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A generalized approach to the use of pulsed-gradient spin echo (PGSE) NMR meth- 
ods for the measurement of flow and dif ision in porous media is presented, in which 
the fluid dynamics is probed over well-defined temporal and spatial domains. Various 
N M R  techniques based on PGSE encoding are described in the context of standard 
theories of dispersion, with reference to Eulerian and Lagrangian coordinate frames. 
This array of methods provides access not only to the dispersion coeficient and the 
mean local velocity but also to propagators relevant to spatial and temporal correla- 
tions. Methods investigated include flow imaging, average propagator analysis, disper- 
sion measurement, velocity exchange spectroscopy, and flow difiaction based on scat- 
tering analysis. We apply these to a study of flow and dispersion of water in a packed 
bed of 90.7- pm-dia. polystyrene latex spheres. Our measurements of the dependence on 
Peclet number of dispersion (parallel and perpendicular to the mean flow direction) are 
in excellent agreement with results reported in the literature. The scattering approach 
used here has potential for studying complex flow properties involving the interplay be- 
tween hydrodynamic and structural characteristics of porous media. 

Introduction 
The subject of flow and transport in porous media has ma- 

jor interdisciplinary significance. An understanding of these 
phenomena underpins liquid chromatographic separation 
technology, packed-bed-reactor design, modeling of contami- 
nant transport in geological media, and studies of perfusion 
in biological tissue, to name but a few. Transport behavior in 
porous media is governed by the interaction of diffusive and 
advective processes, in other words, the phenomenon of dis- 
persion. Central to any understanding of dispersion is the 
matter of scale dependence. The effect on measured trans- 
port coefficients of interactions between the spatial and tem- 
poral scales of observation and the natural scales of the me- 
dia, becomes a primaIy issue both in the modeling of porous 
media and in any comparisons between theory and experi- 
ment (Whitaker, 1986; Cushman, 1990). In this article we ad- 
dress these problems from the standpoint of a particular 
measurement technique, nuclear magnetic resonance (NMR). 
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Present address of J. D. Seymour: The Lovelace Institutes, 2425 Ridgecrest Dr. 

SE, Albuquerque, NM 87108. 

NMR has proven of enormous value in the investigation of 
fluids in porous media. Bulk measurements of NMR signal 
amplitude can be used to obtain porosity values. Because of 
surface relaxivity effects, the analysis of NMR relaxation times 
can provide information about pore-surface-to-volume ratios 
and pore-size distributions (Davies et al., 1991). Measure- 
ments of fluid diffusivity can reveal pore tortuosity (Cal- 
laghan et al., 1991, 1992; Mitra et al., 19931, while NMR flow 
measurements can be used to obtain estimates of permeabil- 
ity. 

The development of NMR imaging has led to a number of 
applications in which NMR parameters are mapped directly. 
Most obvious among these is the fluid distribution itself. In 
principle such an imaging experiment can provide a map of 
the pore space, provided that the pore size is significantly 
larger than the intrinsic imaging volume element (the voxel). 
Recently, a number of researchers have reported NMR ex- 
periments in which fluid is forced through a porous medium 
and a map of the fluid velocity is reconstructed (Guilfoyle et 
al., 1992; Chen et al., 1993; Kutsovsky et al., 1996; Mansfield 
and Issa, 19961, in some cases with a spatial resolution larger 
than the pore size and in others, where media with very coarse 

2096 August 1997 Vol. 43, No. 8 AIChE Journal 



structure are employed, on a sufficiently fine resolution scale 
that the flow profile is visible within a single pore. 

The use of imaging methods, while powerful in one sense, 
involves an inevitable “trade-off” in another. Because NMR 
suffers from intrinsically weak sensitivity, every “well-de- 
signed’ experiment will optimize for the parameters under 
investigation. The ability to obtain information about struc- 
tural heterogeneity via imaging comes at the price of reduced 
sensitivity to other parameters, and most particularly of rele- 
vance to the case of flow in porous media will be any sacrifice 
in the resolution available for the temporal dimension of the 
velocity field. It is partly for this reason that many other NMR 
techniques are often employed in the investigation of fluid 
motion, techniques that deliberately relinquish spatial resolu- 
tion. As we shall show, however, another delicate factor often 
not appreciated explicitly by practitioners is the sense in which 
the sacrifice of spatial resolution can lead to the measure- 
ment of parameters that are better defined in the Lagrangian 
sense. 

The techniques by which NMR can be used to obtain in- 
formation about fluid motion are multitudinous. We shall re- 
strict our discussion to those based on the use of magnetic- 
field gradients, since this set, which depends on phase-encod- 
ing methods, is characterized by the greatest precision, accu- 
racy, and subtlety. These methods include, in addition to 
direct velocity imaging, average propagator analysis, time- 
dependent dispersion measurement, “q-space diffraction,” 
velocity exchange spectroscopy, and frequency-domain analy- 
sis using modulated gradients. 

A review of the generalized analysis of fluid motion using 
magnetic-field gradients has been provided recently by 
Callaghan and StepiSnik (1996), and we refer the reader to 
this article for details of the underlying NMR theory. In the 
present article we are concerned with the implementation of 
some of these analytical methods, applying a spectrum of 
techniques by way of illustration to a specific porous medium. 
This medium is chosen to exhibit characteristic dimensions 
that make it amenable to the widest possible range of useful 
strategies. We illustrate how the various methodologies can 
provide differing but complementary insights regarding the 
flow. In each case we attempt to precisely define the relevant 
hydrodynamic quantities to which we are sensitive, clearly in- 
dicating the time and length scales over which any averaging 
takes place. By this means we hope that the presentation will 
serve a didactic purpose, helping to draw together the vari- 
ous strands that underpin the NMR perspective and, hope- 
fully, providing a framework in which the links between the 
methods are apparent. 

The organization of the article is as follows. The first sec- 
tion presents a brief overview of some selected concepts from 
the theory of dispersion in porous media, so that these ideas 
can be subsequently incorporated into the discussion of the 
NMR methods. The second section provides details of the 
experimental apparatus and measurement conditions. The 
following sections deal successively with a different NMR 
methodology. In each of these the respective NMR method is 
described in as rigorous and clearly defined a manner as pos- 
sible, illustrating the application of this method to the experi- 
mental system under investigation, namely flow in a packed 
column of monodisperse spheres. In each case we aim to pro- 
vide a clear connection to the theory of dispersion. 
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Dispersion in Porous Media 
The theory of dispersion in porous media has been treated 

using several different methodologies. An essential compo- 
nent of porous media modeling concerns the existence of a 
hierarchy of scales over which transport occurs (Cushman, 
1990). A common feature of many approaches is the averag- 
ing, or coarse graining, of transport equations valid at some 
microscale, a device employed so as to permit derivation of 
macroscopic behavior. Both the asymptotic and nonasymp- 
totic, or local and nonlocal (Koch and Brady, 1987; Brady, 
1990), dispersion theories are relevant here, as NMR is capa- 
ble of providing data over spatial and temporal scales relat- 
ing to both regimes. We present only brief statements of some 
results from the theory directly used in this article. The inter- 
ested reader is referred to the large number of articles, re- 
views, and books on the subject (Bear, 1972; Brenner, 1980; 
Dagan, 1989; Cushman, 1990; Quintard and Whitaker, 1993; 
Sahimi, 1993). 

