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Ahlfeld and Pinder recently proposed a method for reducing the enormous 
computational burden associated with Monte Carlo simulations. It was suggested 
that the solution be evaluated at only a few select points (a knot sequence) over 
the parameter space of the random quantity and the solution elsewhere be 
obtained through interpolation. This paper addresses the issue of the choice of 
points in the knot sequence. The main thesis of the present work is that these 
points need to be chosen appropriately to ma.~imiTe their utility and yield the 
fewest interpolation errors for the Monte Carlo procedure. An optimal choice of 
interpolation points should be based on the underlying probability distribution of 
the random variable(s). This is illustrated through an example for which 
analytical solutions are available. The statistical quantities of interest considered 
in this paper are the mean, variance, and probability densities of the state 
variable. 
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INTRODUCTION 

The modeling of many physical phenomena requires 
the use of  stochastic approaches to account for 
uncertainty in the external and internal influences on 
the system. These could result from randomness in 
the parameters, in the initial and boundary conditions, 
and in the forcing functions. For example, the partial 
differential equations governing water movement 
and solute transport in porous media are rendered 
stochastic largely because of spatial variability exhibi- 
ted by many field soils (Nielsen et  al., 19 Biggar 
and Nielsen, 4 Vieira et  al., 2s Daganl°). Analytical 
solutions to determine water flow and solute transport 
in the subsurface are available in special instances of  
regular boundaries and homogeneous media. When the 
equations are treated as stochastic, such analytical 
solutions become even more scarce. Some of the 
common stochastic techniques applied to subsurface 
environments are: the conditional-and-unconditional- 
probabilities approach (Dagan s,9); the spectral 
approach in conjunction with the perturbation approxi- 
mation (Bakr et  al.. Gutjahr et al., 14 Mizell et  aL, 18): 
the cumulant-expansion method (Chu and Sposito, 6 
Sposito and Barry, 24 Kavvas et  a/.16) • and the semigroup 
approach (Serrano2°'21). However. most of  these 
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techniques (except perhaps the cumulant-expansion 
approach) have restricted application in terms of 
needing special boundary conditions and analytical 
solutions for the deterministic problem. 

A brute-force technique to solve any stochastic 
groundwater-flow and transport problem is through 
Monte Carlo simulations (Freeze, 11 Smith and 
Freeze, 22'23 Hopmans et al.15). The major criti- 
cism of this method is the enormous computational 
burden that is frequently associated with it. Realiz- 
ations are generated from the knov,-o probability 
distributions of the random quantifies. A determin- 
istic solution of  the problem based on reafized values 
of the uncertain quantities results in a correspond- 
ing realization of the dependent variable. A large 
number of such trials form a synthetic ensemble 
for the dependent variable. The number of Monte 
Carlo trials that need to be performed depends 
on factors such as the nature of stochasticity, the 
convergence criteria chosen, and the characteristics 
of the physical problem under consideration. Despite 
the computational effort involved, the Monte Carlo 
technique is often used to test theoretical results 
(Govindaraju and Kavvas 13) and is the only viable 
method for complicated problems when simpler solu- 
tions do not exist. 

Ahlfeld and Pinder I recently proposed a method for 
reducing the computational requirement during Monte 
Carlo simulations. They used the problem of stochastic 
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solute transport in a homogeneous saturated aquifer 
(whose hydraufic conductivity is a random quantity) 
as an example to illustrate their method. The 
basic idea in their work consists in selection of a 
limited number of points (called a knot sequence in 
this study) in the parameter space of  the random 
hydraulic conductivity. By using the finite-element 
method, the concentration at particular space-time 
points is evaluated for each of the hydraulic con- 
ductivites in the knot sequence. During the Monte 
Carlo procedure, the concentrations for different 
values of hydraulic conductivity (i.e. those not in 
the knot sequence) are then evaluated through 
interpolation, rather than by soh, ing the physical 
equations of groundwater flow and solute transport. 
Since interpolation usnally requires negligible 
effort compared with the numerical solution of 
the governing partial differential equations, the 
procedure presented by Ahlfeld and Pinder I may be 
as much as two orders of magnitude faster than 
the regular Monte Carlo simulations. The study of 
Ahlfeld and Pinder I showed that ten points in the 
knot sequence were sufficient to obtain results 
with acceptable accuracy when compared with 
results from 1000 Monte Carlo simulations. Since 1000- 
10000 Monte Carlo trial are not uncommon in 
dealing with spatial variability of hydraulic con- 
ductivity, interpolation of state variables over the 
parameter space results in significant savings in 
computer effort. 

