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Abstract

Heat treatment during storage is effective in delaying the ripening of fruit. In this study,
an optimal pattern of the heat treatment for tomatoes was investigated based on their surface
color, using an intelligent control technique consisting of neural networks and genetic
algorithms. An objective function was given by the reciprocal number of the average value
of the color change from green to red. For optimization, the control process was divided into
l-steps. First, the time-history change in the surface color, as affected by temperature, was
identified using neural networks. Then, l-step setpoints of temperature which maximized the
objective function were sought through simulation of the identified neural-network model,
using genetic algorithms. This technique allowed an optimal heat treatment to be successfully
sought when the diversity of the population was kept at a high level in the evolution process.
Two types of optimal heat treatments were obtained. One was the single application of heat,
which is similar to the conventional type, and the other was intermittent application, given
periodically. Finally, the two optimal treatments were applied to an actual system. The result
showed that they gave better results on ripening than continuous cooling. Thus, this control
technique seems to be suitable for optimization of the storage process for fruits and
vegetables. © 1997 Elsevier Science B.V.
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1. Introduction

In recent years, there has been much interest in heat treatment for improving the
fruit quality during the storage process (Klein and Lurie, 1990). Some researchers
have reported that heat treatment during the storage process seems to be able to
inhibit ethylene production, lycopene synthesis, and chlorophyll. All of these
factors influence the ripening process of tomatoes (Biggs et al., 1988; Lurie and
Klein, 1991, 1992; McDonald and McCollum, 1996). It is also reported that heat
treatment can maintain better firmness of apples (Tu and De Baerdemaeker, 1996).
The heat treatment can be done in the short term (up to 60 min in water) at 45 to
60°C and long term (12 h–4 days in air) at 38 to 46°C (Lurie and Klein, 1992).
Also, Biggs et al. (1988) have demonstrated that heat treatments above 35°C are
effective to inhibit chilling injury and ripening. These reports show the possibility to
improve the quality of fruit if an optimal heat treatment can be found. In general,
however, it is very difficult to find an optimal heat treatment because the mecha-
nism is quite complex and uncertain.

In order to realize the optimization of the storage process, the monitoring of
physiological responses of fruit, which are known as ‘fruit responses’, and its
effective uses for control are essential because the physiological status varies with
time. This concept is called SFA (speaking fruit approach) (De Baerdemaeker and
Hashimoto, 1994; Hashimoto et al., 1995). Nowadays, studies on SFA have become
a center of attraction in post-harvest technology. In this study, an optimal heat
treatment is determined based on the concept of SFA.

Intelligent approaches such as neural networks and genetic algorithms make the
treatment of complex systems easier. Neural networks have the capability of
identifying complex nonlinear systems with their own high learning ability (Chen et
al., 1990; Hunt et al., 1992). On the other hand, genetic algorithms are effective for
finding an optimal value in the complex optimization problem by simulating the
biological evolutionary process, based on crossover and mutation in genetics. An
optimal value can be searched for in parallel with a multi-point search procedure,
not a single point procedure (Goldberg, 1989; Holland, 1992). A SFA-based
intelligent control technique consisting of neural networks and genetic algorithms
has been developed for the optimization of complex control processes in plant and
fruit factories (Morimoto et al., 1995a,b, 1996). In this technique, the neural
network is used for the identification of fruit responses, as affected by environmen-
tal factors, and the genetic algorithm for the search for an optimal value through
simulation of the identified neural-network model.

The aim of this study is to find an optimal heat treatment for delaying the
ripening of fruit using a SFA-based intelligent control technique consisting of
neural network and genetic algorithms. The control input is temperature and the
control output is the change of the color representing the ripening of fruit.
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2. Optimization problem

2.1. Fruit materials

The fruit used for the experiment is tomato (Lycopersicon esculentum Mill. cv.
Momotaro) which is known as a healthy fruit and is suited for fruit production in
plant factories. Mature green tomatoes of uniform size (about 8 cm in diameter)
and color were stored in a storage chamber (Tabai-espec, LHU-112M), where the
temperature and relative humidity are controlled with the accuracy of 90.1°C and
92%, respectively. Five tomatoes were used for each experiment.