The presentation here parallels the concise discussion of 
Brady (1990). The asymptotic, or local (a nomenclature based 
on the fact that it depends only on the local mean concentra- 
tion gradient (Koch and Brady, 1987)); Lagrangian dispersion 
tensor is defined from the method of moments (Brenner, 
1980; Salles et al., 1993) and the formalism of stationary 
stochastic processes (Van den Broeck, 1990) as 

where d ( t )  = < ( r ( t ) -  < r ( t )  > )2 > is the positional vari- 
ance; u is the fluctuation in the Lagrangian velocity field, 

u = v - V; and the symmetry operator is sym ( A )  = - ( A  + 
AT).  The average velocity is defined by 

1 
2 

d < r ( t )  > 
V =  lim = lim ( u ) ,  

where v is the local instantaneous velocity. The ensemble av- 
erage, (>, is taken over the distribution of velocity fields 
(Koch and Brady, 1987) localized in space. Notice that the 
long time limit is taken with respect to the correlation time of 
the velocity fluctuations (Brady, 1990). 

The definition of the dispersion given in Eq. 1 arises from 
the theory of stochastic processes (Van den Broeck, 1990) 
and relates directly to NMR measurements of the effect of 
motion on the sample magnetization, a method whose de- 
scription is inherently statistical, as evidenced by the use of a 
density matrix formalism (StepiSnik, 1981; Callaghan and 
StepiSnik, 1996). 

Dispersion in the preasymptotic regime ‘and anomalous 
dispersion due to heterogeneity of the porous media require 
a nonlocal formulation (Koch and Brady, 1987; Brady, 1990; 
Cushman, 1990). The time step and displacement-dependent 
nonlocal dispersion tensor are given by (Koch and Brady, 
1987; Brady, 1990) 

D*(r  - r’,t - t ’ )  = ( u ( r , t ) P ( r ,  t I r’, t’)u(r’, t’)) .  (2) 
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of a tracer from r at t to r' at t' .  The propagator is governed 
by the microscale advection-diffusion equation at each point 
in the media. The local dispersion coefficient is obtained from 
the nonlocal form by integrating over r' and t' in Eq. 2. 

The dispersion coefficients just defined are consistent with 
a macroscopic transport equation of the form 

(3) 

where (c )  is the average concentration (or probability den- 
sity) of solute; and DE the Eulerian dispersion tensor, re- 
lated to the Lagrangian dispersion tensor defined in Eq. 1 by 
D* = symDg (Koch et al., 1989). Averaged transport models 
akin to Eq. 3 have been derived by several methods. A com- 
mon feature of these approaches is that the dispersion coeffi- 
cient is dependent on the fluctuations in. velocity, as in Eq. 1, 
through a closure problem on higher-order correlations, or 
moments. The form of the closure problem is identical when 
derived by the ensemble average technique (Koch et al., 1989), 
the method of moments (Brenner, 1980), and the method of 
homogenization (Rubinstein and Mauri, 1986), and possesses 
many similarities with that developed by the method of vol- 
ume averaging (Quintard and Whitaker, 1993). 

Finally, we note that the mechanisms that cause dispersion 
are often discussed in terms of three principal processes. Me- 
chanical dispersion is due to stochastic variations in velocity 
introduced by advection along tortuous paths and flow bifur- 
cations and scales with Peclet number, Pe. Diffusive (Taylor) 
dispersion (Taylor, 1953) arises from molecular diffusion 
across streamlines and scales as Pe'. Holdup dispersion arises 
from the presence of dead-end pores, and scales as Pe In Pe. 
Each of these mechanisms will be manifest in the velocity 
fluctuation autocorrelation function, ( u(O)U(T)), a measure 
of the correlation in fluid particle-velocity fluctuation over 
time 7. 

Experimental Studies 
We now present details of the apparatus employed in the 

experimental work reported here. Each NMR method em- 
ployed is described successively in subsequent sections, and 
in each case the results of the method are discussed in the 
context of the related experimental data. 

The NMR experiments were carried out using a Bruker 
AMX 300 NMR spectrometer based on a vertical wide-bore 
7T magnet. The spectrometer was equipped with a flexible 
microimaging accessory, including a gradient coil set that in- 
corporates three orthogonally directed gradients with ampli- 
tude up to 1.2 T-m-' .  The sphere pack was composed of 
90.7-pm-diameter monodisperse polymer spheres (Duke Sci- 
entific 7590A) compacted by centrifugation within a 1.9-mm- 
ID plastic tube. Deionized water was pumped through the 
sphere pack using a Pharmacia dual syringe pump at volu- 
metric flow rates corresponding to seepage (tube) velocities 
within the range 0 I ( Utube) I 17.4 mm-s-'. The scaling be- 
tween the interstitial pore and tube velocities is ( u )  = 

( utube)/&, where & is the liquid volume fraction of the sphere 
pack. These flow rates correspond to Peclet numbers from 0 
to 1,000. We follow Whitaker (Plumb and Whitaker, 1990; 
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Quintard and Whitaker, 1993) in defining the Peclet number 
as 

which incorporates a pore length scale 1 = (&/(l- 4)) dp.  The 
Peclet number takes on the simple form in the last equality 
in terms of the experimental parameters of the tube velocity, 
( utube), the particle diameter, d,, and the effective restricted 
diffusion in the bead pack measured directly by NMR, Deff = 
(1 - &)Do. Experimental Reynolds numbers based on the 
particle size and the calculated local interstitial velocity [Re  
= (( utUbe)/~)d,/u] in our work range from 0 to 4. 

It is important to note that data from NMR experiments 
relate directly to the flow field of the liquid under investiga- 
tion without the need to perturb the medium. The tracer par- 
ticles are the fluid molecules themselves. This is in contrast 
to many other experiments found in the literature (Han et 
al., 1985) in which tracer particles are employed or where 
measurements are made of the concentration evolution of an 
injected solute interacting with the underlying solvent flow 
field. NMR, by comparison with all other techniques for the 
measurement of fluid translational motion, is quintessentially 
noninvasive. 

Density and Velocity Distributions 
The crucial distributions that may be said to characterize 

fluid in a porous medium are the fluid density, p( r ) ,  and the 
local velocity o(r,t). If it were possible to gain complete in- 
formation about p(r)  and o(r , t )  over the entire domain of 
interest, then it could be said that both the morphology and 
hydrodynamics of the problem are completely known. On that 
basis we shall regard these two functions as fundamental to 
our theoretical framework. 

In that context it is important to draw a distinction be- 
tween Eulerian and Lagrangian formulations of u(r, t ) .  It is 
the custom in fluid mechanics to adopt an Eulerian viewpoint 
(Koch and Brady, 1987) in which functions such as o(r,t)  are 
space fixed rather than attached to a moving fluid element. 
In the latter case the relevant function would in fact be 
u(ro,r(t)), where ro is coordinate of the relevant fluid ele- 
ment at the time origin. NMR is rather remarkable in that 
the signal originates from the spins contained in parent 
molecules swept along in the flow and generally detected 
without reference to individual locations, thereby engender- 
ing a fundamentally Lagrangian framework for the measure- 
ment of fluid parameters. There is one context, however, in 
which an element of traditional Eulerian perspective is over- 
laid, and that is the case of spatial imaging by means of labo- 
ratory-fixed magnetic-field gradients. In NMR imaging the 
volume elements (voxels) are locked in the fixed framework 
of the gradient coils, even though parameters associated with 
that voxel (for example, the local fluid velocity) are measured 
in a Lagrangian sense. It is important that this mixed per- 
spective be appreciated. Indeed it is a consequence of this 
mixed perspective that the distinction between the Eulerian 
and Lagrangian character of the NMR measurement is quite 
subtle and image scale dependent when any spatial localiza- 
tion of the signal is implied. 