Consequendy, the choice of the points in the 
knot sequence becomes an important issue. Because the 
number of interpolation points is far fewer than 
the total number of Monte Carlo simulations, an 
optimal placement of these points needs to be designed 
to maximize their utility or minimize the error in 
predictions. The purpose of this paper is to examine 
the influence of different knot sequences based on 
various strategies on the prediction of the statistical 
properties of the state variables (mean, variance, 
and probability densities). To define appropriate 
criteria for comparison of different choices of 
knot sequences, a h)~othetical example is chosen 
for which analytical solutions are available. Two 
different strategies for selecting the knot sequence 
are presented. One of them places the interp- 
olation points at equal distances, whereas the place- 
ment of interpolation points is based on the underlying 
probability distribution of the random parameter in 
the other strategy. Results from 9000 Monte Carlo 
simulations are also included. Whether a particular 
knot sequence is optimal (in terms of the 
smallest error) depends on the statistical property 
of interest and the dependence of the state vari- 
able on the random quantity. The results clearly indicate 
that the choice of knot sequence may have serious 
consequences in terms of the quality of  predicted results. 

.MATHEMATICAL STATE.MEN-[ OF THE 
PROBLEM 

Let us say that the outcome of a particular state variable 
Y depends on some parameter X, which behaves in a 
random fashion. (Here Y may be identified with solute 
concentration at some location of interest, while X 
represents the random hydraulic conductivity of  the 
homogeneous aquifer.) The dependence of Y on X may 
be expressed in the general form: 

Y =  g(X:p) xl,; ~ 

where p is the vector of other non-random parameters 
that influence the solution. An analytical solution to the 
stochastic problem requires that the functional form of 
g(. ) be explicitly known as a first step. In most practical 
cases of interest, this is not available, and numerical 
solutions have to be used for this evaluation. Let fx(X) 
denote the known probability density of X. Then the kth 
moment of Y may be defined as: 

= I g(x. p)*f (x)dx .',2) 

where ( . )  denotes the expectation operation and the 
integration on the right-hand side is over all possible 
values of X (i.e. the entire parameter space). If X is a 
discrete random variable, then the integral in eqn (2) 
would be replaced by the appropriate sum. For the 
purposes of this study, X is assumed to be a continuous 
random variable. In a Monte Carlo approach, an 
approximate evaluation of eqn (2) is conducted by 
random generation of sample values of X(=  xt), 
evaluating Y numerically for each xi, and summing 
over all simulations, i.e.: 

r k/ / (3) 

where NM is the total number of simulations. This 
procedure is computer-inteusive because each g(x,.p) 
needs to be computed independently and usually entails 
the numerical solution of  a large problem. The larger the 
number of Monte Carlo simulations :~:~, the more 
accurate are the predictions from eqn (3), but there is 
also a corresponding increase in cost. 

This brute-force Monte Carlo procedure does not 
take any advantage of the nature of the relationship 
between Y and X through the functional form g(.). In 
most cases of practical interest, the problem is well 
posed, so that a small variation in X results in a 
correspondingly small change in the solution Y = gO/). 
The 'smoothness" or continuity requirements of g(X) 
depend on what derivative of Y gill be used in the 
interpolation procedure. We consider evaluating 
Yj(= g(xj:p)) for a limited number of xj values 
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( j  = 1 . 2 , . . . .  ninpol) called interpolation points (knot 
sequence), where ninpol is the number of interpolation 
points. Ahlfeld and Pinder t used Hermite-cubic poly- 
nomials for interpolation because the)" were interested in 
the state variable and its first derivative. For simplicity, 
linear-basis functions are chosen for interpolation in this 
study. Thus the interpolated value of Y for any x not 
belonging to the knot sequence is: 

ampol 

j=-. 
(4) 

where o~(x) are linear-basis functions with the usual 
compact support. These functions occur frequently in 
the numerical solution of  partial differential equations 
(Lapidus and Pindert'). It can be shown that, as the 
number of interpolation points increases, the inter- 
polation error reduces to zero. More specifically (Come 
and de Boor," Atkinson2), we have: 