The ripening of tomato was estimated from the surface color. The color change
was measured using a colorimeter (Minolta, CR-200b). Here, a hue angle in the
L.C.H. method was used for evaluating the color of tomato, which is defined as
red=0°, yellow=90°, green=180°, and blue=270° (Thai et al., 1990; Thai and
Shewfelt, 1991). In this case, though the change in the hue angle from green (180°)
to red (0°) is usually given as a decreasing response, we treated it as an increasing
response by reversing the response and also taking 0° as an initial value, which is
called a ‘color change’, for easier treatment of the color.

2.2. Objecti6e function and optimization problem

Heat treatment for fruit during storage is useful to delay the ripening. However,
since the relationship between the heat treatment and the physiological mechanism
of fruit is quite complex and uncertain, the optimal pattern has been not obtained
yet. It should be systematically determined based on fruit responses such as the
color change of fruit.

Let CT(k) (k=1, 2, …, N) be time series of the color change, as affected by
temperature T(k), at the time k, which is characterized by a cumulative response.
As a measure of delay in the ripening process of tomato, an objective function,
F(T), was given by the reciprocal number of the function P(T), derived from the
sum of the last four values, {CT (N-3), CT (N-2), CT (N-1), CT (N)}, in the
cumulative response of the color change.

P(T)=a · %
N

k=N−3

CT(k)+b · %
N

k=N−3

{CT(k)−CT(k−1)} (1)

F(T)=1/P(T) (2)

P(T) consists of two evaluation factors: the amplitude of color change and its
change rate. In this study, not only the amplitude of the color change but also the
change rate were used for evaluating the ripening process. This is because smaller
change rate means more constant value, and the combination of these two
evaluation factors is effective to search for an optimal response quickly from among
numerous responses, which include many undesirable responses, generated through
simulation. The reason of making it a reciprocal number is due to the transforma-
tion from minimization to maximization problems to fit the behavior of fitness for
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evolution in the genetic algorithm application. It is also noted that only the last
four values in the cumulative response are used for the objective function because
the ripening of fruit is often evaluated based on the value at the last day.

For control, furthermore, the control process was divided into eight steps because
the control period was 8 days. The optimization problem in this study is to
determine the eight-step setpoints of temperature which maximize the objective
function. The constraint of temperature was determined to be 55T(k)535°C
through preliminary experiments on heat treatment (Biggs et al., 1988).

3. SFA-based intelligent control technique

3.1. A method for obtaining an optimal heat treatment

The physiological status of the fruit vary with time. How is fruit responses
utilized for determining an optimal heat treatment? Fig. 1 shows the schematic
diagram of a SFA-based intelligent control technique combined with neural net-
works and genetic algorithms, by which an optimal heat treatment is systematically
determined based on fruit responses. In this technique, the neural network is first
used for identifying and modeling the color change, as affected by temperature, and
then the genetic algorithm is used for searching for the eight-step setpoints of
temperature (optimal heat treatment) which maximize the objective function
through simulation of the identified neural-network model. Furthermore, the

Fig. 1. Block diagram of a SFA-based intelligent control technique consisting of neural networks and
genetic algorithms.
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Fig. 2. Schematic diagram of the structure of a three-layer neural network used for identification of
cumulative responses such as the color change of fruit.

optimal eight-step setpoints are sequentially applied to the setpoint in the feedback
control system. It will be shown that if these two procedures, identification and the
search for an optimal value, are periodically repeated in order to adapt the
time-variation of the storage system, two types of control performances, optimiza-
tion and adaptation, can be satisfied.