Vol. 43, No. 8 AIChE Journal 



Imaging of Density and Velocity 
The imaging of fluid density by NMR is performed by spa- 

tial Fourier encoding using magnetic-field gradient pulses as 
shown in Figure la. The signal acquired is given by 

which on Fourier inversion yields 

p (  r ) = jS( k ,O) exp [ - i 2 ~ k  - r ] dk. (6 )  

Imaging methodology is well established, and details can 
be found elsewhere (Callaghan, 1991). Figure 2 shows the spin 
density distribution, p(r) ,  image for the sphere pack. The 
resolution is (31.5 p m  X 31.5 p m  X 200 pm) per voxel (a vol- 
ume element of the image comprising in this case a pixel of 
dimension 31.5 pm X 31.5 p m  in a slice of thickness 200 pm). 

r.f. 
time 

dlcr 

G, n 

r e d  
I I I 1 

+ begin acquisition Gx 

signal - .. ... 
. .  

. .. .. . . 

Figure 2. NMR image (128 x 128 pixel) of the 'H 
spin-density distribution in the sphere pack. 
High-intensity regions correspond to the water occupying 
pores between the spheres. The field of view is 4.0 mm and 
the slice thickness 200 p m .  

Note the variation in packing across the sample, with a more 
ordered region near the tube wall, which results in variation 
in permeability across the sample. The measured spin density 
can be used in conjunction with a measurement on a pure- 
water reference to obtain the porosity (liquid volume frac- 
tion) of the sphere pack, 4 = 0.44. 

A typical pulse sequence used for the imaging of flow is 
shown in Figure lb. The signal acquired, S(k ,q) ,  is modu- 
lated in the space of two wave vectors, k = (27z)-'yGt, which 
is conjugate to spin position, and q =(27r-'ygG, which is 
conjugate to spin displacement over a fixed time A between 
the motion-encoding gradient pulses. In particular (Cal- 
laghan, 1991) 

tiiiir L A  - 
Y 

4itc  
G - - x exp[i2rq.(rf - r)]dr' dr, (7) 

where P&,O I r',A) represents the conditional probability that 
a spin residing at r at time 0 moves to r' at time t .  Equation phase 

F 
r I 7 can be rewritten Gv 

G.1- 
re:id 

I I I I S ( k , q )  = / /p(r)Ps(r,O I r + R , A ) e x p [ i 2 ~ k . r l  
begin acquisition 

X e x p [ i 2 ~ q - R 3  dRdr,  (8) 
_.. . . .  

t 
signal - 
Figure 1. (a) Gradient and RF pulse sequence used for whereby inverse Fourier transformation yields 

spin-echo Fourier imaging. 
The initial (soft) RF pulse excites a rectangular layer of spins 
normal to the slice gradient (G,) axis; TE is the spin-echo 
time that occurs after the slice excitation: (b) gradient and 
RF pulse sequence for dynamic NMR imaging; the imaging 
gradients are preceded by a PGSE pulse pair to phase en- 

p(r)Ps(r,O I r + R,A) = //S(k, q)exp [ i2ak .  r ]  

X exp [ - i2n-q- R] dq dk (9) 

code for motion. and 
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to be sufficiently short as to provide a “snapshot” of the ve- 
locity over a time interval much shorter than T ,  we may to all 
intents and purposes regard u(ro)  as Eulerian. Henceforth 
we drop the subscript and write this quantity simply as z(r) .  

Notice that a knowledge of the voxel-averaged propagator 
P,(r,O I r + R,A)  enables a calculation of the variance in R,  a 
parameter that is directly related to the voxel-averaged dis- 
persion coefficient. Thus the encoding method shown in Fig- 
ure lb  allows not only a map of voxel-level mean velocity to 
be computed but also a map of mean dispersion at that scale. 

Velocity images for flow in the sphere pack are shown in 
Figure 3. Figures 3a and 3b are mean-velocity maps for the 
tube velocities of 3.28 mm-s-’ and 6.55 mm-s-’, respec- 
tively (note the scale difference between the figures). In each 
case the spatial image resolution is (63.5-pm)’ pixel with 
1,000-pm slice thickness, corresponding to a voxel volume of 
(159 ~ m ) ~ .  The temporal resolution is A = 20 ms for a single 
displacement phase-encoding step and T - 60 min for the en- 
tire data acquisition. The velocity images indicate significant 
positional variation in the mean velocity averaged over these 
space-time scales. Notice that all the velocity images indicate 
regions of higher velocity near the tube walls where the more 
ordered packing, evidenced in Figure 2, is present. 

An intriguing feature is the difference in the spatial distri- 
butions for the two flow rates. The doubling of flow rate that 
occurs from Figures 3a to 3b appears to result in some spatial 
rearrangement of the regions of high and low velocity within 
the sample. Note that Mansfield and Issa (1996) have re- 
cently reported flow rearrangement at the same velocity for 
different initial conditions in rock using a rapid-velocity 
imaging technique, a phenomenon different to that observed 
here. Any interpretation of this apparent anomaly involves 
some subtlety in perspective. We emphasize again that the 
method of velocity measurement for each voxel is character- 
ized by the averages shown in Eqs. 12 and 13. In the present 
work the slice thickness (the largest dimension of the voxel) 
encompasses many bead diameters. Furthermore, over the 
encoding time A,  the fluid elements can move several pore 
spacings. Thus the nature of the temporal average is neither 
fine in the sense that a given starting voxel has a uniform 
fluid velocity, nor sufficiently coarse that the overall mean 
fluid velocity, (utUbe)/$, is observed. The issue of graining 
size is clearly a delicate point in such measurements and is 
intricately tied to the spatial rearrangement observed. Fur- 
ther study of this phenomenon represents an important ex- 
tension of this work. 

Figure 3c is the mean velocity map for the flow rate in 
Figure 3a, 3.28 mm-s-’, obtained with a spatial resolution of 
((95.2 pm)’ ~ 2 , 0 0 0  pm) per voxel and temporal resolution 
of A = 30 ms and T - 60 min. The coarse graining (Kubo et 
al., 1991) in space and time that results from the increase in 
averaging scales tends to smooth the mean velocity data. This 
facility with NMR measurements to precisely control the av- 
eraging scales of the measurement provides a powerful means 
of investigating concepts such as the representative elemen- 
tary volume (REV) (Bear, 1972; Quintard and Whitaker, 
1993). 

Quantitative velocity data taken from the images are shown 
in Figure 4. The average value of the velocities from the en- 
tire image data sets are given along the right ordinate. The 
coarse-grained image provides a mean velocity ( vNMR) = 7.44 

P&,O I r + R , A )  

j j S ( k , q )  exp [ - i27rk - r I exp [ - i27rq - Rl dq dk 
/S(k,O)exp[ -i27rk*rI dk (10) - - 

Thus we can reconstruct the propagator that describes the 
motion of molecules spatially localized at r by the k gradi- 
ent. Where a single q-encoding direction is employed, it is 
customary to designate the component of R along q as 

R - q  z=-, 
9 

(11) 

where g =  141. 
Inspection of P,(r,O I r + R,A)  enables us to calculate the 

mean displacement R ,  for that voxel and hence the voxel 
mean velocity 

(12) 

In interpreting 3(r )  three important points need to be appre- 
ciated. First, the position encoding defines the coordinate r 
corresponding to the center of any voxel. We shall assume for 
simplicity that this encoding occurs at some specific instant of 
time, to, and emphasize this in the present argument by 
rewriting the voxel center coordinate as ro while denoting 
the corresponding origin of any particular fluid element start- 
ing within the voxel by r6. We shall then be required to take 
an average over all such elements. Second, we note that as a 
consequence, i7(ro) is both a temporal and spatial average. 
Note the use of the bar to represent a temporal averaging 
over a limited time range in contrast to the definition of V 
given earlier. The duration of the averaging time is on the 
order of T ,  the time required for spatial encoded data acqui- 
sition (Li et al., 1994), that is, 

(13) 

where T is typically on the order of minutes and u(rb,r’(t)) is 
the Lagrangian velocity for fluid elements, starting within that 
voxel defined by the coordinate ro. Note that the spatial av- 
erage indicated by the ensemble sum ( . . . ) is over the voxel 
dimensions and has been presented in the weight function 
average formalism (Maneval et al., 1991; Quintard and 
Whitaker, 1993). Clearly, ro = ( r b ) .  

