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Abstract--Spatial averaging of the equations describing two single-phase media is separately considered in this 
paper regarding the volumes occupied by either phase with allowance for the boundary conditions on phase 
interfaces. The equations obtained are specialized to describe monodispersed mixtures within a "cellular" 
scheme. It is shown that it is necessary to consider the average values both over the whole cells and over those 
intersected by the boundary of a selected mixture volume. 

The problem of motion in the cell is formulated. Fictitious parameters are introduced at "infinity" for the 
carrier phase to solve the problem. These parameters do not coincide with the average values for this phase. A 
closed system of equations is derived for two extreme cases: an ideal incompressible carrier fluid and an 
extremely viscous incompressible carrier fluid. These are correlative with the inertial and viscous motions in 
the cell. 

Various effects are discussed in this paper. These include the radial motion of bubbles, the oriented rotation 
of dispersed particles (the symmetry and asymmetry of stress tensor), viscosity, phase transitions and the finite 
volume content of dispersed particles. Some aspects of earlier studies are critically analyzed. 

The equations of continuum mechanics are averaged equations. It is possible to obtain them by 
successively averaging more elementary equations that describe the processes on a 

microscale. 
The relation between the phenomenological method and the averaging method considered 

here is similar to the well-known one between continuum mechanics and statistical mechanics. 

In contrast to the pure phenomenological approach, in the averaging of microequations for 

macroparameters such as macrostress tensor in phases and the values that define t he  inter- 

actions between the phases, expressions are obtained that permit a clearer idea about their 

structure and potential ways of their theoretical and experimental definition. 

The fundamental problem in the mathematical simulation of multiphase mixtures consists of 

the derivation of a closed system of equations describing the motion of mixture for the given 

physiochemical properties of each phase individually and for the given initial structure of 

mixture. Without the use of the additional empirical relationships and coefficients this problem 

can have a sufficiently accurate and substantial (for example, by averaging more elementary 

equations) solution only for very particular classes of heterogeneous media and processes. 
Nevertheless, these cases are of great methodical significance, because the equations that 

correspond to these cases can be regarded as ultimate ones or standards that give the "base 

points" for less accurate simulation of complex real mixtures by using the auciliary hypotheses 

and empirical or phenomenological relationships. Two such ultimate cases are considered in 

sections 11 and 12. 
In heterogeneous systems unlike homogeneous and colloid ones, the dimensions of nonuni- 

formities and impurities are far greater than the intermolecular distances. Therefore, the 

parameters and equations that describe micromotions, henceforth referred to as micro- 
parameters and microequations, are the well known parameters and equations of the motion of 
several (depending on a number of phases) single-phase continua. Below, to simplify the 
discussion, the case of a two-phase mixture is considered. 
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1. THE EQUATIONS DESCRIBING MICROMOTION AND MICROPROCESSES 

WITHIN THE PHASES AND AT THE PHASE INTERFACES 

Keeping in mind the abovementioned, we shall assume that in the points occupied by the ith 
phase, i.e. within a volume Vi, the following microequations are valid, which may be expressed 
in a unified form: 

r ' E E  

_o,d~e~ v , k ~ k  
= . - t -p iJp  i P i - - ~  -- Ot~t 

{d~e~ = de['i ,k,,,k , 0,die/ ap, el ~_ v p, ely ,  } 
\ d t  c~t + vi  v ei or P~ d-t - c~t 

e~= 1, v~, u[+ 1/2(v[) 2, [r'X v~] 
~* = 0, o'~ k, ~r~ k" v~- q~k, [r' x ,r~*] 
F~= O, g[, g~. v~, [r'X g~]. 

[1.11 

[1.2] 

[1.3] 

' ' ' d  o, o, d i u i  P i  iPi +,r~klv,kl)~l V,kq[k.  
p , -d- i -  = 

[1.51 

The boundary (or jump) conditions that represent the phase interaction can be given at the 
phase interface S~2 as follows: 

r' E SI2 

( 2  ' -  o . . . . .  , , = ( ~ i - - p i ( v i ' n i - N ' n i ) ,  nl = - n 2 )  

~'i~n i k + ~:Ivl = ~r~kn~ * + ~v~ 

~ , ~ k n ~  v~ k ,k , , ,k ,~-  • --qlnl + ~l[Ul + 1/2(vI)2] =o'~kn~ i • V ~ -  q2 n2 -t- ~ [ u ~ + l / 2 ( v ~ )  2] 

where n~ is external, with respect to the ith phase, normal to the interface S~2; N ' .  n~ is velocity 
of the displacement of the surface S~2 along n~; ~:~ is mass flux due to phase transitions into the 

[1.6] 

[1.71 

[1.8] 

and the equation of the moment of impulse relative to some point 0 is a consequence of the 
momentum equation• From the energy equation and momentum equation an equation of heat 
flux along the trajectory of microparticles follows 

¢r~ kt = - p ~ 8  kt + z~ kl, ~r~ kt = o~ ~* [1.4] 

Here and throughout summation is done only with respect to the upper (coordinate) indices; r' 

is a radius-vector between the fixed point 0 and the point, in question occupied by the ith 
phase; p0,, v~, ~r~ kt, g~, q~ and ui are, respectively, the instant values of density, velocity, stress 
tensor, specific external mass force, heat flux vector and internal energy (the microparameters 
of which will be denoted by primes), which are the averages within the volumes d' V ~ a 3 and 
times dt ,~ t~, where a and ta are the characteristic dimension of nonuniformities and charac- 
teristic time, respectively. We shall consider the case where the phase materials are nonpolar 
media and when there is no effect of magnetic field, i.e. when the microstress tensor is 
symmetric 
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ith phase across the phase interface unit. For the sake of simplicity, capillary effects are 
disregarded here. Jump conditions that take into account the surface tension can be found in 
the papers of Drew (1971) and Delhaye 0974). The generalization of the results of this paper 
with allowance for the surface tension is given in the book of Nigmatulin (1978). 

In analogy with [1.1], the equations of conservation [1.6]-[1.8] can be rewritten in a unified 
form: 

~b~kn~ k + ~[e~ = ~ktl~k + ~e~ [1.9] 

where ~b~ k and e~ are given in [1.3]. 
To close the system of microequations it is necessary to use the equations that define the 

physical properties of the phase materials. 

2. T H E  A V E R A G E D  V A L U E S  A N D  M A I N  A S S U M P T I O N S  

The difference in the methods of averaging (spatial, time, spatial-time, statistical) is of no 
significance for deriving a system of the averaged equations. It reveals importance the selection 
of basic hypotheses, the elaboration of the methods for the theoretical and experimental 
determination of the average values and relations between them. The general questions of 
averaging in application to two-phase mixtures are discussed in a number of works (Landau & 
Lifshitz 1959; Vernier & Delhaye 1968; Slatery 1969; Batchelor 1970b; Brenner 1970a; Drew 
1971; Drew & Segel 1971; Staffman 1971; Whitaker 1973; Buevich & Markov 1973; Ishii 1975; 
Buevich & Shchelchkova 1976; Nigmatulin 1978). 

To proceed to the averaged variables and equations, we introduce an elementary macro- 
volume d V confined within a surface dS and an elementary plane macrosurface ds, the 
characteristic linear dimensions of which dx are many times greater than the nonuniformities a 
(diameters of drops, bubbles, particles, pores, distances between them, film thicknesses, etc.), 
but at the same time much less than the characteristic macrodimension L of a problem (length 
and diameter of a nozzle, pipe, the characteristic disturbance attenuation distance, its length 
and so on) 

L >> dx >> a >> d'x, d V - (dx) 3, ds ~ (dx)  2. [2.1] 

Further on, two basic assumptions will be used: 
(1) It is always possible to single out in the region of the mixture motion such small, but 

representative volumes d V and surfaces ds about any point defined by the radius-vector r. We 
designate elements of volume d V and cross-section ds belonging to the ith phase (i = 1, 2), as 
d V~ and dsi, respectively 

dVi + d V z = d V ,  dsl +ds2=ds,  (2.2] 

and the interface inside d V as dSl2. The volume avi and surface asi phase concentrations, 
the phase interface Sl2 in the volume unit, as well as the averaged or macroscopic values 
introduced by integration of the volume averaging of phases d Vi, phase cross-sections ds: and 
phase interfaces dS12 can be correlated with the center of a volume d V or a surface ds defined 
by the vector r: 

d Vi dsl dSl2 
Olvi = d---V' °lsi =~ss' sl2= dV '  [2.3] 

(aVl + av2 = 1, as~ + as2 = 1), 
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(~°~)v'= ~V~ fo ¢~d'V, (~O~)s, = ~s~ fd v'~d's 
Vi  s i 

[2.4] 

<,P ~),2 : ,¢~ d's.  
1. JdSi2 

[2.5] 

(2) The values averaged in this manner are smoothly changing when r varies at distances of 
the order of L, i.e. at these distances the functions 

O(~)Vi O{~)Si C~ (~)12 ~0 
Ox Ox Ox - T [2.6] 

are regular. 
From the smoothness condition [2.6] for surface-average values, the coincidence of surface- 

average and volume-average values follows 

avi = asi = ai, (q~i)vi = (¢])si - (q~i)i. [2.7] 

It results from the fact that a volume-average value can be presented as an integral with respect 
to the linear coordinate x, normal to ds from the surface-average value 

, 1 (  x+~x , , ,  + o / d x ~  
(~Oi)vi = d V 3~-dx (q~',{x'))sl dsi(x ')  d 'x  = ~i2s i  q~o ~ - ~  } -~ (~)si .  [2.8] 

Spatial phase averaging and, consequently, by virtue of [2.7], phase averaging in general, 
does not change the tensor character and rank of the average values, namely: a scalar remains a 
scalar, a vector a vector, a second order tensor a second order tensor, and the property of 
symmetry or asymmetry is retained. These assertions may be easily proved. 

