 

POWERS OF UNIT ROOT TESTS FOR T = 100 

Exact powers of the K(1) test, critical value =-20.47 

/3 
Ixo 1 0.75 0.80 0.85 0.90 0.95 0.99 1.00 

0.00 0.92 0.75 0.49 0.24 0.10 0.05 0.05 
1.00 0.92 0.75 0.49 0.24 0.10 0.05 0.05 
2.00 0.92 0.75 0.48 0.24 0.10 0.05 0.05 
3.00 0.92 0.74 0.47 0.23 0.10 0.05 0.05 
4.00 0.92 0.73 0.45 0.21 0.09 0.05 0.05 
5.00 0.92 0.72 0.43 0.20 0.09 0.05 0.05 
6.00 0.92 0.72 0.41 0.18 0.08 0.05 0.05 
7.00 0.92 0.71 0.39 0.16 0.08 0.05 0.05 
8.00 0.92 0.69 0.37 0.14 0.07 0.05 0.05 
9.00 0.93 0.68 0.34 0.13 0.06 0.05 0.05 

10.00 0.93 0.67 0.31 0.11 0.06 0.05 0.05 

Powers of the t(1) test, critical value = -3.45 

Ixo*I 0.75 '0.80 0.85 0.90 0.95 0.99 1.00 

0.00 0.86 0.65 0.39 0.19 0.08 0.05 0.05 
1.00 0.87 0.66 0.40 0.19 0.08 0.05 0.05 
2.00 0.88 0.68 0.41 0.19 0.08 0.05 0.05 
3.00 0.90 0.71 0.43 0.20 0.08 0.05 0.05 
4.00 0.93 0.75 0.46 0.21 0.08 0.05 0.05 
5.00 0.95 0.79 0.50 0.22 0.08 0.05 0.05 
6.00 0.97 0.84 0.54 0.24 0.09 0.05 0.05 
7.00 0.98 0.89 0.60 0.26 0.09 0.05 0.05 
8.00 0.99 0.92 0.66 0.29 0.09 0.05 0.05 
9.00 1.00 0.95 0.72 0.32 0.09 0.05 0.05 

10.00 1.00 0.97 0.78 0.35 0.10 0.05 0.05 

Powers of the F(0, 1) test, critical value = 6.49 

lxo* l 0.75 0.80 0.85 0.90 0.95 0.99 1.00 

0.00 0.80 0.56 0.31 0.14 0.06 0.05 0.05 
1.00 0.80 0.57 0.32 0.14 0.06 0.05 0.05 
2.00 0.83 0.60 0.34 0.15 0.07 0.05 0.05 
3.00 0.86 0.64 0.37 0.16 0.07 0.05 0.05 
4.00 0.90 0.70 0.41 0.18 0.07 0.05 0.05 
5.00 0.94 0.77 0.46 0.20 0.07 0.05 0.05 
6.00 0.97 0.83 0.53 0.23 0.08 0.05 0.05 
7.00 0.99 0.90 0.61 0.27 0.08 0.05 0.05 
8.00 1.00 0.94 0.70 0.32 0.09 0.05 0.05 
9.00 1.00 0.97 0.79 0.37 0.10 0.05 0.05 

10.00 1.00 0.99 0.86 0.45 0.11 0.05 0.05 

Estimates based on 20,000 replications. 

From the power tables, as x* ranges from 0 to 5.7, the power of K(1) against 13 = 0.85 
falls from 0.49 to 0.41, the power of t(1) rises from 0.39 to about 0.54, and the power of 
F(0, 1) rises from 0.31 to over 0.5. Thus likely variation in x* appears to be important for 
power of the unit root tests. 