Third, because ro is frame-fixed, P,(r,,O I ro + R,A)  is Eu- 
lerian in that sense. However we emphasize again that the 
encoding via q occurs in the frame of each spin over the time 
A and that both R ,  and 3(ro) are determined by the history, 
over this period, of the Lagrangian function u[r,,r(t)]. For 
stationary (i.e., steady) flow, the Eulerian velocity associated 
with location ro is constant. In that case the time duration of 
the integral in Eq. 13 could be reduced to A, the motion 
encoding time. Should the motion be unsteady, then the tem- 
poral average in Eq. 13 should indeed be taken over the en- 
tire image acquisition time, T .  Thus, Eq. 13 as written allows 
for this more general case. In the sense that A may be taken 
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Figure 3. Grey-scale NMR images (64 x 64 pixels) and mesh plots of the spatial distribution of the mean velocity for 
tube velocities of (a) 3.28 mm-s-l and (b) 6.55 mm-s-l.  
Note the scale difference between the figures. In (a) and (b) the spatial image resolution is (63.5 pm)* per pixel with a 1.000-pm slice 
thickness. In (c) the same flow rate as in (a) (3.28 mm.s - ] )  is shown for a spatial resolution of (95.2 pm)' per pixel with a 2.000-pm slice 
thickness. 

mm-s - ' in exact agreement with the scaling of the intersti- 
tial velocity in the porous media to the seepage velocity and 
porosity, ( vNMR 1 = ( utube)/+. This indicates that in plane 
resolution of the order of the sphere diameter and slice 
thickness of 20 diameters provides data consistent with con- 
stant average-velocity scaling arguments. An important point 

.. 
0 0  . o  

o o o o P o o o o o o P o o  F O  

12.8 8 

7.44 0 1: c 5.33 
, , , , , , , , ;e, , , , , , ] 

0 

I -0.5 0 0.5 I 

r (mm) 
Figure 4. Quantitative radial velocity distributions ob- 

tained from a representative cross section of 
the image data of Figure 3. 
The data correspond to mean tube velocities of Figure 3a 
(0 )  3.78 mm-'; 3b (m)  6.55 mm.s-'; and 3c(O) 3.28 mm. 
\ -  I. The mean velocities determined from the entire image 
are shown on the right. 

is that multiplication of the higher-resolution data with the 
spin-density image will account for partial volume effects and 
close the mass balance. There are three regimes for spatially 
localized velocity images. Very-fine-resolution images, with 
few intravoxel boundaries and for which the local velocity is 
constant over the voxel, provide a measurement of the con- 
stant Eulerian-averaged velocity. Similarly, coarse-grained 
images, for which many pores are sampled, may also provide 
a constant Eulerian average. This coarse-graining character 
applies in the case of Figure 3c. It is in the intermediate 
regime, applicable in the data of Figures 3a and 3b, that great 
care in interpretation is required. In such circumstances the 
equivalence of Eqs. 12 and 13 may not hold and consequently 
anomalies may arise. 

By analyzing the spatial width of the propagator P&,O I r 
+ R,A) in each voxel, the variance in R can be computed, 
thus yielding an estimate of the voxel-averaged dispersion co- 
efficient. Images of the voxel-averaged dispersion coefficients 
are displayed in Figures 5a and 5b for the flow rates and 
imaging parameters of Figures 3a and 3b, respectively. It is 
clear that not only does the mean velocity exhibit structural 
heterogeneity, but the dispersion also exhibits spatial varia- 
tions associated with variations in the local Structure and 
mean fluid velocity. 

The spatial resolution available in NMR microscopy is, at 
best, around (20 and typically around (50 pmI3. It is 
important to emphasize that the local propagator P&,O I r + 
R,A) is consequently averaged over the voxel volume. Since 
localization comes at the price of increased averaging time, 
T ,  it is possible to reduce this duration down to the q-encod- 
ing time A, providing that spatial resolution is sacrificed. 
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Figure 5. Grey-scale NMR images (64 x 64 pixels) and mesh plots of the spatial distribution of the mean dispersion 
for tube velocities of (a) 3.28 mm-s-' and (b) 6.55 mmss-' (note the scale difference between the fig- 
ures); the spatial image resolution is (63.5 pm)' per pixel with a 1,000- pm slice thickness as in Figures 3a 
and 3b. 

PGSE NMR 
Mean displacement via signal phase/average propagator 
analysis 

Suppose that the spatial localization gradients are entirely 
omitted in a simple spin-echo experiment, as shown in Figure 
6. The removal of spatial localization gradients returns us to 
purely Lagrangian encoding, and in all that follows parame- 
ters are Lagrangian. The echo attenuation is 

By defining the average propagator (Karger and Heink, 1983) 
as 

one finds 

E(q,A) = /P(R,A)exp[i2aq.R] dR. (16) 

Clearly P( R,A) represents an ensemble average over all spa- 
tial regions detected in the NMR experiment. Note the La- 
grangian character of the propagator in which we follow the 

displacement history for the ensemble of individual fluid ele- 
ments rather than individual volume elements. 

The spatial resolution now depends on the sample size, for 
example, several (mm3). However, it is now possible to en- 
code for motion over a time A as short as 1 or 2 ms. Note 
that the averaged propagator can also be discussed in terms 
of the probability distribution for the averaged velocity (Gar- 
roway, 1974) 

P(R,A) = P ( V ) ,  (17) 

where V = A - '  (v[r,,r(t)]) dt, and the ensemble average 

is taken over all starting positions. Using the notation of Eq. 
15 we can write 

/6' 

Hence we sacrifice spatial resolution but obtain the probabil- 
ity distribution of velocity averaged over a shorter time scale, 
typically 10 ms to 100 ms. Furthermore, we shall customarily 
utilize only one direction of displacement encoding gradient, 
q, in any single experiment if we are to retain this temporal 
resolution. Consequently, the average propagator being mea- 
sured should strictly be written, P(Z,A) = P(E). 
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Figure 6. Gradient and RF pulse sequence for pulsed- 
gradient spin echo NMR. The gradient pulses 
have amplitude g, duration 6, and separation 
A. 
Note that the first gradient pluse produces a helical phase 
twist in the transverse magnetization, along the gradient di- 
rection. This is unwound by the combination of a phase-in- 
verting 180" RF pulse and a second gradient pulse. If 
molecules move along the gradient direction, the unwinding 
of  the corresponding spin isochromat is incomplete and a 
residual phase shift, 6, results. 

Averaged propagators for the flow in the sphere column 
are shown in Figures 7a-7c where the displacements, Z, are 
measured in the direction parallel to the mean flow. The spa- 
tial average is obtained over the tube cross section and the 
length of sample excited by the field of the radio frequency 
coil, [r ~ ( 0 . 9 5  mm)' x 5 mm]. The data were obtained using 
25 pulsed-gradient increments from 0 to 1.2 T-m-', with the 
exact maximum chosen for each velocity so as to avoid signal 
aliasing. We point out, contrary to published misconceptions 
(Kutsovsky et al., 1996) that this experiment provides data on 
both positive and negative displacements owing to the Fourier 
relationship (Eqs. 8 and 9) between the average propagator, 
a real quantity, and the spin-echo signal, which is complex 
due to quadrature signal detection (Callaghan, 1991). Figure 
7a displays the averaged propagators for a range of flow rates 
for A = 10 ms. The data display the expected increase in dis- 
placement with increasing flow rate. Note that the propaga- 
tor for no flow, ( u )  = 0, is centered about zero displacement 
with a full width at half maximum proportional to the diffu- 
sivity. The diffusive width sets a resolution limit on the dis- 
placement that may be detected. 