In Nikolaevsky's work (1975) averaged equations are suggested to be derived, in which the 
surface-average and volume-average values [2.4] would differ, and it is asserted that these 

I I x k l  equations are more general and, in particular, will contain the asymmetric stress tensor ~ ~s. 
This conception is incorrect, since from the above given considerations it follows that, if the 
surface-average values (,P')s oscillating at distances - d x  are not allowed, then the difference 
between the surface-average and volume-average values is possible to obtain solely by 
introducing the surface-average values ~ ' ) s ,  that differ from [2.4], especially by averaging not 
on an arbitrary plane macrosurface ds, but on the one separated with respect to nonuniformities 
or impurities in the mixture, adjacent to ds and differing from ds by 8r' - a ~ dx. At the same 
time, a method of the introduction of such surfaces ds,  and, correspondingly, volumes d V, 
depends on the mixture structure and must be specified, so that it can, in principle, be used to 
determine the relation between (~')s,, (~')v, and the average values [2.4]. It should be remem- 
bered that (~')s. ~(~')s which may result in (~')s. ~ (~')v, but, nevertheless, the equality 
(~')s = (~')v is true too. Therefore, such an analysis with the introduction of ds.  has only 
methodic distinctions when realized correctly. Whereas the great generality of equations, in 
which the surface-average and volume average values differ, is illusory even with the intro- 
duction of ds..  Below, in sections 7 and 8 dsl + ds2~s is used as ds,  (see the discussion following 
[8.7]), it is possible to use dsmv too (see section 7). 

3. AVERAGING OF CONSERVATION EQUATIONS 

If the differential conservation equations [1.1] describing the mixture micromotions are inte- 
grated over the elementary macrovolume d Vi occupied by the ith phase, and the equations at 
the interface [1.9] are integrated over dS12, then, by taking into consideration the average 
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values [2.4], [2.5], we obtain the averaged equations, which contain the average values from the 
microparameter derivatives with respect to time and coordinates 

~p° ' e ;3  + (V'kpOi'e;v;k), (p°i'F~) , (,,l /~ = (V'kC';k)~ + 

( (~t  ;) _ /  0,d;e;\, P °'e , + (V'kp°'e[v;k), -- \ p , - ~ / J  

[3.1] 

[3.1a] 

t k  t k  t t i t (01 nl  )12"]- (~lel)12 = (I/12kn2k)12 + (~:2e2)12. [3.2] 

Averaging of derivatives, as distinct from that in a single-phase medium or over the whole 
volume of mixture (Batchelor 1970), in averaging over phases it is impossible to assume that the 
average of a derivative is equal to the derivative of the average. The averaging over phases and 
differentiation with respect to time or coordinates are noncommutative. This is testified by a simple 
one-dimensional example for a laminated system shown in figure 1, where the second phase is 
shaded. It is evident that 

- ~  <0,  a ( * i ) l > o  or [a~i~ . ~ a ( ~ D ,  
' x h  ax \ a ' X l l  ax 

For any differentiable scalar, vector or tensor function ~p; and for an elementary macro- 
volume d V = d V] + d V2 = const fixed in space and bounded by a surface dS = dSl(t) + dS2(t) = 
const, the following equality is valid 

d L <p;dV=[ d_~'V+ L ~;N;" d's. 
"d-i vi(t) Javl Ot S~+dS~2 

[3.31 

As dSi(t) transfers along the stationary surface dS, then on dSi(t) the normal velocity of this 
surface displacement N~" =0. Considering the average value definition [2.3]-[2.5] and the 
property [2.7] and also regarding ~ = l, we shall have 

a , ( a~ ;  / , ,  , 
~ai (~ i ) i  = ai - ~  i + s,2(~piN • "i)12 

aOt-'--!i = S I2 (N"  n;)12. 
Ot 

[3.4] 

[3.5] 

J 

\ \ - , . j  

\ \ x i  

\ \ \  
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I 

Figure I. 

= (~;,)2 = (~')  
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The left side comprises partial derivatives with respect to time due to immobility of the 

center of volume d V, to which the average values are related. As a result, we obtain the 

formula 

l a~ \  = ~ ia~t~) i  . . . .  a i \ - ~ -~ ]  i - - -  S i E ( ( ~ N '  • n i ) i 2 -  ( ~ i ) i < N  • n l ) i 2 ) .  [ 3 . 6 ]  

For any differentiable vector or tensor function ~}" -- ~kn~k, an equality is valid 

L L L v 'k~ l d'V = ~ln~k d's + ~Pi ni a s [3.71 
i i 12 

resulting from the Gauss-Ostrogradsky theorem as applied to the volume Vi. Expressing the 
member integrals in the form of averaged functions, we get 

fvai(v ,k~i) idV= f s ,i k Sv ,i k Oti(~pi >inl ds + Sl2(q~ini>12dV. 

We shall now transform the surface integral into a volume one and, with allowance for that this 
equation is valid for an arbitrary macrovolume V, we obtain the formula 

Oli(V'k~o~l)i : vkai(~O~l)i + Sl2<~o~ln~k)12 . [3.8] 

The formulas, close to [3.6] and [3.8] for averaging the derivatives, have earlier been considered 
by Saffman (1971), Slatery (1%9) and Whitaker (1973). 

The averaged phase mass equation 
Formulas [3.6] and [3.8] give precise (within the limits of the hypotheses accepted) expres- 

sions for the derivatives with respect to time and coordinates averaged over the phases. In view 
of these formulas, [3.1] and [3.2] give in the case of e~ = 1, ~b~ = 0 (see [ 1.3], [1.6]) the averaged phase 
mass equation in the form 

aP°aiat ÷VkpiotiV i O  k = Jji; i, j = 1,2; i~ j [3.9] 

pO = (pO, ) i  ' p o v ,  = (pO,  v ; ) i  [3.101 

J21 = - J n  = sm(~q)m = -sl2(~:~)m. [3.11] 

Averaging of substantial derivatives along the trajectories of microparticles 
From [3.1a] by using [3.6], [3.8] and [3.9], it is possible to obtain a formula relating the 

mass-average values of the substantial derivatives with respect to time along the microparticle 
trajectories, to the average parameter values and their derivatives, in particular, to the 
substantial derivative with respect to time along the averaged trajectory, or that of an 
elementary microparticle mass center path 

ot / °'d[ei\ die,. ,~k , o . . . . . .  k~ 
i \ p i - d - i - / ,  = Pla i -dT -v v a i t p i  a e i a v ,  /i + Jsi(e~,2~i - eD [3.12] 

0 O~ i i plel = (Pl ei), Ae[= e i -  ei, Av[= v~- vl [3.131 
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Jiieo2)i = s12(~;e;)12 [3.14] 

~ = Oei + vkiWei. [3.15] 
Ot 

The general form of the conservation equations 
After using [3.8] for ¢~t= ~b~t(l = k) and [3.12], the averaged [3.1] and [3.2] for the con- 

servation of momentum, energy and moment of phase impulses can be expressed in terms of 
the averaged functions and their derivatives with respect to time and coordinates 

dlei k .  k 
Pi--~-  = V tPl + R~) + Jii(e(12)i - el) + piFi  [3 .16]  

(i, j = 1, 2; i# j) 

R(¢') ± o ( ~ )  12 T ,'~ 21 4" J12e(12)2 + J:~letl2)l = 0 [3.17] 

o 
Pi = PiOq [3.18] 

p°E. = (p°,-'F;), [3.19] 

~/i k tk OI t ~k = Oti(l[li )i -- Oti(Pi A e i A v i  )i [3 .20]  

= Sl2(~bi n i  )12 [3 .21]  

where the values written in the second, third and fourth columns in [1.3] are taken as the 
microparameters e~, ~b~ k and F~. 

4. T H E  A V E R A G E D  P H A S E  M O M E N T U M  E Q U A T I O N S  

Let us consider the momentum equation for the ith phase written in the form of the 
averaged values, following from [3.16] to [3.21] for the second column of the microparameter 
values in [1.3] 

P i l l  = vko ' i  k 4- Rii  + Jji(1)(12) i - oi) + Pigi [4.1] 

( i , j = l ,  2; i # j )  

RI2 + R21 = J12(v.2)l - v.2)2) [4.2] 

= --Oti(Pi Avi Avi )i [4.3] 

Jiiv(mi = s12((j[v~)12 [4.4] 

s12(¢i ni )12, [4.5] Rji~- Ik tk 

p Og, = (pO,g;),. [4.6] 

The tensor ~r~ determines the action upon the ith phase along the surface boundary dSj of a 
selected mixture volume, where the addend l ~  t determines a fluctuating momentum transfer or 
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fluctuating stresses. This component is similar to the Reynolds stresses in the turbulent motion 
of fluid. There is a wide class of dispersed system motions for which these components may be 
neglected. The phenomenological equations (see, e.g. Nigmatulin 1970 and review of Kraiko et  

al. 1972) for the dispersed mixtures correspond to those motions. Interphase momentum 
exchange occurs due to the interphase force Rii and to phase transitions J~v(,2)~; the addend 
J , ( v ( , 2 ) i -  vi) being regarded as a jet force. 

The tensor of microstresses in every point of the ith phase can be presented in the form 

~r~ kl = - P [ 6  kl + r] k~ = - ( P l  + AP})6 ~t + "r'i ~ (r~ ~ = 0) [4.7] 

Pi = (P ~)i [4.8] 

where p~ is average pressure in the ith phase, Ap~ is pressure fluctuation, r~ k~ is the deviator of 
microstresses. The following accurate formula can be proved (see Nigmatulin 1978): 

s~ (P 'n~ ) ' 2=  ~--v L ' - ' - Pinl  d ' s  = p i ~ o t i .  [4.9] 
Si2 

This expression defines the component of interphase force due to the ith phase stream tube 
expansion. This force was first noticed by Rakhmatulin (1956). It was also distinguished by Ishii 
(1975). Therefore, the interphase force Ri~ can be represented in the form 

Ri.i = p i ~ o t i  + AR~e)+ RI-T ) [4.10] 

ART=-s~(Ap,nb ,2 ,  R~? ,~ ,k ' ' = slz(~'i n i  )12 [4.11] 

where AR~ ) is the interphase force due to small-scale pressure fluctuations (it contains the 
so-called virtual mass force, the Magnus-Zukovsky force due to rotation, etc.), R~, ) is inter- 
phase force due to shear stresses. 