max _x.I - xj_ I 12 
'r(x)- < 

8 

d 2 Y [ (5) 

where xt < x < - ' 6 ,~  in the above equation. It is clear 
that ~'(x) = Y(x) when x coincides with an interpolation 
point. A decrease in the error 5"(x)-Y(x)l may be 
achieved by reducing the maximum separation between 
nodal points. The error term depends on the nature 
of g(X) through the term d2y,/dx 2 in eqn (5). Thus, 
to maximize the use of  the interpolation formula, 
eqn (4), in Monte Carlo simulations, the location of 
interpolation points in the knot sequence becomes 
important. Apart from Monte Carlo simulations 
without interpolations, two different strategies for 
choosing interpolation points are studied here to 
show the disparity in results that may occur on the basis 
of the choice of  interpolation points in the knot 
sequence. 

Strategy 1: Knot sequenee based on probability 
density of X 

The basic idea in this strategy is as follows. The number 
of interpolation points in a given interval in the 
parameter space is proportional to the probability 
mass within the interval. Suppose that we decide on 
ninpol interpolation points. Then the number of 
interpolation points within the interval (Xi < X < 2"2) 
is given by: 

(I: ) xVl_ 2 =-- ninpol • fx(X) dx (6) 
! 

This means that ninpol-I intervals are used to partition 
the parameter space in such a way that the probability 
mass ~ithin each interval is the same (--1.0/  
(ninpol-1)). This method allows the points in the 

knot sequence to be distributed according to the 
probability densiLv of 2". More interpolation points are 
therefore concentrated in regions of higher probability 
of occurrence of X. It is likely that more realizations will 
have a smaller interpolation error. The upper (Xm~) and 
lower (X~n) fimits of  interpolation are obtained from 
the maximum and minimum generated values of X. 

Strategy 2: Uniform distribution of interpolation polats 

In this strategy, the interpolation points are spaced 
equidistantly over the parameter space. No effort 
is made to relate the spacing of the interpolation 
points to the underlying distribution of the random 
parameter X. 

Strategy 3: Monte Carlo simulations without 
interpolation 

This strategy does not use any interpolation and is based 
on the conventional simulation strategy whereby Y is 
evaluated for each realized value of X by solving the 
physical problem. These results are also included here 
for comparison purposes. 

It is clear that the results of strategies 1 and 2 should 
approach those of  strategy 3 asymptotically as the 
number of interpolation points increases indefinitely. 
Ahlfeld and Pinder t chose a selection procedure based 
on bisection of the parameter space to choose new 
interpolation points. Their study does not make any 
comparisons of  the performance of different strategies 
for choice of interpolation points. 

EXAMPLE AND RESULTS 

To illustrate the relevance of the proper placement of 
interpolation points, an example is considered that 
yields analytical solutions. This example has been 
particularly designed to bring out the differences in 
solutions between strategies 1 and 2. In more practical 
problems, the differences may not be as pronounced as 
the results shown in this paper. Let X have an 
exponential distribution given by: 

fx(x) = Aexp(-Ax). x > 0. ), > 0 

= 0 .  x < 0  ,'7) 

where A (spelt as lambda in all the figures) is the 
parameter of the exponential distribution. Suppose the 
function Y--- g(X) has the follov, ing form: 

Y(X) = g(X) = a exp(bX) (s) 

where a and b are constants. Depending on the values of 
the constants a and b in eqn (8), the functional 
dependance of Y on X can vat" quite dramatically. 
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Fig. 1. Comparison of errors (%) for the mean and variance by using strategies 1, 2, and 3 as a function of the number of Monte 
Carlo simulations (a) and Co) and number of interpolation points (c) and (d). The numbers in the legends refer to the strategy. 