Kutsovsky et al. (1996) have recently reported the mea- 
surement of negative velocities for flow through sphere packs 
using this technique. For the flow studied here, no negative 
displacements are detected within the diffusion-limited ex- 
perimental resolution. Figures 7b and 7c are plots of the av- 
eraged propagators as a function of the displacement time A 
for seepage velocities of 3.28 and 6.55 mm.s-'. The propa- 
gator maxima shift to larger displacements as A increases. 
The distributions of the displacements for the two flow rates 
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Figure 7. Averaged propagators, or displacement prob- 

ability distributions, averaged over the entire 
sample. 
In (a) propagators for several different flow rates at a fixed 
pulsed-gradient separation time of A = 10 ms are shown. 
Propagators at two different tube velocities for a range of 
pulse-gradient separation times are shown in (b) 3.28 mm * 
s-', and (c) 6.55 mm.s - ' .  
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are quire similar. A pronounced peak persists at zero dis- 
placement, as was also reported by Barrall et al. (1994), indi- 
cating pronounced holdup effects due to molecules in regions 
of stagnation and the no-slip boundary condition at the sphere 
surfaces and tube wall. Several recent studies have dealt with 
detailed presentations of the average propagator over a range 
of times A using stimulated echo methods (Packer and 
Tessier, 1996; Lebon et al., 1996) as well as made comparison 
between the average propagator and spatially resolved veloc- 
ity image data (Kutsovsky et al., 1996; Waggoner and 
Fukushima, 1996) 

Displacement Fluctuations by Signal Modulus/ 
Correlation Function Analysis 
Fluctuations in velocity fiehi: dispersion 

In the preceding section it was shown that the phase of the 
echo contained information from which the averaged velocity 
v could be calculated. We now address the issue of how the 
amplitude of the echo can be used to obtain information about 
temporal fluctuations in velocity. In general, spatial and tem- 
poral correlation functions of the Eulerian function v(r, t’)  
for general unsteady flow may be written as (v(r,t)v(O,t)) 
and (v(r,t)v(r,O)>, respectively. For steady flow only the spa- 
tial fluctuation will be important for which the correlation 
function is simply (v(r)v(O>). However, when dealing with 
the fluctuating velocity distribution, in the Lagrangian sense 
of the PGSE NMR experiment, we are concerned only with 
the temporal Lagrangian correlation function averaged over 
all fluid elements. Furthermore, in dealing with this topic it is 
helpful to begin by using as a reference the ensemble-aver- 
aged mean velocity about which fluctuations may be said to 
occur. Again, allowing ( . . . ) to represent a stationary ensem- 
ble average (either spatial averaging over a dimension much 
larger than the REV or temporal averaging over the longest 
fluctuation), we can write, 

where u ( t )  is the fluctuation velocity component with zero 
ensemble average. We note that v(t) ,  vave, and u ( t )  are dis- 
tributed over the sample space and are therefore functions of 
time only. In a strict sense, therefore, they may be contrasted 
with the local quantities u, V ,  and u discussed in the context 
of Eq. 1. Nonetheless, in the present context we can use Eq. 
1 to define the averaged dispersion tensor in terms of corre- 
lations in u(t). 

We are concerned with the temporal correlation function 
(u(t)u(O)). From this ensemble average we can define the 
frequency-dependent dispersion tensor D( w )  as the Fourier 
spectrum of ( u ( t )  u(0)) (StepiJnik, 19811, namely- 

D ( w )  =km (u(t’)u(O))exp(iwt’) dt’. (20) 

Generally, we make measurements using a single direction of 
gradient (e.g., along the z-axis), so that we are able to mea- 
sure the component D,,<o). We term this scalar, the disper- 

sion. Note that correlations of order higher than second have 
been neglected and a Gaussian assumption imposed. 

The frequency-dependent dispersion tensor defined by Eq. 
20 will have a spectral distribution dependent upon the char- 
acteristic correlation time for velocity fluctuations, T ~ .  Using 
the symbol u ( t )  to represent the component of the velocity 
fluctuation along the gradient (z-axis), the correlation time is 
defined by the relation 

From this definition we derive the zero frequency amplitude 
of the dispersion coefficient, 

where T~ is defined as the correlation time. This definition is 
exactly the form of the asymptotic dispersion coefficient (Eq. 
1) from dispersion theory (Brenner, 1980; Brady, 1990; Van 
den Broeck, 1990). 

Low q regime - the dispersion coeflcient 

in amplitude and in phase by 
PGSE NMR measurement yields an echo modulated both 

We have seen in the previous section how the phase-modula- 
tion term, exp(i2rquaVe), can be used to extract information 
about the mean velocity. Here we focus our attention on the 
amplitude modulation, I E(q) l .  This variable can be ex- 
tracted from the echo data either by “autophasing”(i.e., phase 
correcting the echo) or taking a modulus of the signal. 

For the narrow pulse pair PGSE experiment shown in Fig- 
ure 6, the weak gradient decay of the echo-attenuation func- 
tion I E(q)  I may be written (StepiSnik, 1981; Callaghan and 
StepiSnik, 1996) 

where 

A m  
D* = - 1 D,,(w)sinc2(wA/2) do. 

T O  
(25) 

Note that Eq. 24 is exact in the case that the distribution of 
fluid-element displacements is Gaussian. In general, how- 
ever, the equation provides a working definition of the effec- 
tive dispersion coefficient, D*. This coefficient may depend 
on the observation time A in the case where A is comparable 
with or shorter than the correlation time T ~ .  By contrast, when 
A -+w, echo attenuation is sensitive to the zero frequency 
value of the dispersion spectrum and D* assumes the asymp- 
totic limiting value DJO). 
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The case of finite A may be handled analytically by assum- 
ing a simple expression for the correlation function (u(t)u(O)) 
such as the exponential, stationary Gaussian Markoff, form 

t 1 

This particular correlation function allows an exact analytic 
solution of Eq. 25 to yield 

The limits of this expression are 

1 
2 

D * = - ( u 2 > A  forAa7,  (28) 

= ( u 2 ) ~ ,  for A =4 TC. (29) 

The effective dispersion coefficient, D*, is thus obtained 
directly from the low-q limit of a plot of the spin-echo mod- 
ulus as a function of the pulsed-gradient parameters, the Ste- 
jskal-Tanner plot (Stejskal and Tanner, 1965). The low-q 
limit is defined by the condition 4w2q2D*A < 1. (In practice 
we restrict the exponent to less than or of order 0.3.) Ste- 
jskal-Tanner plots of representative echo-attenuation mea- 
surements at several flow rates, for the gradient oriented with 
the flow and a separation time A = 30 ms, are displayed in 
Figure 8. The increase in the slope, that is, dispersion, of the 
low-q limit linear decay regime with increasing flow rate is 
clearly evident. Note that deviation from the Gaussian, or 
linear decay with q2, behavior as q increases. We will return 
to this crucial aspect of the echo-attenuation behavior in due 
course. 