5. THE AVERAGED PHASE ENERGY EQUATIONS 

Let us consider the averaged conservation energy equation of the ith phase. For this 
purpose in [3.16], [3.17] and the determining relations [3.18]-[3.21] the values e~, ~b~ k and F~ are 
taken from the third column of [1.3]. The averaged value of the ith phase total energy is thus 
expanded into three components: the internal energy ui, the kinetic energy of macromotion 
1/2 v~ 2 and the kinetic energy of fluctuating motion ki: 

(p°i' e[)i = (p °'(u[ + 1/2 v~2)}i = p°u i  + l / 2 p ° v i  2 + p ? k  i [5.11 

p ? U i  0 , = (Pi ui)i [5.2] 

p Okl o, ,z = l/2(p~ v~ )~- 1/2p°v~ 2= l/2(p°'(Av~)2)i. [5.3] 

The averaged interphase energy flux Eii ('~) = Rj~ + J/~e.z)~ into the ith phase at the surface S~2 
can be represented in the form of the sum of three components: 

Ej, = W, + Qj/+ ~(u,2);  + 1/2v~,2), + 1/2(~v,) 2) 

Qji = - Sl2(q~kn~k),2 

[5.4] 

[5.5] 

[5.61 
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Jjiu(12)i = $ 1 2 ( ~ u ~ ) 1 2  

j j i ( ~ v i ) 2  = t t 2 <~',~v~- v .z) , )  >12 

361 

[5.7] 

[5.8] 

where Wji defines interphase exahange by energy due to the work of interphase forces, Qii----due to 
interphase heat transfer, and the latter addend in [5.4]----due to phase transitions. 

We shall introduce the values ci k and q k defining the averaged energy exchange in the ith 
phase along the external boundaries dS~ of the volume d V~: 

Ci k Oli[<o.~k IOi) i O, ' 2  ,k . . . .  1/2(pi (vi) Avi  )i] 

= o'ki " V i "l- Oti[(O'~ k "  mv~) i - 1/2(p°'(Av~)2Av~k)i ] [5.9] 

tk k Op t tk ql  k Oti<qi )i + Fi  , F i  k = = --Oti(pi  All iml.)i  )i [5.10] 

where ci k is mechanical energy transfer due to the work of surface forces and fluctuating 
motion, q k is the averaged heat flux, a portion of which F~ k is transferred due to the fluctuating 
motion. 

As a result, the ith phase averaged energy equation that results from [3.16] can be presented 
in the form: 

p ~ ( u ,  + k, + - ~ ) =  Vk(Cik  -- q ik)  + pigi  " vi  + p i H i  

+ Wji+Qji+ Jii uo2) i -u i  +v(12)i-vi2~ - k i  [5.11] 
2 

piOni  z o, , = z  o, , , = ~ P i g i "  v ~ } - P i ° g i  " vi ~ P i g i "  Av i ) i .  [5.12] 

An equation of energy conservation at the interphase boundary results from [3.17] 

[ 2 2 (¢~/)2)2 (t~/) 1)2] v(i2)2- v(i2, 4 = 0. [5.13] W21 + WI2 + Q21 + QI2 + JI2 u(12)2 - 1/(12)1 "4- 2 

The kinetic energy equation of macroscopic motion follows from [4.1] 

d //Ui2"~ 
p i ' ~ T /  = IAi " Vko ' i  k + Rj i  " Vi + J f i (V(12) i -  Vi)"  Vi + Pigi " ~i. [5.14] 

The equation for internal energy or the averaged heat influx equation of the ith phase is 
obtained by averaging [1.5] with allowance for [3.8] and [3.12] 

p i ~  = -Vkqi  k + Qji + .lji(u~12)i - ui) + piAi [5.15a] 

p i °A i  = (or~klvtk~)~l)i [5.15b] 

where A~ corresponds to the average power of the work of internal forces in the ith phase. 
After subtraction of [5.14] and [5.15] from [5.11] we shall obtain the fluctuating motion kinetic 
energy equation 

dik i  k A t pi--d- i- = V ~.i + o'~lVkvi I - piAi + ( Wji - Rji " vi) + piI"Ii "~ J'ii(k(12)i - ki) [5.16] 
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A i  k = o, , 2 ,k ,k -ai[1/2(pl  (Avi) Avl ) i  - ( ~ r i  " Av~)i] 

Jjik(12)i -- 1/2&(vtn)i - I)i) 2 + 1/2(¢~(V~-- D(12)i)2}12 

where Ai k is the flux of fluctuating energy due to fluctuating motion. 

[5.17] 

[5.181 

6. THE AVERAGED EQUATION OF THE MOMENTUM OF FLUCTUATING MOTION 

Besides kinetic energy, the fluctuating motion Av~ is characterized by the momentum M~ 

p ? M / =  <fl°t[Ar' x ml0~])i. [6.1] 

Then the averaged moment of momentum is equal to 

(p°'[r' × v;])i = p °[r × vi] + pi°Mi. [6.2] 

The equation of the fluctuating motion momentum is obtained in a similar manner as [5.16]. 
In case of the absence of phase transitions (~:~ = 0) and small fluctuations of density (Ap °' ,~ pi°), 
it takes the form 

diMi Vk k 
pi-'~- i -  = I-ti + Dii + piLi (Dt2 + D21 = 0) [6.3] 

~tl k = ai([Ar' x A~r~k])i - p°ai([Ar' x vi]Avi' ,k)i [6.4] 

Dji = s,2([Ar' × o'~n~]),2.  [6.5] 

In the case when the oriented microscale phase rotation is absent, it is fulfilled identically 
and has not to be used in the analysis. 

Unlike the phenomenological approach, the averaging method made it possible to suc- 
cessively take into consideration the influcnce of fluctuating phase motion and to obtain 
expressions for the determination (in terms of the distribution of microparameters) of such 
macroscopic characteristics, as the stress tensor in phases, the intensity of interphase inter- 
actions, and energy fluxes of the various form. Realization of these expressions leading to 
rheological relations now only between the macroparameters (which can be called the explicit 
rheological relations) and, as a result, to the closure of the system of equations, has to be 
performed with due regard to the structure and physical properties of phases in the mixture. 
This is the basic problem in simulating the heterogeneous media. 

7. DISPERSED MIXTURES AND THEIR INTERPHASE INTERACTIONS 

Let us consider a two-phase mixture, where one phase referred to as the dispersed phase 
comprises drops, bubbles or solid particles (it will be regarded as the second phase), and which 
occupies a volume V2, equal to the sum of different volumes occupied by various dispersed 
particles. The remaining volume V~ is occupied by the dispersive or carrier phase (it will be 
assumed as the first phase). 

Any microvolume d V in the dispersed mixture may be at any instant subdivided into dN 
cells (according to the number of dispersed particles), each having the form of, approximately, 
a polyhedron with one dispersed particle in its center. A linear dimension of the cell is equal to 
the average distance between the impurities 21. In a representative macrovolume, the number of 
dispersed particles and therefore the number of cells is great. At the same time, a portion of 
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cells dNv in that number that occupies the volume d Vv and includes the particle surface dSl2v 
lies entirely within the selected macrovolume dV, while a portion of them dNs in that number 
that occupies the volume d Vs and includes the interface dSI2s is intersected by the boundary 
dS. The volume d Vv is bounded by the surface dSlv passing in the vicinity of dS, but entirely 
within the carrier phase (see figure 2). Apart from the averages over the "whole" cells, it is 
necessary to consider in the general cases the average values over the intersected cells 

dN dNv dSl2v -~ dSl2s 
n = d---~ d V '  Sl2v = dV sl2, Sl2s = d----V- [7.1] 

vw Vis 
[7.2] 

Sl2v $12s 

d V / s  , p, 
[7.4] 

t = t S t 
SI2(~0i)12 S12V(6Oi)12V + 12S(~Oi)12S. [7.5] 

By virtue of a small volume and number of the intersected cells (dNs ,~dN, S~2s ~. S~,v, 
d Vis "~ d Viv), the second addends in [7.4] and [7.5] can contribute to the averaged values only 
when microparameter fluctuations are many times greater than the average value in the cell. It 
is realized when averaging the highly varying space derivatives of the physical parameters and 
also when averaging over the interphase boundaries. To illustrate this, let us consider the 
integral with respect to the vector or tensor field divergence $~ over the volume d V2s contained 
within the surface dS2 + dS~2s. Taking into consideration the Gauss-Ostrogradsky theorem and 
[7.2], [7.3], we obtain 

d-d~-~s (V'k~b~k)2s - Sl2s(~b~kn~k)12S = v k o l 2 ( ~ 7 ~ k ) 2  . [7.6] 

dS 
Figure 2. 

'~ dS1,, 
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The addend on the right side is determined by the gradients of macroparameters. It is clear 
that with this values (see [3.16]) it is necessary to take into account at least one of the discussed 
addends on the left side related to the averaging over the intersected cells. 

In application to the averaged intensities of phase interactions [3.21] the separation of [7.5] 
leads to the following form 

= , , i i v  + , , i i s  [7.7] 

R(•) _ tk ,k R (4~) - s / ' t " k n ' k \  i iv  - S l~v(~b i  n i  )12v, ~is - 12s\%vi i / t 2 s  [7.8] 

~b~ k = 1, tr~ ~, ~r~ k • v~, q~k, [Ar'X ~r~ k] [7.9] 

R~t )= J~i, Rii, W~i, Qii, D~,. 