The expectation of Y is: 

A 
(Y) = a(exp(bX)) = a A _ b (9) 

where is is assumed that A > b'. Equation (9) results 
from the definition of  the moment generating function 
of  X given by: 

A (10) F~(t) = (e *x) = A - t 

Similarly, the second moment of  Y may be obtained as: 

(r2) = ( d ~ x )  = a2 
X-Zb (ii) 

For eqn (I I) to hold, A > 2b.  The analytical expression 
for the variance of  Y is then given as: 

var (Y)=~  ~ 2b (A-~)2' (12) 

the and finally, by using probabilistic transforms, 
probability density of  Y may be expressed as: 

= A A (y/a)] 
frO') i -~ylexp[-~ In (13) 

Equations (9), (12), and (13) are the theoretical 
expressions for the mean, variance, and probability 
density of  Y. Comparisons of  the performances of  
various strategies can be made by studying the 
percentage errors with respect to the theoretical 
expressions for each strategy. The error definitions in 
this study are as follows: 

error in the mean = EM = 

theoretical mean - approximate mean, 
• 100 

theoretical mean 
(14a) 

error in the variance = EV = 

theoretical variance - approximate variance 
- 100 

theoretical variance 
(14b) 

The theoretical means and variances are calculated from 
eqns (9) and (12), respectively. The approximate values 
are obtained by using Monte Carlo simulations under 
strategies I, 2, and 3 .  

This discussion first analyzes the percentage errors in 
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Fill. 2. Comparisons of the theoretical and simulated 
probability densities by using strategies l(a) and 2(b). The 

parameters are the same as in Fig. 1. 

the mean and variance. In Figs. l(a)-(d), the values of 
the parameters in eqns (7) and (8) are: a = 0"5, b -- 0-40, 
and A = 1.50. In Fig. l(a), EM is shown as a function of 
the total number of Monte Carlo simulations. The 
numbers in the figure legend refer to the particular 
strategy. The total number of interpolation points 
(ninpol) in Fig. l(a) is eleven. The EM value from 
strategy 1 (approximately 1%) is considerably less than 
that for strategy 2 (about 12%). The errors incurred 
with strategy 3 (Monte Carlo simulations without 
interpolation) are the least, as would be expected. With 
an increase in the number of Monte Carlo trials, the 
EM appears to settle at 1% for strategy 1 and 12% 
for strategy 2. Meanwhile, the regular Monte-Carlo- 
simulation results labelled as strategy 3 show that the 
EM reduced to zero with an increasing number of 
simulations. This is because, once the number of  
interpolation points is fixed for strategies 1 and 2 (11 
in this instance), increasing the number of  Monte Carlo 
simulations beyond a certain amount will not reduce the 
interpolation error. 

Figure l(b) makes comparisons of  percentage 

errors in the variance EV as a function of number of 
Monte Carlo trials. The parameter values and the 
number of interpolation points are the same as in Fig. 
l(a). The errors resulting from strategies 1 and 3 are 
almost identical. Strategy 1 leads to a smaller EV than 
strategy 2. This behavior is similar to that of Fig. l(a). 
Increasing the number of Monte Carlo trials leads to a 
constant value of  10% for strategy I and 350% for 
strategy 2. 

Figure l(c) examines the influence of increasing 
the number of interpolation points on the EM. Clearly, 
as the number of interpolation points increases, the 
interpolation error decreases, and consequently both 
strategy 1 and strategy 2 show a decrease in mean 
percentage error. However, it may be noted that strategy 
1 shows a smaller error than strategy 2 when the number 
of interpolation points ranges from three to ten. The 
difference in error is particularly significant when the 
number of interpolation points is less than ten. The 
choice of interpolation points becomes particularly 
crucial when we decide upon a small number of  
interpolation points. This choice becomes less signifi- 
cant as the number of  interpolation points is increased, 
so that the interpolation error is practically negligible 
irrespective of  which interpolation strategy is used. As 
indicated in Fig. l(c), the mean error obtained from 
9000 Monte Carlo simulations is 0.064%. This is the 
asymptotic value that both strategy 1 and strategy 2 
would achieve if the number of  interpolation points were 
increased indefinitely and the interpolation error made 
negligible in the process. 

Figure l(d) shows the behavior of the EV with 
an increasing number of interpolation points. The 
reduction in error with increasing interpolation points 
is quite dramatic for strategy 1, whereas strategy 2 
shows a more gradual reduction. The EV for strategy 3 
after 9000 simulations is given as 12.15%. This is the 
asymptotic value that seems to have been achieved by 
strategy 1 with ten interpolation points. Figure l(b) 
confirms this conclusion. For this example, it may 
therefore be concluded that strategy 1 would be preferable 
to strategy 2 because of smaller EV and EM values. 