The ability to vary the displacement encoding time A pro- 
vides the means of determining the approach to asymptotic 

t 
-* c 
0.0 100 4.0 10' 8.0 10' 1.2 lo9 

4n2q2(A-6/3) 
Figure 8. Stejskal-Tanner plot of the natural log of the 

modulus of the echo-attenuation function, E ,  
as a function of the square of the wave vector. 
The data are for tube velocities of (0 )  0 mm.s-'; ( W )  0.546 
m m - s - ' :  (0) 1.09 mm-s-'; (0) 1.64 mm-s-'; and (0) 3.28 
mm 4 s - '. 
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Figure 9. Dispersion coefficient or effective diffusivity 

as a function of: (a) displacement 
(gradient-separation) time for tube velocities 
of (m) 0.546, (A) 1.09, (0) 3.28 and ( + I  6.55 
mm-s-'; (b) tube velocity for a single (0) and 
double (m) PGSE NMR experiment. 

behavior of the dispersion coefficient and probe preasymp- 
totic and anomalous time-dependent behavior (Koch and 
Brady, 1987; Brady, 1990). The time dependence of the dis- 
persion coefficient, D*, for four flow rates is shown in Figure 
9a. These data indicate that the dispersion for the flow in the 
packed spheres is asymptotic, that is, time-independent, for 
times on the order of 16 ms or greater. Barrall (1995) has 
presented analogous results using the propagator to calculate 
positional variance. At first sight, this is in apparent conflict 
with rigorous scaling relations found in the literature (Han et 
al., 1985; Plumb and Whitaker, 1990) such as, D,t/12 =4 0.3, 
which for our system gives t B 430 ms. However, it is impor- 
tant to note that the scaling arguments are derived for a so- 
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lute that is introduced into the system at time t = 0, while the 
NMR experiments characterize the underlying fluid flow field 
without the need for a solute marker. The data show that the 
solvent flow field reaches an asymptotic state more rapidly 
than the scaling deduced from considerations based on a 
solute, in part because of the well-developed velocity distri- 
bution after an entrance length of O(300dJ. PGSE NMR 
experiments that monitor both a solvent and a solute (Fischer 
et al., 1995) are a natural extension of the work presented 
here and will provide significant insight into the scaling ques- 
tions raised. 

An interesting feature of the limiting regimes A K rc and 
A >> r, is that both lead to dispersion in the flow and both 
lead to echo attenuation in the PGSE NMR experiment. In 
one limit the dispersion coefficient is time-scale-dependent 
(Eq. 28), whereas in the other it is independent of the obser- 
vation time, A (Eq. 29). An alternative test for the nature of 
the flow regime (Callaghan, 1991) is provided by the double 
PGSE sequence in which the sense of phase shift for dis- 
placements is opposite in the successive gradient pulse pairs. 
For the stationary flow field represented by the condition A 
“T,, the fluid element displacements will be identical for 
each pulse pair and the net phase spread across the ensem- 
ble following the second PGSE pair will be zero. For the 
regime A >> T~ the displacements will be entirely uncorre- 
lated and the variance in the phase spread will be doubled by 
the second pulse pair. In consequence a comparison of the 
echo attenuations for single and double PGSE pairs provides 
a powerful signature for temporal coherence. Comparison of 
the dispersion coefficient from double and single PGSE ex- 
periments using A = 10 ms (Figure 9b) show complete agree- 
ment, as the data analysis accounts for a factor of 2 due to 
the second pulse pair. If by contrast the limit A ex r, applied, 
the double PGSE data would have a dispersion value equiva- 
lent to the molecular diffusivity alone, orders of magnitude 
smaller than the single PGSE data. The data of Figure 9b 
indicate that A >> T,, in agreement with the results of the 
time-dependent measurements. 

Asymptotic dispersion coeficient, D*, in the limit A -+ x 

In the asymptotic regime A >> T,, D* is independent of ob- 
servation time A and well defined in a universal sense. The 
asymptotic dispersion coefficients obtained from the low-q 
limit of the NMR data for varying Peclet numbers are shown 
in Figures 10a-10c. Figure 10a presents the measured disper- 
sion normalized by the water molecular diffusivity for dis- 
placement encoding times of A = 10 ms and 30 ms. In agree- 
ment with the approach to the asymptotic limit exhibited in 
Figure 9a the preasymptotic dispersion data for A = 10 ms is 
of smaller magnitude than that in the asymptotic regime at 
A = 30 ms. The power-law scaling of the dispersion with the 
Peclet number, Pe”, from a linear least-squares fit to the data 
yields a value of a = 1.37 and a correlation coefficient, r 2  = 
0.984, for both sets of data. Salles et al. (1993) discuss the Pe 
scaling, indicating regimes where the primary mixing mode in 
the flow is purely diffusive, a = 2, purely mechanical, a = 1, 
or due to regions of low and high velocity, a - 1.2 (D*/D, a 
Pe In Pe). The mixing in the flow studied here is thus of a 
complex nature due to multiple effects. We note that the 
power-law scaling found is close to the value of (Y = 1.34 re- 

ported by Salles et al. (1993) for numerical simulations of 
reconstructed Fontainebleau sandstones with 4 = 0.3. 

Longitudinal and transverse PGSE NMR dispersion data 
are plotted in Figures 10b and lOc, respectively, along with 
dispersion data collected from the literature (Han et al., 1985; 
Plumb and Whitaker, 1990, Quintard and Whitaker, 1993). 
The experimental conditions under which the non-NMR data 
were obtained is summarized in Han et al. (1985). Good 
agreement between the NMR data and data reported in the 
literature is evident. An important distinction should be 
drawn between the NMR data and that from concentration 
measuring techniques. PGSE NMR directly measures the dis- 
placement (velocity) correlation, and hence dispersion, as op- 
posed to the indirect concentration-based methods that uti- 
lize solutions of the averaged advection-diffusion equation 
(Eq. 3) to calculate the dispersivity from the measured con- 
centration and mean velocity data (Han et al., 1985). Finally, 
we note the particular utility of NMR in the ability to observe 
both longitudinal and transverse dispersivity by simple choice 
of magnetic-field gradient orientation. 

Slow Temporal Correlations: Velocity Exchange 
(VEXSY) Spectroscopy 

The measurement of dispersion by the attenuation in the 
spin-echo amplitude provides a means of gaining insight re- 
garding fluctuations in the velocity over the time duration A 
between the gradient pulse pair. Let us now turn our atten- 
tion to the partially averaged velocity, V ,  and ask the ques- 
tion: Is it constant (and hence equal to ( 0 ) )  or do slow fluc- 
tuations remain on a time scale longer than A? As we dis- 
cussed before in the context of the dispersive motion, the 
question as to whether motion is constant with time may be 
neatly addressed by an experiment in which the gradient pulse 
pairs are applied twice in succession. 

We now examine a closely related NMR technique in which 
fluctuations in the mean velocity can be demonstrated in a 
very explicit manner. The relevant pulse sequence is shown 
in Figure 11. This experiment (Callaghan and Manz, 1994) is 
known as velocity-exchange spectroscopy (VEXSY) and re- 
turns a two-dimensional (2-D) spectrum in the space of two 
velocities ij and V’. This spectrum results from 2-D Fourier 
analysis of the signal with respect to the two independent 
displacement encodings. Given the ambiguities that can arise 
when the successive gradients have differing orientations it is 
customary to perform the experiment with a single gradient 
direction. Consequently we are concerned with the compo- 
nents of velocity, V ,  along that direction. 

While the phase encoding in one-dimensional PGSE NMR 
may be said to return the distribution P(E), VEXSY mea- 
sures conditional probability, P,(U l U’, t )  by the 2-D spectrum 

In effect it may be said that the VEXSY spectrum S,(E,E’) 
allows us to calculate a very coarse-grained correlation func- 
tion, 

August 1997 Vol. 43, No. 8 AIChE Journal 2106 



h 

\ QG * 
00 
0 

9 
e 

s i  
- A Hassinger & von Rosenberg 8 -  
~ G u m &  Pryce 

0 1 2 3 

A A  

I F 
0.1 

0.1 1 10 100 1000 I o4 

1 O6 

lo5 

1 o4 
1000 

100 

10 

1 

0 Pfannkuch . A  . 3 
0 Ebach & White 

o Edwards & Richardson 
o Blackwell et ul. 