Let us introduce the average values f ~  determined by the interaction between the carrier 
phase and one whole dispersed particle 

[7.10] 
n d N v  ~ 1  )c,~t~) 

where ~'~2(~') is the surface of the uth particle. 
In view of the fact that the surfaces dS12s and volumes d V i s  are in the vicinity of the 

boundary surface dS, we shall introduce macrovalues (~)i~'s and ( a , ~ ] ) n s  related to the 
elementary macrosurface ds and depending on its orientation that is determined by an external 
unit normal n 

1 fd ~d's [7.11] 

a "" d-~(n)f~ , ~ i ) i s  = ~ d ' V  
viS 

[7.12] 

where ds12s and dv i s  are, respectively, the interface and volume of the ith phase in the cells 
adjacent to the cross-section ds and consisting of d n s  surfaces ~'12s and volumes Ois. Since the 
elementary macrosurface ds intersects many of the cells, it is possible to assume that the averaged 
values introduced in [7.11] and [7.12] are stable or regular, i.e. as also (~)i these are smoothly 
varying at distances - L .  For values such as those of [7.11] and [7.12] at ~ = 4,~ ", ~ = V'q~b~ l and 
¢~= V'l~ I, where ~b~ is tensor or vector (ff~= I ~ k n ' k ) ,  we shall introduce more compact 

designations 

1 n - -  t , l . , I n , l ~ n  ~is - ~ ' i  i )its [7.13] 

( . I . l .q~  n l~ I ' l rq . l .d '~n 
~'i ) is = ~ , ,**  ~'i Jis [7.14] 

i / ins = l . t . l . l x n  i a V d . t . , l ~ n  [7.15] 

Later we shall have to do only with those cases, when ~bjis, ~.,l.qxn w , i  Jis and 4'ns will have the 
same tensor character and the same tensor dimension as the averaging values $~ 

4/~S k k = ~bjlsn [7.16] 

(.Ll,q~n [.i,I.q~k ~k 
~'i Jis = ~ , ' i  Jis [7.17] 



SPATIAL AVERAGING OF HETEROGENEOUS AND DISPERSED SYSTEMS 365 

~b'Zs = ~bksn k [7.18] 

where k t.t,l,qxk ~bjiS, W'i )iS and ¢jks correspond to three (k = 1, 2, 3) directions of the interactions of ds k 
with the normals along the Cartesian coordinate axes x k. From [7.2], [7.3] by taking into account 

[7.16] and [7.17] one obtains 

Sl2s(~bi n i )12s = d's = $~s ds = Vkqtks [7.19] z'~ j i S  = 
S i2  s S 

dViS_d.._V (V'ql, bi'r)is = ~1 Vls V'°~b~t d' V = d--V s = v  t~i Jis. [7.201 

It is possible to obtain one more expression for Rt~)s from [7.6] and [7.20] 

e(,)  = vk k O~ ,k  12S [ I~2S--  2(I//2 )2] ~-- v k l [ ] k 2 s "  [7.21] 

So, the determination of the averaged phase interactions at surfaces of the dSlEs type can be 
fulfilled by two methods. Note, that the presentation of ,,2ts°(*~ using the averaged value $RIs is 
determined by averaging microparameters of only the carrier phase (which will be used below) 
as distinct from the presentation in terms of (~06k)2 and ~ks, the determination of which is 
associated with a parameter averaging within the dispersed phase. 

Further on, we shall consider only such cases when at any instant the velocity fluctuations 
of phase transitions ~ and sC;e~ are not many times greater, as concerns an order of magnitudes, 
the corresponding average values. It is then possible to neglect the contribution of phase 
transitions at the dS12s type surfaces 

JJ2s ~ Ji2v, JiEset12s) ~ J12ve(12v)i [7.22] 

R ( , )  ~ _ 0 ( ¢ ~ )  21s- ,,,2s. [7.23] 

Hence, the action of the dispersed particles on the carrier phase can be represented in the 
form 

R ( ~ k )  = ~ ¢ ( 4 J )  J_ l - / k . t . k  _ . ¢ ( ~ b )  21 i , j 2 1  T V ~tl21S - -  "J21 + vk[a2( l / ]2k)2 I/Jks] [7 .24]  

and the action on the carrier and dispersed phases at the boundary dV along the surface 
dSi + dS~is is determined by the values 

( I / /k )  -- I//ks = O/l(I//ik)l + ~/2kls ( ( I / f  k) ----- Ot l (~[k) l  + Ot2(l//~k)2) [7.25] 

a~(~b~k)2 - ~ k~s = ~bks. [7.26] 

8. CONSERVATION EQUATIONS FOR DISPERSED MIXTURES 

In accordance with [7.22]-[7.24] the equations of mass [3.9] and momentum [4.1], [4.2], as 
applied to the dispersed mixture take the form: 

-~/+ Vktgl Vi k = -- 1 nj [8. l 

&P2 q. Vkp2v2k = nj [8.2] 
&t 

ME Vol. 5. No. 5--E 
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dirt , o r ~  = vko',~. + nl:  ~ - nj(v.2H - ~1) + Ogl [8.3] 

d2v2 P2-~- = Vktrk* + n/'12 + nj(v02)2 - v2) + P2g2 [8.4] 

0 = f21 + f 1 2  + j(V(12)2 - -  V(12)1) [8.51 

kl /0.,kl\ 0.k~ +f lkl  0.{! 0.~! 0 . 1 "  = \ 1 --  2S 1 ~- "~" 21S [8.61 

kl kl - -  t'x kl f o  ,-i1 0"2* = 0.2S -r ~L2. to.q 

Here j and ~i are the average intensity of phase transitions and an average force on the ith 
phase related to one dispersed particle (the values of the f~) type). The values kt tYi* will be 

referred to as the reduced stress tensors in phases, which could be regarded as average stress 
along dsk. = ds k + dskls.  Even at the symmetric microstress tensor 0.1 kl, the tensor 0.kl. can be 
asymmetric (for example, in case of intensive oriented particle rotation with the angular speed 
~ . , ~  vo/a (see[12.42]) due to 0.kt 0.kt i.e. due to incorporation in kt 0.1" of the part of the 2S o r  2 I s ,  

interface force R21s acting along dskjs ,  although (0.[kt)i, 0.kt and (0.,u) are symmetric. 
Therefore, it is impossible to agree with Buevich & Markov (1973a) and Buevich & 

Shchelchkova (1976) assertions that the phenomenological introduction of the antisymmetric 
macrostresses in suspensions in the absence of antisymmetric stresses in microscale (as it was 
done by Afanasiev & Nikolaevsky 1969) has no physical sense. At the same time, one should 
realize that the presentation of the principal surface force vector with the asymmetric stress 
tensor 0.1kt* in the form of Vktrlk* + nf2~ and with the symmetric stress tensor 0.~t in the form of 
Vk~r~ + R2~ are identical, since R21 nf2j + v k o  "k = 2~s, and neither of them is more general. 

In Brenner's work (1970) it is affirmed that the introduction of the volume-average stress 
tensor is "unsatisfactory for a number of reasons": (1) There is no proof of the coincidence of 
volume-average and surface-average values, only the surface-average values being included in 
the equations. (2) In the case of a mixture where the particles are rigid bodies, the averaging is 
required in their interior, where the stresses are not uniquely defined. (3) In the case of 
interracial (capillary) effects the volume-averaging leads to incorrect results (at the same time 
reference is made to an unpublished work and no mention is made as to what kind of incorrect 
results are meant). The first objection is removed as a result of the discussion of [2.7]. The 
second objection is also removed, since averaging within the particles (0.~k% is identically 
substituted for averaging of the carrier phase parameters at the surface of particles dsj2s and 
with the introduction of 0.k~s. AS to the third objection, it is possible to extend these considerations 
to the case of capillary effects (see Nigmatulin 1978). 

Let us also write out the equations of the phase fluctuating energy 

dlkl k k k~--k I Pl--~- = V A ~* + ~l*V Vl - plA~ + n(h21 - fk21vik) -- nj(k<12n - kO + piH~ [8.8] 

d2k2 k k I k k/ p2-d- T = V A2, - v2 ff o'2, - p2A2 + n(h~2 - fk2v2 k) + ni. (k~2)2 - k2) + p2H2 [8.9] 

0 = h21 + hie + q21 + q,2 + j(u(12)2 - u(12)1) + 1/2j((G2)2 - (v12},) [8.1o] 

hjl = f ~ )  (~b~ k = 0.~k'v[t = ¢~k) [8.1 11 
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Alk, ~__ (,1 ~g-k _ O'l~gulkl. i=al[(O'~k~Av~t)l -- l/2(p°'(AvD2Av;k)l +(O';Iqn~qAv;q')kis] [8.13]  

A~. = (V'q(O'~qtv~'))2ks- l/2a2(p°'(V~)2hv~k)2. [8.141 

Here Ak., ck* are the reduced fluxes (the values such as crkt*) of fluctuating energy and total 
mechanical energy; qil, hji are values of the f),.*) type (see [7.10]), i.e. these characterize the 
phase interaction per single particle; qj~ defining the heat flux into the ith phase, h~ is the power 

of the work of surface forces in the ith phase. 
If neither fast rotation, nor chaotic motion of dispersed particles, nor any other internal 

motion in their interior take place and particle collisions that lead to considerable fluctuations 
V'ko'~ kl are absent too, then since the dispersed phase velocity fluctuations are small, it is 
possible to neglect momentum, energy and moment of the momentum of dispersed particles 
intersected by the boundary of the separated volume dV, in comparison with those for the 
particles entirely contained in the macrovolume. These assumptions of Buevich & Markov 
(1973a) considerably simplify the equations causing, in particular, the divergent terms at the 
right sides of the equations for the second (dispersed) phase to become zero and bring about 
coincidence of the reduced values of the stress tensor and energy fluxes in the carrier phase 
with the corresponding value for the mixture ((or') kl k~ kl = O.I*, O'2* = 0). As a result, the dispersed 
phase equations take the form of equations for a whole number of noninteracting particles. The 
case of oriented rotation of particles under the action of an external field (M2 ~ 0, L2 # 0) was 
considered by Brenner (1970b) and Buevich (1974). 

Phenomenological theories of dispersed mixtures frequently correspond to a certain special 
case, when besides the above-mentioned, the following can be assumed: 

kl = (o.,kt) _pSkl  + zkl O.I* = [8.15] 

n f  = -cz2~? p + n f ,  [8.16]  

c,~* : <c'~) = p(~i v?  + ~ v ? )  + ~v , '  [8.17] 

Hi=O,  M1 =M2=0 '  L I=L2=O,  kl =k2=O [8.18] 

that means that the fluctuating transfer of momentum and energy and also the momentum and 
energy of the fluctuating motion is ignored not only in the dispersed phase, but in the carrier 
phase too. Afanasiev & Nikolaevsky (1969) presented the phenomenoiogical equations that take 
into consideration the oriented rotation of particles without the action of external field (L2 = 0). 