Finally, for all tests the powers when T = 50 (not reported) are substantially lower 
than those at T = 100. For example, when x* = 0 and 13 = 0.8 the power of the a = 0.05 
size F(0, 1) test is 0.16 and the power of the a = 0.05 size lower-tail t(1) test is 0.20. In 
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TABLE III 

POWERS OF TESTS OF H0: 1 = 0.85 FOR T = 100 

Powers of the tA(0.85) test, critical value = 0.56 

IXO I 0.85 0.90 0.95 0.99 1.00 

0.00 0.05 0.20 0.44 0.60 0.61 
1.00 0.05 0.20 0.44 0.60 0.61 
2.00 0.05 0.20 0.45 0.60 0.61 
3.00 0.05 0.20 0.45 0.60 0.61 
4.00 0.05 0.20 0.45 0.60 0.61 
5.00 0.05 0.20 0.45 0.60 0.61 
6.00 0.05 0.20 0.46 0.60 0.61 
7.00 0.05 0.20 0.46 0.60 0.61 
8.00 0.05 0.20 0.47 0.60 0.61 
9.00 0.05 0.20 0.47 0.60 0.61 

10.00 0.05 0.20 0.48 0.60 0.61 
Estimates based on 20,000 replications 

Exact Powers of the SA(0.85) test, critical value = 0.506 

IXO I 0.85 0.90 0.95 0.99 1.00 

0.00 0.05 0.20 0.45 0.60 0.61 
1.00 0.05 0.20 0.45 0.60 0.61 
2.00 0.05 0.20 0.45 0.60 0.61 
3.00 0.05 0.20 0.45 0.60 0.61 
4.00 0.05 0.20 0.46 0.60 0.61 
5.00 0.05 0.21 0.46 0.60 0.61 
6.00 0.05 0.21 0.46 0.60 0.61 
7.00 0.05 0.21 0.47 0.60 0.61 
8.00 0.05 0.21 0.47 0.60 0.61 
9.00 0.05 0.21 0.48 0.60 0.61 

10.00 0.05 0.21 0.48 0.60 0.61 

general, the powers of the integration tests are so low when T = 50 that they are not 
worth reporting in detail. In light of the low powers we do not recommend performing 
the integration tests for T < 100. 

B. Trend-Stationarity Tests 

The powers of 0.05 one-sided similar tests of H: ,3 = 0.85 for T= 100 are given in 
Table III. Several features of the tables stand out. For example, the powers of the two 
tests are nearly the same, and increase with /3. Also, for the tabled values, the powers of 
the tests are nearly invariant with respect to x0. For the tabled values of x0, the exact 
power of detecting a unit root with the SA(.85) test is 0.61; the empirical power of the 
tA(.85) test at /3 = 1 is 0.61. These results indicate that the trend-stationarity tests have 
somewhat better than a 50% chance of detecting a unit root for plausible values of x0. 

C. Comparison 

Our analysis has revealed that both types of tests are beset by lower power at the 
alternatives of interest, with the performance of the trend-stationarity tests somewhat 
better than that of the integration tests. Figure 1 illustrates this situation. The tests 
examined are the a = 0.05 lower-tail t(l) test and the a = 0.05 upper-tail tA(.85) test. 
The powers of the tests are illustrated for T = 100 using four distributions: the distribu- 
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-6 -3 0 3 6 

O t(1 .85) + t(1 1) O ta(.85 -.85) -A ta(.85 1) 

FIGURE 1. - Empirical distributions of t(- ) statistics. 

tions of tA(.85) when (lx 1, ,B) = (2,0.85) and (0, 1); and the distributions of t(1) when 
(lx* l, ,B) = (0, 1) and (2,0.85). Denote the first two distributions by tA(.85 1.85) and 
tA(.851 1) and the second two by t(l Ii) and t(l 1.85): tA(.851.85) and t(l Ii) are the 
distributions of tA(.85) and t(1) under the respective nulls, and tA(.85 I1) and t(1 1.85) are 
the distributions under the alternatives. 

The low power-about 0.4-of the t(1) test is shown by the overlap of the t(1 1) and 
t(1 1.85) distributions. The power-about 0.6-of the tA(.85) test is due to the difference 
in the shapes of the tA(.851.85) and tA(.851 1) distributions. These power comparisons 
emphasize the importance of considering the nature of the alternative in hypothesis 
testing. In particular, the powers of unit root and stationarity tests may not be high 
enough to settle the integration vs. trend-stationarity issue in many practically relevant 
situations. 

6. CONCLUSIONS 

There are three major findings in this paper. First, unit root tests have low power 
against plausible trend-stationary alternatives. Second, tests of an empirically plausible 
trend-stationarity hypothesis have moderate power against the unit root alternative. 
Third, there are many cases in which neither test will reject. This suggests that inferences 
based exclusively on tests for integration may be fragile. 
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