A Carberry & Bretton A- 

v Rifai el  al. 
0 PGSENMR A=30ms 1 

Figure 10. (a) Log of the longitudinal dispersion coeffi- 
cient normalized by the molecular diffusivity 
of water as a function of the log of the Peclet 
number for gradient pulse separation times 
of (0) 10 and (0) 30 ms; (b) longitudinal 
dispersion coefficient measured by NMR vs. 
data from the literature; (c) transverse dis- 
persion coefficient obtained by NMR and 
data from the literature. 

Since, under directed flow, Z has nonzero mean we note that 
the VEXSY spectrum will be displaced away from zero veloc- 
ity and 

Once again we stress that P,(E I E', t) is an ensemble average 
for common fluid elements and is therefore Lagrangian in 
character. It is a conditional velocity propagator, whereas 
P,(r,O I r', t> was a conditional position propagator. However, 
it is also important to note that owing to the experimental 
limitations on the time t over which velocity changes can be 
observed using this method, the determination of PE(U I 3, t )  
in the VEXSY experiment is confined to a rather coarse time 
resolution scale, t, greater than a few milliseconds at least. 

AIChE Journal August 1997 

The utility of the experiment lies in our ability to test the 
stationarity of the mean velocity over this time scale. For ex- 
ample, if the velocity of each fluid element remains constant 
over the exchange time t, then the spectrum is confined en- 
tirely to the diagonal and PE(Zl iY,t)= S(E- E'). The exist- 
ence of off-diagonal features is thereby a signature for veloc- 
ity fluctuations over time t. Equally if the velokities are fluc- 
tuating over the exchange time, but the distribution is per- 
fectly stationary (i.e., its temporal fluctuations are asymp- 
totic), then the shape of the spectrum, including its off-diago- 
nal character, will not change as t is increased. Variations in 
spectral features indicate a nonstatic velocity distribution. 

Figures 12a-12d are the VEXSY images of the mean ve- 
locity probability correlation. The displacement time scale 
over which the velocity mean is taken is A = 1 ms. Figures 
12a-12c are for a seepage velocity of ( v )  = 8.73 mm-s-' and 
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Figure 11. RF and gradient-pulse sequence for VEXSY 
in which successive PGSE pulse pairs (9, 
and g2)  are applied separated by a delay 
time 7,. 

velocity exchange times of t ,  = 5.2 ms, 15.6 ms, and 52 ms. 
The images indicate that the shape of the spectrum does not 
change with t,, implying that the temporal fluctuations in 
the mean velocity, averaged over a time scale of A = 1 ms, 
are stationary over times greater than 5.2 ms. Figure 12d is 
for an exchange time of 4.8 ms at a velocity of 6.28 mmms-', 
and the spectrum is of the same shape as for the higher ve- 
locity. This behavior stands in dramatic contrast to the dis- 
persion data shown in Figure 9. The VEXSY experiment 
shows that fluctuations in the mean velocity reach asymptotic 
behavior at 5 ms, whereas the dispersion coefficient reaches 
its stationary asymptote at around 20 ms. This discrepancy 
suggests a distribution of time scales for the underlying dis- 
persion processes and, in particular, the subtly different man- 
ner in which fluctuations in the mean velocity and the intrin- 
sic dispersion are, respectively, influenced by that distribu- 
tion arising 

Figure 12. 

2108 

from both mechanical and Taylor- dispersion and 

Succession of 2-D VEXSY images for water 
flowing through the bed of latex sphers. 
T,,, corresponds to (a) 5.2 ms, (b) 15.6 ms, and (c) 52 ms for 
a seepage velocity of ( v )  = 8.73 m m . s - ' ,  and (d) is for an 
exchange time of 4.8 ms at a velocity of 6.28 mm.s- ' .  Note 
that the white lines indicate the zero displacement axes. 
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their associated macroscopic and molecular Brownian pro- 
cesses. 

PGSE NMR Spatial Coherence and Flow 
Diffraction 
Spatial correlation 

Our description thus far is restricted to temporal correla- 
tions. Spatial correlation functions can, in principle, be ob- 
tained by judicious use of gradients that encode for position. 
At the simplest possible level, one could take the spatially 
resolved mean flow image shown in Figure 3 and calculate 
the function (E(r)E(O)) directly with a resolution of one 
imaging voxel. Given that one has already obtained a com- 
plete velocity map iXr)  with that same resolution, it is clear 
that (Y(r)E(O)) provides no additional information. The more 
interesting question concerns the analog to the nonspatially 
resolved PGSE NMR experiment. In that example spatial 
resolution was traded in favor of temporal resolution. One of 
the basic assumptions involved in averaging over the entire 
sample is that the REV of the porous medium is much smaller 
than the sample dimension. In other words, while the sample 
may be locally microscopically heterogeneous, over the 
macroscopic scale it is homogeneous. Hence the averaging 
process, from which one gains a signal-to-noise advantage, is 
representative of the structure. 

A different type of experiment exists, in which spatial in- 
formation is encoded in a manner that takes account of just 
this type of macroscopic averaging. It involves the acquisition 
of a signal from the entire sample under the imposition of a 
magnetic-field gradient. The repetitive, but nonperiodic, mi- 
croscopic structure results in a diffraction pattern in k-space 
where phase incoherence prevents NMR image reconstruc- 
tion by direct Fourier inversion but, by Fourier inversion of 
the power spectrum, a spatial correlation function can be cal- 
culated (Barrall et al., 1992). Unfortunately this loss of phase 
information is fatal to the calculation of velocity by means of 
q-space encoding. Consequently, while the k-diffraction 
method may be suitable for the calculation of density correla- 
tions, it is not amenable to the calculation of (C(r )E(O) ) .  

PGSE NMR in the high-q regime: Flow dijgaction 
We now turn our attention to the PGSE NMR echo-at- 

tenuation experiment without the low-q restriction. We shall 
find that while this experiment is still sensitive to flow, it also 
yields unique information that is related to spatial correla- 
tions in the pore structure. 

Equation 16 shows that the PGSE NMR experiment di- 
rectly measures the Fourier spectrum of the displacement 
propagator P ( R , A ) .  In a porous medium P ( R , A )  will be 
characteristic both of the pore-space morphology and the 
flow-field characteristics, since the probability distribution of 
fluid element displacements will depend both on the exist- 
ence of available pore space and on the hydrodynamic trans- 
port. In the absence of flow, Brownian motion transports 
molecules from site to site, and as a result, produces coher- 
ence effects in the wave-vector-dependant echo attenuation. 
This experiment has come to be known as "diffusive diffrac- 
tion" (Callaghan et al., 1991; Callaghan, 1991; Callaghan et 
al., 1992). 
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The propagator resulting from diffusive transport of 
molecules within the pore structure is amenable to computa- 
tion once the shape of pore boundaries is known. For exam- 
ple, in an orientationally disordered pore glass with pores of 
size a and spacing b, a pore-hopping formalism yields 

sin (277qb) 
2 r q b  

x exp [ - ( 1 - exp( - 2772q25 2 )  

where I S J q )  I ' is the local pore factor; 5 is the pore spacing 
standard deviation; and Deff is the diffusion coefficient for 
migration between pores. Deff is measured in the low-q limit, 
long-range displacement region, and a coherence peak occurs 
at q = b- '  (Callaghan et al., 1991; Callaghan et al., 1992; Coy 
and Callaghan, 1994). This model is predicated on the pore- 
equilibration assumption that the time scale for diffusive 
sampling of the pore is small relative to that for diffusion 
between pores, a2,'D, << b2/Deff. 