9. A CELLULAR SCHEME FOR DISPERSED SYSTEMS 

To determine the average values in the averaged equations, it is necessary to know the fields 
of velocity, stresses and the other parameters over the entire flow field. A detailed pattern of 
those fields can not, as a rule, be obtained due to complexity and variety of processes. It is, in 
fact, generally impossible to obtain this pattern even for the incomprassible viscous fluid about 
a single spherical particle and for different conditions we have to use different approximate 
schemes. The problem becomes especially difficult, when there is a plurality of particles, drops 
or bubbles, which can have a different shape, be deformed or fluctuate, disintegrate, stick 
together when phase transitions occurs at their surface, etc. Therefore, to obtain the theologic 
relationships between the average parameters, it is necessary to resort to approximate schemes 
of micromotions about the dispersed particles. The "cellular" scheme or model used in the 
dispersed system theory and the kinetic theory of gases, is one possible element of such 
schemes. 

Consider a monodispersed mixture, in any elementary macrovolume d V of which there are 
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spherical particles of the same radius a, and where, in accordance with the cellular scheme, 
some regular volume of the carrier phase (e.g. in the form of polyhedron or ball around a 
particle) corresponds, in average, to each dispersed particle. The motion inside this cell 
(distribution of velocities, densities, pressures and other parameters) is predetermined. The 
motion around the other dispersed particles of the elementary macrovolume is, in average, 
assumed to be the same as in the selected cell, i.e. it is supposed that some regular turbulence 
exists, as well as some "almost periodicity" of microparameters in the space with the linear 
period 21, equal to the average distance between impurities. On the basis of this model, by 
averaging over one cell, it is possible to derive the relations for the macroparameters contained 
in averaged equations. 

The average volume of cell ,9 and the volume of phases Oi in the cell are determined 
according to the abovementioned and [7.1] from the following relationships 

0 dVv  d V  1 dViv d V i _ a i  [9.1] 
d N v ~ d N - n '  O i = d N v  d N  n 

and the average values (~)iv with respect to the volume consisting of a whole number of cells, 
and the average values [~,-*) related to a single particle, we shall determine by integrating over a 
single particle (instead of using [7.2] and [7.10]): 

O; ~'12 
ai = ~-, sl2 = -~- [9.2] 

i 

/ ,- ,k ,k. 
= ~ i  n i  u S. [9.4] 

12 

If chaotic motion of dispersed particles and their collisions are absent and the properties 
[9.2]-[9.4] are satisfied, then it is natural to refer to such motions of dispersed mixtures as 
laminar. In this case, though considerable fluctuations of microparameters do occur, these have 
a regular and periodic character. 

Let us assume that the physical parameters of phases, like those of v~ k, ~r~ kt and u~ and so 
on, considerably vary within the boundaries of cell, their fluctuations do not exceed many times 
the corresponding average values. Then, in regard to the average values of physical parameters, 
it is possible to ignore the contribution of corresponding integrals with respect to the volume 
d Vis (see [7.4]), i.e. it is possible to assume that 

( ~ ~)i = (~ ~.o ~)iv. [9.5] 

AS distinct from the averaging over phases of the physical parameters themselves, when 
averaging their space derivatives over phases (v'kv~ ~, v 'k~ kt and so on) and the values of the 

i ni tol ni ,  . . and so on) type over the interface, it is necessary to keep in mind that the 
fluctuations of the mentioned values can be many times greater than the corresponding average 
values, as a result of it, the conditions may take place that lead to the necessity of taking into 
account the averages over the volume d Vis and the interface dSj2s. From [7.4], [7.5] with [7.19], 
[7.20] we have 

= (V ~bi )iv + V ( ~ i ) i s  [9.6] 

sj2(~tn~q)l: = Sl2(~ln'iq)12v + vk(~ln~q)k2s [9.71 
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where, in accordance with [9.3], [9.4] it is possible to assume for the averages over the whole 
cells 

(v'q~b~t)iv = l /oi v'q~b~l d' V [9.8] 

,i ,q 1 /~ dr(in( q 
SI2(~li  ni )12V = "~ 12 "'"' d's. [9.9] 

t.l,l, qhk To select and substantiate the procedure of the determination of macroparameters t,~i Jis 
I.l.tl tq~k and w,~ n,. J~ES, let us consider the cells in the vicinity of the elementary macroplane ds (see 

figure 3) having the external normal n, which intersects dns cells, cutting off in each by the 
cross-section ((v) = sr~(v) + ~'2(v) some volume of the ith phase vis and certain particle surface 
(12s(v). Then, according to [7.12] we have 

v = l  iS(O) 

(~)lhS = ~s s ~ d ' s  d s=  ((0). 
v = |  12S v = ] 

When the centers of cells are spaced not very regularly, ds passes at different distances 
x"(v), counting from the cells centers along the normal n. The values x"(v) define Ois(v), ~12s(v) 
and ~r(v) uniquely. By virtue of the inequality dns ~> 1 and the cyclic or repetitive nature of the 
microparameters from cell to ceil, it is possible to replace the summation over dns cells by the 
integration with respect to x" in one cell (see figure 3) 

_ 1 dns( '  dx. fo ~ d ' V  (a*~)ins ds 21 .I-t ,s(:) 

l dnsf/id:f, ~d's  
( ~ ) ~ 2 S  = dSS 21 ~2s(x") 

dns ( '  ~ ( x " )  dx" = ~ - ~ 0  
ds = 21 .It 

[9.10] 

[9.11] 

[9.121 

t/11/ 
O~(x") 

Figure 3. 

n 
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where I is the maximum radius of the cell in the n direction. It is possible to introduce in like 
manner the averages over the cell boundary srb 

Sb _ ~ b  - - ~  [9.13] 

(~l)bv = 1 |  f ~¢~ d's [9.14] 

= dx k ~o] d's. [9.15] 

In [3.8] the relationships [9.3], [9.6] are used for (V'q~t)l and the Gauss-Ostrogradsky 
formula is applied for the integral fromV'q0~ t with respect to the volume ,9~s(X k) restricted by a 

particle surface ~j2s(X k) and by the cell cross-section (~(x k) occupied by the carrier phase, then, 
in view of [9.5] we obtain a condition that is equivalent to [3.8], but in the terms of parameter 
values at the cell boundary 

S [.I, tlnPqx + ~k[, i ,  t l .  tq~k 
bl, ll~l 1 IbV ~,Wl~'gl lbS  ~-0 .  [9.16] 

Let us assume a cell to be the spherical volume OR of the radius R, per one particle 

'92 4 3 4 ,,3 1 
~2 = ~ - ,  ,92-- ~ , ~ a ,  ,9 = ,gR = ~ , ,  = n [9.17] 

3a 2 3ot2 
s12 = -~-  = a [9.18] 

Sb = 3/R. [9.19] 

At the same time, we shall assume that the fluctuating or small-scale motion of the carrier phase 
encompasses only the spherical layer '91c = {a < r < c}, where a < c < R, and outside this layer 
(c < r < R) the disturbances are zero, considering this effect to be a result of the interference of 
neighbour particle influence. The value of the effective cell radius is characterized by the 
dimensionless parameter of cell 

r/¢ = c-3- 1 ~< r/¢ ~<~-~2 . [9.201 

Note that in some cases it is possible to use step or discontinuous approximations of the a 
priori continuous distributions of the parameters in a cell. This is admissible, if these 
approximations are applied only when integrating over the phase volume in the cell. 

A generalization of the aforementioned schemes is a more detailed (but also more com- 
plicated and ambiguous) scheme, which allows for a fixed form of cells (e.g. spherical) a certain 
set of cell dimensions R, and realization of each R is characterized by a probability ~0(R). Such 
scheme was used by Herchinsky & Pienkovska (1975) to determine the viscosity of concen- 

trated suspensions. 

10. FORMULATION OF THE PROBLEM ON THE MOTION OF 
FLUID ABOUT A DISPERSED PARTICLE 

The closure of dispersed mixture macroscopic equations is associated with the analysis of 
microprocesses which occur in the vicinity of individual particles and resides in the deter- 
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mination of the distributions of displacements, velocities, temperatures, stresses, concen- 
trations, etc. in a cell, which then should be integrated. The microanalysis is carried out 
independently and by a different method than the above procedure and is related with 
boundary-value problems in a single-phase continuum. 

The micromotion of the carrier phase in a dispersed mixture is governed by its physical 
properties, conditions at the surface ~'12 of dispersed particles and at the cell boundary ~'b. 

We shall consider the case when the carrier phase may be described in terms of an 
incompressible Newtonian fluid with the density p0 and viscosity/~l. Then the equations and 
boundary conditions at the particle surface have the form 

v'kvl  k : 0 [10.1] 

odlV~ Pl--~- = -V'p[ +/ZI(V'kv'k)v~ + pOg; [10.2] 

r 
r = a ,  v [ = v 2 + [ t o 2 × r ] + w j a  a.  [10.3] 

Any accurate predetermination of the boundary conditions at the cell boundary ~'b is, 
generally speaking, impossible, since it would require solving of a certain problem encompass- 
ing all the dispersed particles, which is unrealistic. Therefore it seems to be expedient to resort 
to hypotheses that account for, in average, the "almost periodicity" of the dispersed system 
structure. These hypotheses are discussed, e.g. in the papers of Simha (1952), Safrai (1970) and 
Happel (1958). 

We should now note the fact that Vl is the average velocity of the carrier phase in the cell, 
which varies in small increments from cell to cell, and is regarded in macroequations as a 
continuous differentiable function due to spreading. The carrier phase velocity disturbances will 
be denoted here as w = Av~ = v [ -  vj. 