3.2. Neural network for identifying color change

The ability of identifying complex nonlinear systems is the most important
feature of the neural network. Until now, a mathematical model for predicting the
effect of time and temperature on the color change of tomato has been employed
(Shewfelt et al., 1988). It is a deterministic model based on an exponential equation.
Here, the neural network is used for identifying the time-history change in the color
change as affected by temperature. Fig. 2 shows the structure of a three-layer neural
network used for identification. Cybenko (1989) showed that a three-layer neural
network with one hidden layer allowed any continuous function to be successfully
identified. From our experiments also, similar results were obtained (Morimoto et
al., 1991). It is also noted that the reason we use historical input and output data
is to describe the dynamic characteristics of the system. On the other hand, by
adding a linear data {d(k)=1, 2, …, N} to the input of the neural network as
shown in the figure, the identification accuracy for any cumulative responses was
significantly improved (Morimoto et al., 1995b). Therefore, the (n+1)th time series
of input (temperature) as stated as {T(k), T(k-1), …, T(k-n)}, a linear data {d(k)},
and nth past time series of the output (color change) as stated as {CT(k-1), …,
CT(k-n) were applied to the input layer and the current value of the color change,
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CT(k), was used as reference value (k : sampling time, n : number of system
parameter). The system parameter number (n) and the neuron number in hidden
layer were determined through trial and error. The learning (training) method for
neural computation was error back-propagation (Rumelhart et al., 1986; Hint,
1992).

3.3. Genetic algorithm for searching for an optimal 6alue

Genetic algorithms search for an optimal value in parallel with multi-point search
procedure by simulating the biological evolutionary process, based on crossover
and mutation in genetics (Holland, 1992; Goldberg, 1989; Krishnakumar and
Goldberg, 1992). The search space in an actual (complex) problem is usually
enormous and the objective function has many peaks. The multi-point search
procedure in the genetic algorithm focuses its attention on the most promising parts
of the solution space and, consequently, a global, near optimal value can be rapidly
and efficiently sought from very large search space. The genetic algorithm needs
only the objective function to guide its search. There is no requirement for
mathematical equation or any priori knowledge (Holland, 1992). Here, it is used for
finding an optimal heat treatment.

3.3.1. Definition and coding of an indi6idual
In order to use the genetic algorithm, we have to define an individual, which

means a decision variable to be determined. Since the control process consists of
eight-steps, an individual was defined as eight-step setpoints of temperature {t1,
t2,…, t8} and they were all coded as a 6 bit binary strings as follows:

Individual i= t1i, t21, … t1i=100100 001001 … 101010

The constraint of temperature was 55T(k)535°C while temperatures of 05
T(k)563°C are obtained from the 6-bit binary string.

3.3.2. Flow chart of a genetic algorithm
Fig. 3 shows the procedure for obtaining an optimal value using a genetic

algorithm. Step 1: the initial population consisting of Ni (=6) types of individuals
is generated at random. Step 2: No (=50) types of individuals are added to the
original population from another population which is completely independent on
the original one. Step 3: crossover and mutation operators are applied to those
individuals. Through the crossover, Nc sorts of individuals are newly created
according to the crossover rate Pc and furthermore Nm sorts of individuals are
newly generated according to the mutation rate Pm. From these operations,
N (=Ni+No+Nc+Nm) types of individual are obtained. Step 4: The fitness of all
individuals is calculated using the identified neural-network model. Step 5: Nr

(=200) individuals with higher fitness are selected and retained for next generation.
An optimal value can be obtained by repeating these procedures.
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3.3.3. Operations of crosso6er and mutation
The crossover operation is a single crossover. Two individuals (000011 and

1011 1 1) are first mated at random. Next, these binary strings are cut at the 3-bit
position along the strings and then two new individuals (0001 1 1 and 101011) are
generated by swapping all binary characters from the 1-bit to 3-bit position. In this
study, two types of crossovers consisting of one step and two steps were imple-
mented. The former is the mating of individuals within the original population and
the latter is the combination of both mating of the former type and the mating of
individuals in the original and another population. On the other hand, mutation is

Fig. 3. Flow chart of the genetic algorithm used for searching for an optimal value. The fitness (objective
function) of all individuals is calculated using an identified neural-network model.



T. Morimoto et al. / Computers and Electronics in Agriculture 19 (1997) 87–10194

Fig. 4. Observed cumulative responses of the color change of tomatoes as affected by temperature.
Larger value of the color change means redder.

a two point operation. One individual (e.g. 101111) is first selected at random, and
then a new individual (001011) is created by inverting two characters (genes),
selected at random, from 0 to 1 or 1 to 0.