Figures 2(a) and 2('o) compare the predictions for the 
probability densities for the same parameter values as in 
Fig. l(a) (i.e. a = 0-5: b = 0.4, and A = 1.5). Figure 2(a) 
shows the theoretical density and the simulated densi- 
ties obtained from 9000 simulations and by choosing 
three, seven and eleven interpolation points and using 
strategy 1. Figure 2(b) shows similar results when 
strategy 2 is used for interpolation. Figures 2(a) and 
2(b) are plotted on a semi-log graph for comparison 
purposes. These figures indicate that strategy 1 has a 
faster rate of convergence to the theoretical density for a 
given number of interpolation points.The results for 
strategy 1 with ninpol = 7 in Fig. 2(a) are better than 
those with ninpol = 11 for strategy 2 in Fig. 2(b). These 
figures demonstrate that the choice of interpolation 
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Fig. 3. Comparisons of errors (%) for the mean and variance by using strategies 1, 2, and 3 as a function of the number of Monte 
Carlo simulations (a) and (b) and number of interpolation points (c) and ((1). The numbers in the legends refer to the strategy. 

points has a significant influence on statistical pre- 
dictions under a Monte Carlo framework. Similar 
conclusions were obtained when the parameter values 
were changed to a = 2.0. b = 0.1, and ~ = 0.5 (results 
not shown). 

Figures 3(a)-(d) also compare the mean and variance 
percentage errors for parameter values of  a = 0-50. 
b = - 0 . 4 0 ,  and )~ = 1-5 in eqns (7) and (8). Unlike 
Figs l(a)-(d), Figs 3(a)-(d) show differences in behavior 
for the errors. In Fig. 3(a), the EM values for strategies 1 
and 2 are practically identical and eventually settle 
to about I%. The error from strategy 3 is much 
smaller and reduces to zero with an increasing 
number of  simulations (as would be expected). This 
is in contrast to Fig. l(a), in which strategy 1 was 
shown to be distinctly superior to strategy- 2. Figure 3(b) 
shows similar beha~,ior to Fig. l(b), and strategy 1 
leads to a smaller percentage error for the variance 
than strategy- 2. Strategy 1 produces an error pattern 
that is quite similar to the one obtained from Monte 
Carlo simulations without any interpolation (i.e. 
strategy 3). Figure 3(c) shows a different performance 
when compared with corresponding results for diff- 

erent parameters in Fig. l(c). The percentage error 
in the mean decreases with increasing interpolation 
points. But strategy 2 seems to perform marginally 
better when the number of  interpolation points is 
less than seven. Both of  the strategies approach 
the asymptotic value of  0-012% with increasing 
interpolation points. This as~nptotic value is indi- 
cated by 9000 Monte Carlo simulations carried out 
without any interpolation (strategy 3). Figure 3(d) 
compares the EV for an increasing number of  
interpolation points. Whereas both strategy 1 and 
strategy 2 approach the asymptotic value of  0.297%, 
it is clear that strategy 1 is better and reaches this value 
with a smaller number or interpolation points. 

Figures 4(a) and 4(b) compare the simulated and 
theoretical probability densities for strategies 1 and 2, 
respectively, for the parameter values of Fig. 3. Figure 
4(a) shows that, for a smaller number of  interpolation 
points (ninpol = 3), the simulated probabifity density 
does not predict the theoretical density weU under 
strategy 1. Some small oscillations are also observed. 
However, with an increasing number of  interpolation 
point (ninpol=7. 11), the comparisons are quite 



Optimal selection of interpolation points in Monte Carlo simulations 311 

!0.00 

i.00 

i 0.10 

0.01 

0.0 0 1 0..2 0.3 0.4 O.S 0.6 

Ikpcnck~ miabk~ (Y) 

10.00 (b) y 
~ l.IXl 

0.10 _~ ninpo~l 1 

.a a = 0_~, b = -0.4, lamlxla = 1.5 

0.01 . . . . . .  