The nontranslational character of the carrier phase average motion is defined by the average 
velocity gradient tensor v kl = Vtvl k, even in the general case of an incompressible carrier phase 
z, kk = div Vl ~ 0, Vl kl ~ ~,~k while the average velocity spatial variation in the vicinity of cell is 
determined by the equality Av~ k = V l k ( r ) - -  Vl k = vkllx t, where vj(r)  is the average velocity at an 
arbitrary point defined by the radius vector r (x  l, x 2, x 3) relative to the center of cell in question. 
In this case, among possible assumptions there will be one, according to which at the cell 
boundary 

r ~ srs, w k = Av[ k = Avlk(r) = z'klxI. [10.4] 

At small volume concentrations of the dispersed phase a2, somethimes it makes sense to 
somewhat weaken this condition by admitting derivations from it of an order a2 

r E ~b, w k = vklxI(1 + 0(a:)). [10.5] 

As it was previously mentioned, it is possible to arbitrarily choose a cell form and conditions 
at its boundary ~'b. These must always bring about such a motion in the cell, as will satisfy the 
precise conditions for the average velocity and the average gradient of velocity, the latter 
following from the second formula [3.8] as applied to 

(vlk)l = Vl k [10.6] 

ai<V'tv~k)r = V ~ a , v ,  k + s,2(vlkn~l)l:. [10.7] 
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Nobody has ever used the latter condition despite its apparency, and, as it was shown in 
[9.16], it is reduced for the cellular scheme to the equation for velocities at the cell boundary ~'b 

Sb(V Ikn [~)bv + Vq(V [*n [t)gs : O. [10.8] 

The analytical solution of the problem [10.1]-[10.3], [10.7] is very complicated due to the 
finiteness of O of a cell even in ultimate cases (an ideal fluid and extremely viscous fluid). For 
the sake of simplicity, in case of sufficiently small volume concentrations a2 of the dispersed 
phase it is expedient to search for the solution in a cell as a part of the translational motion 
with the velocity v= k (the fixed one in the cell) and the perturbed micromotion wk~ 

v~ k = v~ k + wk~.  [10.9] 

At the same time we shall assume that the field of vl, apart from satisfying [10.1]-[10.3], is 
linearly asymptotic at its analytical continuation, i.e. it satisfies the linear boundary condition at 
infinity 

r , ~ ,  v l  k = v= k + vk l x  I [10.10] 

defined by some, generally apeaking, different from v k~ velocity gradient tensor u kj. The values 
v~ k and v~ should be chosen so that the carrier phase momentum in the cell is defined by the 
velocity vl  k and that the conditions [10.6], [10.7] are satisfied, which along with [10.8], [10.9] can 
be written in the form 

lfll k = t)~ k + (Wkl~) lV  [10.111 

s , , ( w ~ n / ) , , ~  + W [ ( v ~  ~ + wk,~)n,']~ = O. [10.12] 

Note, that these conditions are sufficient to find the parameters of approximation v~ k and v k~ 
through v~ k and v kt. Deviations from the conditions at the cell boundary Srb of the [10.4] type 
should be small, i.e. the conditions of the [10.5] type must be valid. 

A further detailization of this scheme and its extension to the case of a greater a2 may be 
attained, in particular, using a more complicated and general asymptotics than [10.10] 

r > ~ ,  v~ k = v~* + v ~ x  t + u~J"x t x  " + v ~ " q x ~ x " x  q + . . . .  

where the values v~ k, v k~, pkg,,, vkt,,q, etc. ought to be determined using the conditions for not 
only the average velocities (vlk)~ and average first-order derivatives { v % ~ k ) t ,  but also for the 
average derivatives of a higher order (V'tV''v[k)1, ( V ' ~ V ' m V ' % ; k ) t  and so on, and by meeting the 
conditions at the boundary [10.4] with an accuracy greater than 0(a2). 

By applying the continuity equation [10.1] to [10.10] when r = oo, we have that the tensor v~, 
unlike v k~, has to satisfy the condition 

~ = 0 .  [10.13] 

Apart from the absolute coordinate system where [10.1]-[10.3] are given, it makes sense to 
consider the "/"-coordinate systems moving with the average phase velocities v~ k in the given 
cell. In these inertialess mobile coordinate systems the motion of carrier fluid is determined by 
the relative phase velocity v12 

v12 = v l -  v2 [10.14] 
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and it is there necessary to account in the momentum equations for the force of inertia p°v:,  

equal in all points of the cell, besides the external mass forces g[ = g), then the force of the 
action upon a particle from the carrier phase is equal to 

[ = f A i  + f* ,  fAi = PlO(vi--g)02 (i = 1, 2), J'* =f*(a2, vm vf2) [10.15] 

where [* is force defined by the relative phase motion vl2 (in general, f* can depend on all 
prehistory of vl2(t)), fai is the so-called buoyancy force (see Batchelor 1970a and Sedov 1973) 
due to uniform inertial and mass forces. 

Despite the evidence of [10.15], there are cases described in literature of the incorrect 
allowance for the inertial forces when analyzing a flow about dispersed particles. 

In Fortier's book (1967) the component fai was erroneously derived and used with the 
opposite sign because of v2. 

In Buevich's & Markov's paper (1973b) the forces of inertia ,o i div.~dt are considered on the 
left sides of the momentum equations (see [4.4] of the cited paper and [4.1] of the present 
paper), but the inertial forces of the same order p~°a2d2v2/dt discussed here, which appear due 
to the force fa: acting upon a sample dispersed particle, are not allowed for. In those cases 
when the left sides of said equations or the phase accelerations are essential, it makes [4.4] of 
Buevich's & Markov's paper (1973b) incorrect, independent of the form of f*(Ot2, V12). They are 
correct (see [12.53], [12.54] below) only when they are reduced to equilibrium equations 

(Pi divJdt ~ 0). 

11. THE MONODISPERSED NONCOLLISIONAL SYSTEM WHERE THE FLUCTUATING 
MOTION OF CARRIER PHASE IS APPROXIMATED BY A POTENTIAL FLOW 

OF AN IDEAL INCOMPRESSIBLE FLUID 

Potential motion of an ideal (#1 = 0) incompressible (po = const) fluid in a cell that satisfies 
[10.1]-[10.3], [10.10] ( the boundary conditions at r = a are set only to the normal velocity 

component: vz- r = v2" r) is described by the following formulas (see Nigmatulin 1978): 

v~ k = Vk~ = v~ k + Wr k + wv k + wv k 

m k 
w )  = 

B k .  3Bt J k 
w°k = - 7  x 

[11.1] 

(A( t )  = W l a a  2) [11.2] 

(Bk(t) = a3(vz 2 -  v~k).) [11.3] 

Wf  = Eklx t -- FlmxIxmx k [11.4] 

kj/- 2a5\ 5 ~'~ma~ 
(Ekl(r, t )= /:=[1 +---~-), Fire(r, t) =---~r--r ].  

For the existence of such a potential motion, the potentiality of the velocity vo field is 
necessary 

Vo = vl + l12a2v12 = V~. [11.5] 

From conditions [10.6], [10.7] we have expressions for the approximation parameters v® k and ~,~ 

v® k = vl k [11.6] 
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u~t = v=,k__ 1/2(~'~' + U~ k -- 2 / 3 U ~ " 8  k') -- 1/20(V'a2vk2 + vka2v~2--  2/38k'Vr"a2vT2) 

= v kl - l12v '~"  + O(7ta2vk2). [11.7] 

The pressure p distribution in the cell is found from the Cauchy-Lagrange integral. Then it is 
possible to determine the force acting upon the particle: 

[ k _  41ra3 o[-d2v~ k gk 1 d2 3 k 3 I V ~" tk] 
- - T ° '  [ - - ¢ i - -  - - 

[11.8] 

The first expression here coincides with the formula obtained by Voinov (1973) and Jakimov 
(1973). It is possible to express the force f only through average values and their derivatives 
owing to the relationships obtained [11.6], [11.7]. 

By integrating p'  over the cell we can obtain the bubble radial motion equation that 
generalizes the Rayleigh-Lamb equation. It is possible to show by simple estimations that the 
nontranslational nature of Vl, which is characterized by the tensor Vl kt and is essential in f, gives 
a small contribution to the equation of radial motion. The latter equation may be obtained in 
another way starting from the kinetic energy equation for the fluctuating motion [8.8]. Since the 
approximation [11.1]-[I 1.4] in the cell involves a certain inaccuracy, the radial motion equations 
obtained by two above methods are somewhat contradictory. This contradiction may be 
removed to an accuracy of a~/3, if the parameters [9.20] of cell ~cv = 1, */or = 3/2 are used 
relating to velocity fields w~ and w, respectively. In case of not very strong u~ k~, the 
term due to the acceleration ~bla is the main term. Then, if it is assumed that "q~r = 1.35, "qcv = l, 
the radial motion equations obtained by two methods can be regarded as the coinciding with an 

accuracy o f -a2 .  
As a result, the system of equations for the phase mass, number of particles, phase 

momentum (if it is assumed that v~12)1 ~ vt12)2), radial motion in a dispersed non-collisional 
mixture with the ideal incompressible carrier fluid takes the form (where p~  is average fluid 
pressure on the bubble wall, E is the surface tension coefficient) 

Opl F Vkpl vl k = - n j ,  pj  = p l °a l ,  j = 47'ra2~12 [11.9] 
Ot 

Op2 
k- v k p 2 1 ) 2  k = nL p2 = Pz°a2 [ 11.10] 

Ot 

O n + v k n v 2 k  =0,  az=4131ra3n ,  al = l - a 2  [11.11] 
Ot 

d2a_  , ~12 
d--i--  wl~ "r-'~l = w2~ + , v~12)1 = v02)2 = v2 [11.12] 

d~v~ ~ko .k ,  
Pl--d- i -  = I - n f  - nj(v2 - vt)  + Plgl  

= a l V % r k .  -- F - a l n j ( v 2  - Vl) + PJgl [11.13] 

n f  = pl°a2 dlvl a2V/~r~. + F, [ll.14] 
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d2v2 P2"-~- = nf-t- P292 = a2Vktr Ik* + F -  a2nj(v2 - Vl) -t- P292 [11.15] 

t ry ,  = - p l , 8  kt + rkt, [11.16] 

z~ ,  = - l /2a2Pl°(  V k2v ~2 -- 1/3( V12)2 8 kl) [11.17] 

o2zra~[dlV~ k d21)2 k 3d2a k-] 
frnk= pl - - - ~ [  -~ d--'-t ~--d~Vl~j [11.18] 

(1 - ~p,(1))a d2d~la Pla -- PI* _ (1 -- " (2)~3 W~a -I- = pl 0 9 ,  J 2 (I--"9, (3)'/)22J'4- [11.191 

~o,(l) ~ 1.1a~/3, ~p,(2) ~ 1.47a~/3 + 1.33a2, ~,(3) ~ -0.67a2 [l 1.201 

p2 = Pla + 2~ /a .  [11.21] 

For the given relationship p2(p2 °) and the kinetics of phase transitions for ~12, the system 
[11.9]-[11.21] is closed. 