Under conditions of flow the diffraction phenomenon is 
equally applicable (Seymour and Callaghan, 1996). Further- 
more, the distance scale over which structural features can be 
probed is no longer restricted to the range of Brownian dis- 
placements over time A,  but can be adjusted according to the 
flow rate. However, some subtle differences are apparent in 
flow diffraction, and these are nicely revealed in the experi- 
ments reported here. Whereas in diffusive diffraction the 
Brownian dynamics are everywhere similar except on the 
boundary layer, for flow the local hydrodynamics will strongly 
reflect the boundary conditions at all points in the pore space. 
For example, streamlines may be concentrated near a pore 
center, thus leading to greater probability of access but corre- 
spondingly shorter residency time. Thus the evolution times 
over which diffraction effects will be observed can be 
markedly different for differing regions of the pore structure. 

A second major difference between flow diffraction and 
diffusive diffraction concerns the role of symmetry. Away from 
the boundary layer there is no favored direction for local dis- 
placements under Brownian motion. Under flow the symme- 
try is broken. As a consequence we might expect that diffrac- 
tion effects observed when the scattering q-vector is aligned 
parallel to the flow will in general be different from those 
observed under transverse scattering. 

The flow-diffraction phenomenon is clearly apparent in the 
echo-attenuation data for the sphere pack provided that the 
magnitude of q is no longer restricted to the range 
4r2q2D*A << 1. In the experiments reported here the effect 
of the mean flow is to produce a phase shift exp(i2rquaVe), 
while the dispersion results in a modulation in the echo am- 
plitude. It is this latter term that contains all information 
about diffraction, and consequently we remove the phase shift 
and plot the magnitude of the echo amplitude, as in the pre- 
vious analysis of dispersion under low-q conditions. 

The deviation from Gaussian behavior seen in Figure 8 
takes the form of coherences arising from diffraction effects. 
Figures 13a and 13b display echo attenuation for the longitu- 
dinal and transverse directions to the flow as a function of 
the reciprocal wave vector to displacement q. A prominent 
feature is the occurrence of the coherence peak in the trans- 
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Figure 13. (a) Natural log of the modulus of the 
echo-attenuation function, E ,  as a function of 
wave vector for the gradient oriented in the 
longitudinal direction and A = 30 ms. 
The data are for tube velocities of (0) 0 mm.s-' ,  ( m )  0.546 
m m - s - ' ,  (v) 1.09 mmas-' ,  (A) 1.64 m m . s - ' ,  (0 )  2.73 
mm.s- ' ,  (+) 3.28 mm.s- ' ,  ( A )  4.37 m m . s - ' ,  (0) 5.46 
mmes- ' ,  and (0) 8.73 m m - s - I .  (b) As in (a) for the gradi- 
ent oriented in the direction transverse to the flow with 
A = 10 ms, at tube velocities of (m)  0 mm.s - ' ,  (0) 3.28 
mm.s-', (e18.73 mm.s-', (0) 17.5 m m - s - ' ,  and (0)21.8 
mm . s - I .  

verse direction (Figure 13b) at a displacement 'reduced by 
nearly half relative to the displacement distance for the lon- 
gitudinal coherence peak. This indicates the symmetry im- 
posed by the flow and that it is the variation in the hydrody- 
namics that is probed by the flow diffraction effect, as op- 
posed to only the media structure that is probed by the diffu- 
sive experiment (Callaghan et al., 1991, 1992; Coy and 
Callaghan, 1994) in which Brownian motion causes pore sam- 
pling. The coherence peak due to displacement correlation of 
nuclei manifests itself as velocity is increased. Increasing ve- 
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locity results in an increased length scale in the sampling of 
the pore spaces displaced from the starting pore. It is there- 
fore equivalent to increasing the observation time, A ,  in an 
experiment without flow where only Brownian diffusion is 
available in the sampling of the pore spacing structure. 

Figures 13a and 13b provide a visualization of the transi- 
tion from Gaussian to non-Gaussian, and in a sense the local 
to nonlocal (Koch and Brady, 1987), dispersion behavior as 
the displacement scale decreases ( q  increases). The coher- 
ence peak indicates that the displacement of fluid particles is 
correlated over a displacement length scale of 83 pm, a value 
slightly reduced from the sphere diameter. Hence the veloc- 
ity fluctuations may no longer be treated as Gaussian, and 
velocity fluctuation correlations of higher than second order 
must be retained in Eq. 20 and all subsequent developments. 
The direct relation between the flow-diffraction coherence 
phenomena and the nonlocal dispersion coefficient (Ding and 
Candela, 1996) is not transparent, as was the connection be- 
tween the low-q PGSE NMR experiment and the dispersion 
coefficient in the asymptotic regime, since the nonlocal dis- 
persion coefficient is expressed solely in terms of the 
second-order velocity-fluctuation correlation dependent on 
displacement and time step (Koch and Brady, 1987). Further 
investigation of these issues, potentially in the context of 
scattering theory (Frisch, 1968; Koch and Brady, 1987; Koch 
and Shaqfeh, 1992), which underlies the nonlocal develop- 
ment, should lead to further insight into both the NMR flow 
diffraction effect and nonlocal dispersion theory. 

Conclusions 
In this article we have illustrated how NMR experiments 

based on magnetic-field gradients can be used to study flow 
and dispersion in porous media in both the temporal and 
spatial domains. Because of the inherent insensitivity of 
NMR, it is necessary to employ a variety of approaches, each 
of which optimizes the parameters of interest, often by trad- 
ing resolution in other physical variables. The dynamical ba- 
sis of the various NMR methodologies has been presented in 
the context of well-established dispersion theory. It is clear 
from the results here that data obtained via the different ex- 
perimental approaches can provide complementary informa- 
tion on transport phenomena at different spatial and tempo- 
ral scales. 

The choice of a packed bed of monodisperse spheres in 
which the size of the REV is close to the resolution limit of 
NMR imaging, helps to emphasize the importance of these 
complementary approaches. This limit, of around (100-1,000 
pm)3 implies the need for such generalized analysis in the 
case of most porous materials of practical interest. NMR ve- 
locity imaging has been shown to provide mean velocity and 
dispersion data over spatial scales on the order of the sphere 
diameter, but requires time averaging over the spatial encod- 
ing time. The data obtained are effectively Eulerian due to 
the long time average and spatial localization. By contrast, 
PGSE NMR without spatial encoding provides both mean ve- 
locity data via the phase shift in the signal, and mean disper- 
sion information from the attenuation of the signal modulus, 
and over an averaging time that can be shorter by two orders 
of magnitude. This experiment, which is Lagrangian in per- 
spective, involves an averaging over the entire sample dimen- 
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sions, encompassing many REVS, and hence accessing di- 
rectly the spatial ensemble average. The PGSE NMR method 
has been used to directly measure the asymptotic dispersion 
of theory, as well as the time- and spatial-depend- 
ence of the approach to asymptotic regimes. In this context 
the use of double PGSE pulse pairs and the methods of ex- 
change spectroscopy can provide useful insight regarding sta- 
tionarity and time dependence. 

A remarkable aspect of the PGSE NMR method is the in- 
herent coherence that leads to a formal analogy with scatter- 
ing experiments. This coherence allows the experimenter to 
probe spatial and velocity correlations by a “scattering wave 
vector,” thus gaining access to higher-order correlations, mo- 
ments that are generally neglected in conventional dispersion 
theory based on limiting Gaussian behavior. We believe that 
the scattering approach has great potential in the study of 
complex flow properties involving the interplay between hy- 
drodynamic and structural characteristics of the porous 
medium. Finally, we note that the techniques presented here 
are applicable to a wide class of media, including those that 
exhibit fractal scaling, thus providing a means for investiga- 
tion of phenomena such as anomalous dispersion (Brady, 
1990) in these more complex media. 
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