4. Results and discussion

4.1. Actual responses of the color change

The first step is to obtain the actual data for identification. Fig. 4 shows eight
types of cumulative responses of the color change of tomatoes under different
temperature conditions during storage, in which responses to heat treatment are
also included. In all cases, initial temperatures were 10°C. Treatments 1 and 2 are
cases of heat treatment in which the tomatoes were heated at 35°C during the first
1 day and 2 days, respectively, and then cooled to 5°C during the latter stages in
both cases. Treatments 4, 7 and 8 are the cases of {T(k)=5, 5, 25, 25, 25, 5, 5,
5°C}, {T(k)=5, 5, 5, 15, 15, 15, 35, 35°C} and {T(k)=5, 5, 15, 5, 23, 5, 24, 24°C},
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respectively. Treatments 3, 5 and 6 are cases of constant temperatures 5, 15 and
25°C, respectively. These patterns of temperature were arbitrarily determined so
that the time history of the input provides adequate change for better identification.

The amplitude of the color change generally increased with temperature. Com-
paring color changes in treatments 1 and 3, however, it can be seen that the
amplitude under the heat treatment is smaller than that under the continuous
cooling treatment during the last 4 days. Therefore, treatment 1 was better than
treatments 2 and 3. Thus, it is clear, in the same figure, that treatment 6 provides
the greatest deceleration in color change of all the treatments, whereas treatment 3
(like treatment 1) does not require a large deceleration in order to reduce the color
change to a low rate. The significance of the comparison is in relation to the
justification in the second term in the objective function P(T) in Section 2.2.

4.2. Identification and modeling of the color change

Next, the color responses, as affected by temperature, shown in Fig. 4, were
identified using a neural network. Purwanto et al. (1996) investigated how many
data sets are necessary in identifying the cumulative response such as a color
change under the use of neural networks. They found that three or more data sets
are necessary for acceptable identification. In this case, however, six data sets
(treatments 1, 2, 3, 5, 6 and 7) were used for identification (modeling) and two data
sets (treatments 4 and 8) for evaluation of the model among the eight data sets.
This method of evaluation is known as cross validation.

As for the number of system parameter n, the smallest number, n=1, was
selected because the data number (N=8) in each cumulative response is small for
identification. On the other hand, the hidden neuron number of the neural network
was determined through trial and error. Fig. 5 shows the relationship between the
hidden neuron number and the estimated error in the identification of the testing
data sets. It is found that the estimated errors for three or more neuron number are
small, and 4 hidden neurons gave a minimum error. Through these considerations,
the numbers of the system parameter and the hidden neurons were determined to
be 1 and 4, respectively.

Fig. 6 shows one of the comparisons of the estimated response, calculated from
a neural-network model, and the observed response of the color change of
tomatoes. A testing data set (treatment 4), which is quite different from the training
data sets, was used for this comparison. The system parameter number and the
hidden neuron numbers were 1 and 4, respectively. It can be seen that the estimated
response shows reasonable agreement with the observed response. This means that
we could obtain a computational model for calculating the objective function
(fitness), as affected by any combination of eight-step setpoints of temperature.

4.3. Search of an optimal heat treatment using genetic algorithms

Next, the optimal eight-step setpoints of the temperature (optimal heat treat-
ment) were searched for through simulation of the identified model using the
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Fig. 5. Relationship between the neuron number in the hidden layer and the estimated error of the color
change.

genetic algorithm. Fig. 7 shows evolution curves in searching for an optimal value.
The searching performance usually depends on the diversity of the population.
Treatment 3 (�) represents the case when the crossover was carried out based on
the individuals within the original population; treatment 2 (�) the case when
several (50) individuals in another, completely independent population were added
to the original population, and treatment 1 (�) the case when several (50)

Fig. 6. Comparison of the estimated response and the observed response of the color change of the
tomatoes.
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Fig. 7. Evolution curves in searching for an optimal value under different search procedures of the
genetic algorithm.

individuals in the other population were added to the original population and,
moreover, the crossover took two steps. The mutations in all cases were carried out
within the original population. The crossover rate and the mutation rate were 0.8
and 0.6, and the two weights, a and b, in the objective function were 1.0 and 1.0,
respectively. The selection technique was based on an elitist strategy which retains
an individual with maximum fitness for the next generation in each generation.