In the work of Voinov & Petrov (1975) it is shown that coefficients in the addends of an 
order of a 2 w  and a2vl2 in the averaged equations of dispersed phase motion depend on a 
disposition of particle centers (see section 13 below), which can in principle vary. When a 
cellular scheme is used, this disposition is given beforehand according to the form and 
dimension of cell. This is the fact that defines the abovementioned coefficients. 

The present cellular scheme, as also Garipov's analysis (1973) reveal the nonhydrostatic 
component of the stress tensor r~, with the coefficient K = - 1/2 (see [11.17]). As it was shown 
by Voinov & Petrov (1977), this result is accurate at a2"~ 1 and the value of the coefficient K 
does not depend on the disposition of particles. Iordansky & Kulikowsky (1977) considered the 
case of nonspherical particles too. In Iordansky's (1960) work the coefficient K = - 1/20 due to 
the disregard for the nonhydrostatic character of ~r ktI2s and the nontranslational character of 
averaged motion. The latter also leads to a formula for [m that differs from [11.18]. In 
Jakimov's work (1973) the coefficient K--1 that is related with two inaccuracies in the 
derivation of the formula for ~-~,. The first of them consists in that it is assumed that 

od~v~\ odlVl 
PI " - ~ - /  , = p '  "-d-i" 

This is incorrect (see [3.12]) due to the fact that the addend a~(pO'Av~kAv~J)~ of an order 
equal to the value of r~, calculated here is not taken into consideration. The second dis- 
crepancy consists in that the fluid impulse change due to the departure from the volume V of 
one spherical dispersed particle is computed as impulse variation due to the displacement of the 
corresponding dipole center in an unbounded fluid. This is incorrect, since the perturbations 
Av[(u) initiated by the ~,th particle in the mixture consisting of many particles, are determined 
not only by the mentioned dipole term, but also by the disturbances "reflected" form the other 
particle surfaces (see Garipov 1973 and Voinov & Petrov 1975). These "reflected" disturbances 
are particularly tangible beyond the uth cell in the vicinity of the other "reflected" particles. In 
terms of the cellular scheme considered the presence of interference from all dispersed 
particles is allowed for by regarding the dipole and other terms defining Avl(u) as valid only 
inside the z, th cell. 

In the works referred to in this paragraph, the coefficients ~p,(l), ~,,(2), ~p,o) characterizing 
the nonsingularity of bubbles in [11.19] have not been taken into account. 
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12. T H E M O N O D I S P E R S E D N O N C O L L I S I O N A L S Y S T E M ,  WHERE THE F L U C T U A T I N G  

MOTION OF CARRIER PHASE IS APPROXIMATED BY THE STOKES OR CREEPING 

FLOW OF AN I N C O M P R E S S I B L E  VISCOUS FLUID 

Another extreme case is that of low Reynolds number micromotion (Re = pl°woa/txl <¢ 1, 
where w0 = max(wl~, v~2, w2a)), when the effect of the nonlinear internal forces in [10.2] is 

small. Let us first consider the case when the linear inertial forces are also small due to 

nonstationarity (pl°wo/to ~ t~lwo/a 2, where to is the characteristic time of variations in the fluid 

motion relative to a particle). Using to some extent different method than that considered below, 

the present case has been discussed in the papers of Brenner (1970a) and Buevich & Markov (1973). 

Determination of the motion in a cell is reduced to the solution of simultaneous linear Stokes 

equations with [10.10] which are represented as the superposition of the creeping flows known in 

literature (see Happel & Brenner 1%5): 

~i  = D2 + Wv + We + Woj + Wr [12.1] 

l [3a . aaL  k v k 3 / a a3\ m 
w v  k - -  k - - - I12.2] 

( as ) 1 -  7 5 / a 5  a3\  
= e~ x x x [12.3] w~ e ~ , , x m + ~ l j _ 7 ]  ,.i m , k 

a 3 
km m km wo k = ~o~ x - ~ (w= - ~o~")x" [12.4] 

a2Wla k w/=  [12.5] 

p i : p = + p l O ( g m  d2v2"_'~x,, 3atz],v,~ 5a~tXle~ixmxi dt ] - - ~ r  ~ - v2m)x m [12.6] 

e~" = 1/2(v~ m + v~k), w~" = 1/2(v~ m - v~ k) [12.7] 

(O k ,  = ekmlo)2 I. [12.8] 

Here e k"~ is the Levi-Chivit ta  tensor. By employing [10.11], [10.12] we shall obtain 

V= = + 1 _-~f12 V l - V 2 ) ( f 1 2  = 3 °t ~/3 - c~2"~ vl ~ ~-j ] [12.91 

p~ = p] = {p~}l [12.10] 

al  e~ t = e k~ - 1/3 e""8  n + A e ~  [12.11] 

alw k~ = w u - a2wk2 t + Ato~ [12.12] 

where e kt is strain rate tensor, w u is rotation tensor, which are defined by the volume-average 

mixture velocity v 

e kt = l/2(Vkv t + Vtv k) [12.13] 

to kt = l/2(Vkv ~ - Wv k) [12.14] 
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A e ~ _  A t o g _  wkt~l /3 ,  t , 
v k ~ 2  V l 2 J  

0 : ~ 1 0 1  + ~ 2 0 2  . 
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[12.15] 

[12.16] 

The formulas for the force f, momentum d, stress tensors g~, and (cr'~a), the power of the work 

of internal viscous forces AI take the form 

I= IA2 + Is 

n[A2 = p t ° a 2 ( ~ - g )  

his = ~ v ,  - vz) 

n d =  6 p . ~ a z a  ~~(oJ - o ~  - A o ~ l z )  

o '~ ,=  

(o-'y'  = 

o.kl _ 
2S--  

(~(~) = 

[12.17] 

[12.181 

[12.19] 

(Od) k/ O -k/ 
- -  2S 

-p lB  ~ + ~'(~) em=B kj + 2/z(~)(e kt - 1/3 em~B kt) +/Zl2A e~  + 1/5p:a2w~'~o~ ~ 

K ( o) td kl lk - ¢o2 - AtOlx) + ll5p2a2to~mto~ " 

-4/3~1, r = 3/.tla2al q 

[12.20] 

[12.21] 

[12.22] 

[12.23] 

[12.24], [12.25] 

/z(,, =/.tla~l(1 + 3/2a2), t£12  ":" 5/21LlOt2a/I) [12.26], [12,27] 

e ,,ktX --~l ' / l ' / ' la l  -kk - l l .  ~£1 2~VA k .  k 2 ~ t ~ 0 ~ ) ( e ,  1 _  " "  " " 9 a _(2) 
p l A I  -3 - 0  } *  a:  ~ ~ * a-----S r - - o ' ~ ' ~ + 6 ~ ' " ~ ; ~ ( ~ * - ~ * ) ( ° ' * - ° ' ~ ' )  

A~kl  Ol 109 kl 09 kl~ A ,klx +gl0 (e  ~a "~t2, 2~ - 2p ~,t2J [12.28] 

~o~)= l (1 -~  3a2 150t22+O(ota2/3)) = l + 5/2a2 +O(ot22) [12.29] 
2al  2 al 

q~)  = 1 + 3[2a ~,/3 + 9/4a~ 3 + 11/8a2 + O(a~/3) [12.30] 

~f = (1 - B2) -1 = 1 + 3/2a,  u3 + 9/4a~ J3 + 15/8a2 + O(a~/3). [12.31] 

In the case of low-concentrated suspensions and in the absence of a translational, rotational 
and radial motion in the vicinity of particles, i.e. when the conditions are satisfied 

a~/3 '~ 1 [12.32] 

v2 = vl = v, t,~ = t ,  [12.33], [12.34] 

Wla = 0 (e kk = O) [12.35] 

such a dispersed mixture may be regarded as the incompressible Newtonian fluid 

o.,1 = odk = _pSJa + ~a, r it = r tk = 2 ~  e Ja [12.36] 
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p A  = r kl e kt [12.37] 

p = 01°(1 - a2) + p2°ot2 • [12.38] 

e~ ~ - e kl - - -  [12.39] 
Ot I 

This condition is in fact the corollary of the Gauss-Ostrogradsky theorem for the integral over 
the cell volume from v k v l  t. The disregarding of [12.39] caused Pokrovsky (1968) to make an 
inaccuracy in that he took e kl = e kl and on the basis of the correct relationship 

(O.,)kt = _p~k t  + 2/Zl(1 + 3/2a2)e~ I [12.40] 

came to the conclusion that Einstein's formula should be amended by assuming /~ = 

tz~(1 + 3/2a2). 
In case of an incompressible carrier phase, when Vl = v2, the compressibility of the mixture 

(e ~' = 3a2wl, ,]a)  can be manifested only in the radial motion (wla # 0) and the mixture becomes 
a non-Newtonian one 

4 4/ZlOtl 
~'(o') = --~'/'L1 < 0, ~(A) = > 0 (~(o') # ~(A)). [12 .41]  

Ot 2 

In the interesting analysis of Brenner (1970a) devoted to the case in question, the fact was not 
regarded that when ekk# 0 (though e~ = 0) radial motion should exist. In this cited paper in 
place of the boundary condition[10.3] at the particle surface r = a  the condition vl = 
v2 + [to2 x r] was used that is only valid for e kk = 0. It led to the incorrect value of volumetric 
viscosity (~'(~)= ~'(A)= (4/3)/zla2). 