0.0 0.1 0.2 0.3 0.4 0.5 

Depen&mt miable (Y) 
0.6 

Fig. 4. Comparison of the theoretical and simulated prob- 
ability densities by using strategies l(a) and 2(b). The 

parameters are the same as in Fig. 3. 

good. Figure 40)) shows that the simulated probability- 
density predictions also improve with increasing 
ninpol for strategy 2. However, the magnitude of 
the oscillations is much larger in this case and persists 
even for ninpol = 11. For a small number of inter- 
polation points (ninpol = 3), the magnitude of these 
oscillations (measured as deviations from the theoreti- 
cal solution) is quite large but they are fewer. As 
the number of  interpolation points is increased 
(ninpol= 7.11), the magnitude of these oscillations 
decreased, but their number increases. Figures 4(a) 
and 4(I)) also include the simulated probability- 
density function obtained from 9000 Monte Carlo 
trials without interpolation for comparison purposes. 
Under strategy 2, the knot sequence is placed equi- 
distantly, and regions of the largest interpolation 
error are assigned equal weight. Fewer interpolation 
points therefore lead to fewer oscillations. As the 
number of interpolation points increases, the relative 
percentage of realizations failing in the high-error 
zones increases, which thereby increases the number of  
oscillations. Simultaneously, there are more realiz- 

ations with smaller interpolation error, so the magni- 
tude of the oscillations decreases with an increasing 
number of points in the knot sequence under strategy 2. 
The conclusions of  Figs. 3 and 4 remained unaltered 
for parameter values of a = 2.0:2 = - 1-0, and A = 0-5 
(results not shown). Figures 1 and 3 show the 
performance of  the two strategies when the modeling 
quantities of  interest are the mean and the variance, 
while Figs 2 and 4 show the predictive ability for the two 
strategies when the probability density is the quantity of 
modeling interest. 

SUMLMARY AND CONCLUSIONS 

The aim of this paper was to demonstrate that the 
choice of interpolation points is important in dealing 
with Monte Carlo simulations. This was done by 
using an example for which analytical solutions 
are available. This allowed for a definition of percent- 
age errors for the mean and variance and compari- 
sons with the theoretical probability-density function. 
In most practical problems of groundwater and solute 
transport, such analytical solutions would not be 
available. Two strategies for the selection of inter- 
polation points were considered. Strategy 1 chose 
the interpolation points based on the underlying 
probability-density function of the random para- 
meter. Strategy 2 distributes the interpolation points 
uniformly over the parameter space. For compari- 
son purposed, results obtained from Monte Carlo 
simulations without interpolation are labelled as 
strategy 3 in this paper. For the examples considered 
in this paper, strategy 1 seems to be superior to strategy 
2. This was indicated by smaller percentage errors in 
the mean and variance. Strategy" 2 resulted in smaller 
oscillatory behavior during prediction of the proba- 
bility density in the second example. The exception to 
this general trend was encountered in predicting 
the mean behavior with a small number of interpolation 
points. Typically, for most problems of practical 
interest, the number of interpolation points would 
be ten or more for each random variabie in the physi- 
cal problem. Strategy 1 tends to concentrate the 
nodal points in regions of higher probabifity of  
occurrence. It would not be suitable when one is 
interested in extreme events that are governed by the 
behavior of the tails of  a distribution. 

The examples used in this study were designed to 
bring out the differences between strategy 1 and strategy 
2. Thus the discrepancies in the performance of these 
two strategies are probably more pronounced than those 
that would be encountered in most practical ground- 
water problems. It should also be noted that the strength 
of the Monte Carlo procedure is not in integration of 
smooth functions in one dimension. In fact, previous 
research studies have used numerical-integration 
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methods in estimating moments (Bresler and Dagan, 5 
Govindaraju et a/.13). Nevertheless, this paper demon- 
strates that the choice of  interpolation points is 
important and warrants careful consideration before 
undertaking a Monte Carlo procedure with interpola- 
tion. 

A natural extension of  this approach is to cases 
in which the random property X (say, hydraulic 
conductivity) is non-homogeneous and even has 
spatial correlation. The definitions of  the moments 
would change and the form of  the probability-density 
function of  X would change. This would lend 
to a change in the generation procedure for realizations 
of  X. However, the evaluation of  the unknown vari- 
able Y =  g(X) remains unchanged, and interpolation 
strategy would still be applicable. The number of  
interpolation points is typically from one to two 
orders of  magnitude smaller than the number of  
Monte Carlo simulations (see Ahlfeld and Pinder I for 
actual estimates). This would be true even if  more than 
one parameter were random in the physical problem 
under consideration. However, we should then have to 
extend this interpolation over multiple dimensions, but 
the underlying concept remains the same. In any 
instance, this scheme would reduce the enormous 
computational burden that is frequently associated 
with Monte Carlo solutions for problems in stochastic 
framework. 
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