From the curve in the treatment 1, the fitness (the value of objective function)
dramatically increased with generation number and then reached the maximum
value. The searching procedure is usually stopped when the fitness continues to
keep the same maximum value with increased generation number, and an optimal
value can be given by an individual with this maximum fitness. So, an optimal value
was obtained at the 15th generation in the case of treatment 1. In the case of
treatment 3, on the other hand, the fitness could not reach a maximum value. This
means that the search for an optimal value fell into a local optimum.

The elitist strategy used in this study is known as an effective way for improving
the fitness of individuals because an individual with maximum fitness is compulso-
rily remained for next generation. However, its searching performance can easily
fall into a local optimum because only the superior individuals with higher fitness
are picked in each generation. In this case, however, a global optimal value could
be successfully obtained by increasing the diversity of the original population by
adding quite different individuals from another population.

It is noted that there is no guarantee to yield a global optimal solution in the
search by genetic algorithms. It is, therefore, important to confirm whether an
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optimal value determined by the genetic algorithm is global or local. In this paper,
the confirmation was carried out using a round-robin algorithm which examines all
possible solutions around the near optimal solution (from Topt−5 to Topt+5)
obtained by the genetic algorithm at the proper steps of temperature. Through
these procedures, a global optimal value could be obtained.

4.4. Optimal heat treatment and the control performances

Fig. 8 shows two types of optimal heat treatments and cooling treatment and the
corresponding control performances of the color change, obtained from simulation.
The optimal eight-step setpoints of the temperature (optimal heat treatment)
depended on the initial condition of the fruit and two weights, a and b, in the
objective function. Consequently, two types of optimal heat treatments shown in
this figure were obtained through simulation. One is the single application of the
heat like a T(k)={35, 5, 5, 5, 5, 5, 5, 5°C} which is the same as a conventional type
(…) and the other is an intermittent application like a T(k)={35, 5, 35, 5, 35, 5,
35, 5°C} (——). It can be seen that the color change is smaller in the two optimal
heat treatments than in the cold treatment. Comparing responses in the two optimal

Fig. 8. Two types of optimal heat treatments and cooling treatment and the corresponding control
performances of the color change, obtained from simulation.
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Fig. 9. Actual control performaces of the color change as affected by two types of optimal heat
treatments and cooling treatment which are the same as the inputs in Fig. 8.

heat treatments, furthermore, the color change in the intermittent application is
slightly smaller than that in the single application. This simulation suggests that
several applications of the heat may be more effective than a single application.

Finally, the two types of optimal heat treatment were applied to a real system
using the storage chamber explained in Section 2.1. Fig. 9 shows the control
performances of the color change. The control inputs are the same as those in Fig.
8. The bold and solid line is the case of the intermittent heat treatment, the dotted
line the case of the single heat treatment and the solid line the case of the cold
treatment (5°C). It is clear that the color changes under the two optimal heat
treatments are smaller than that under the cold treatment. However, there was no
significant difference in the color change between the two optimal heat treatments.

5. Conclusions

In this study, the optimal pattern of heat treatment was investigated using a
SFA-based intelligent control technique consisting of neural networks and genetic
algorithms. A three-layer neural network was effective for identifying the cumula-
tive responses in the color change, as affected by temperature, including heat
treatment. The genetic algorithm allowed the optimal setpoints to be successfully
searched for through simulation of the identified neural-network model. In this
case, by adding several individuals from another population, the searching perfor-
mance was significantly improved. Two types of optimal heat treatments, a single
type (conventional type) and a multiple type, were obtained. Both were effective for
delaying the ripening of tomatoes in the actual system. These results suggest that
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the optimal pattern of the heat treatment may be not constant but changeable with
time, place and the physiological status of the fruit. Our control technique allows
such time-varying characteristics to be successfully treated by repeating two proce-
dures: identification of fruit responses at the present time and the search for an
optimal value through simulation of the identified model. Thus, an intelligent
control technique consisting of neural networks and genetic algorithms seems to be
suitable for the optimization of such complex systems as fruit-storage systems. For
further steps of this study, we plan to apply this technique to optimization of a
multi-input (temperature, humidity, etc.) multi-output (color, water loss and firm-
ness) system, aiming at more effective improvement of fruit quality.
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