In presence of the oriented rotation of particles that can be sustained by virtue of their 
inertia after the effect of the discontinuity of external moments, the reduced stress tensor crk~* is 
asymmetric, though tr~ I and (tr') kt are symmetric (see the remark after [8.7] and also the end of 

section 8) 

ikl kt " - -  A t o ~ 2 )  = n d i e trl, = 2r(td - t o  2 '  [12.42] 

(K -- 3p . to t2 /a l ) .  

The consideration of the inertial forces pt°Ov ilOt due to the nonstationarity (when R e  ,~ 1 is 
preserved) is analytically fulfilled (see, e.g. Fortier 1967) for the rectilinear particle motion too. 
In this case the force f depends on the prehistory and at a certain approximation has the form: 

f =.fA~ +.f* [12.43] 

jr, =fr~ +fS +fB [12.44] 

4"n'a 3 o / d l v l  
.t'A~ = ~ - - P ,  ~,-O-i-- g} [12.45] 

2Ira 3 oIdlvl 
fm = T p l  ~"~ d~2) [12.46] 
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4rra39/Zl 
f s =  ~ 2a "-'~v12 

41ra3 9 (pl°tZ___2~'/2 f t  d2v12 dr  
l,, = T - 2 a x  ~ / ~o - & - ~ t -  ~)" 

The effect of nonstationarity is defined by the dimensionless parameter 

/ pjO \1/2 
K = 2a[~ l t o )  = x / (S t "  Re) 

At the same time, in the extreme cases 

K , ~ I  (Re ,~ 1), 

K - > I  (Re,~ 1), 

f . ~ f B ~ f s  

f ~ f ~ f ~  
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[12.47] 

[12.481 

[12.49] 

it is possible to neglect the inherited Basset force lB. 
Kinematic equations for the dispersed mixture in question have the same form as in the 

preceeding case (see [11.9]-[11.12]). The momentum equations also have a similar form 

dlVl 
pl-~-- = vkcr~, -- n f  - nj(v2 - Vl) + fllgl = 

= ct iVko'~, - F -  ctlnj(v2 - Vl) + Pig1 [12.50] 

P2~t  = n f  + P2g2 = 

= a2Wtrk,  + F -  a2nj(vz - vj) + p2g2 [12.51] 

(n[ = n f,~ + nf* = a2Wtrk, + F, F = alnf*) .  [12.52] 

In the cases when it is possible to neglect inertial forces, these equations transform into the 
equilibrium equations of external mass forces, buoyancy and Stokes forces, which in the case 
of g~ = g2 = g can be written in the following form: 

Vto'~* + (pl + p2)g = 0 [12.53] 

912/~a-2¢/a2(v~ - v2) + (p2 ° - pl°)g = 0. [12.54] 

13. DIFFERENT APPROXIMATIONS FOR ALLOWANCE OF THE INFLUENCE OF 
THE VOLUME CONCENTRATION OF DISPERSED PARTICLES ON THE VALUES 

DEFINING INTERACTIONS IN A DISPERSED MIXTURE 

The coefficients ~,o), ~,(2), ~o,(3) in Ill.19] for radial oscillations of a bubble and the 
coefficients ~t, ~o~ ), ¢~) in expressions [12.19] and [12.28] for the viscous Stokes force fs and 
the work of internal forces A~ characterize the nonsingularity of particles and their reciprocal 
influence on a flow about them. Within the frame of the model with equal cells considered, 
corresponding to the uniform distribution of the dispersed particles with fixed distances 
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between their centers, the effect of the finiteness of a2 is determined by the magnitude of ~a~/3 
(see [11.20], [12.29]-[12.31]) 

q~, = 1 -O(a~/3) (~o, = ~ ,m,  ~o,~2)) [13.1] 

~0 = 1 + 0(a~/3) (q~ = q~;, ¢~) .  [13.21 

By measuring the velocity v2 = ve of the stationary sedimentation of dispersed particles due 
to gravity (g =9.81m/s  2) in a mixture at rest with the viscous carrier fluid, we have 

from [12.54]: 

9[2 t z la -2~r (v2 -  Vl ) ~- (p2 O -  pl°)g = 9[2~ia  -2 Veo [13.3] 

atvt + a2v2 = O. [13.4] 

It is easy to derive ~f(a2) 

- a , )  [13.5] ~[ = a lV~Ovg Vgvgo = 1 ~r " 

where Vgo is a single particle settling velocity (a2 ~ 0). 
The experimental data for 0 <~ a2 ~< 0.05 given in the book of Happel & Brenner (1965) show 

that, despite R e  ~ 1, at least three types of relationships 

(1) vJVgo = 1 - K°)a~ /3 ,  K m = 1.3 + 1.8 [13.6] 

(2) vg/Vgo = 1 - K~2)ol2, K ~2~- 5 +6  [13.7] 

(3) vflVgo = 1 + K~3)(c~2), K ~s~ ~ 0 + 0.6 [13.81 

are realized for different fluids and spherical particles. Relationship[13.6] conforms to ¢r 
obtained from the cellular model considered for uniformly distributed particles. 
Relationship [13.8] is valid for considerable agglomeration of particles (since the aggregates 
settle faster than the same quantity of uniformly distributed particles) and for arrangement of 
particles in line one after another. Relationship [13.7] is an intermediate one and can be possibly 
realized when the particles are distributed without agglomeration, but, at the same time, 

nonuniformly, i.e. randomly and chaotically, when the neighbour particles can be disposed very 
close (in particular, can touch one another), and also when they are rather distant. 

It is extremely difficult to solve the problem describing a flow about a system of arbitrarily 
spaced particles even for the limiting linear formulations of a creeping flow of viscous fluid and 
a potential flow of an ideal fluid. Recently, a number of investigators have used an approximate 
method that allows in the cases of the aforementioned limited linear formulations for not 
extremely large concentrations of dispersed phase to follow up the effect of the disposition of 
dispersed particles on the interaction in a dispersed mixture. For this purpose the following fact 
is used that under the above formulations, a flow of a carrier fluid about one particle can be 
represented as a result of the action of a certain point singularity (source, sink, dipole, force, 
etc.) in the fluid occupying the infinite region 0 < r < ~. In this relation, a flow about a sample 
particle with the center at r = 0 in the dispersed mixture can be considered as the flow of liquid 
occupying all the flow field a < r < ~, where in place of the remaining (secondary) particles, the 
prescribed point singularities act, which are spaced into the points corresponding to the centers 
r = r "~ ( i  = 1,  2 . . . .  N ;  r "~ > 2a) of the secondary particles. The mentioned singularities (usually 
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they are the 8-singularities) are considered in the form of point forces and point sinks in the 
differential equations of momentum and continuity defining the field of velocities v~. 

Disposition of the secondary particle centers or the structure of dispersed mixture are taken 
into account with the help of a distribution function P that indicates the probability of the 
disposition of (r ~l), r t2) . . . . .  r tN)) and makes it possible to introduce average-over-ensemble 
values. In particular, the average carrier fluid velocity is defined as 

Lf vi(r)P(rtI) '  r ~2), , rtt¢)) dr  tI) dr t2) .. dr ¢N). [13.91 

The distribution function introduced and average-over-ensemble values are defined by the 
binary distribution function P , ( r )  that shows a probability of location of the secondary particle 
center in the neighborhood of the end of r. This function is assumed spherically symmetrical in 
the form of P, ( r ) .  Starting from the definition of the number concentration of dispersed 

particles n we have the normalization condition: 

• 1 f R  
J2|a 4~rr2p*(r) dr = n. [13.10] 

For case of the chaotic disposition of the secondary particle centers, if we neglect their 
nonpoint reciprical character, it is possible to take (see Line 1 in figure 4): 

n, r > 2a 
P , ( r ) =  0, r < 2 a "  [13•10] 

A more accurate analysis of the chaotic distribution of the secondary particles with 
allowance for their nonpoint character, because of which the secondary particle centers can not 
be close to one another more than 2a (Ir tl)- rO)l/> 2a), leads to a curve of the 2 type in figure 4. 
At a2"~ 1 the nonpoint character of the secondary particles is insignificant, and the difference 
between curves 1 and 2 is small• But one should bear in mind that the nonpoint character of the 
secondary particles is counted not only in P, ( r ) .  

Further on, by means of the distribution function or binary correlative function P , ( r )  the 
momentum and continuity equations are averaged• As a result of averaging of the point 
singularities, the nonzeroth terms for r ~  > 2a are obtained, which can be considered in the 

0 I 2 ~ 2 o f  I/3 4 a z  - ' /3  r / a  

Figure  4. 
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averaged momentum equation as distributed volume forces due to the presence of the 
secondary particles. As a result of the solution of the averaged equations (and for the case of 
creeping motion they take the form of the Stokes equations with an additional nonsingular, but 
discontinuous addend at r = 2a), it is possible to determine the averaged action upon a sample 
particle. The proximity of this method is in the disregard for the nonpoint character of the 
secondary particles, the boundary conditions at their surfaces and with allowance only in 
average for the boundary conditions at the surface of a sample particle. 

Using the method described, Goiovin & Chizhov (1978) have obtained or proved 
a relationship of the [13.7] type. In the same work this analysis was generalized to the case of 
moderate concentrations (a2~<0.2). At the same time P , ( r )  was used that allows for the 
nonpoint character of the secondary particles (Line 2 in figure 4). As a result, the formula was 
obtained 

ve[vgo = 1 - 5a2 + 10a22. [13.11] 

The formulas of the [13.7] type for the case of small a2 was obtained by Batchelor (1972) 
and Saffman (1973) by means of a somewhat different method. 

Kroshilin, Kroshilin and Nigmatulin, by using [13. I0] and the approximation of thin boundary 
layer about a particle and a potential flow of ideal fluid outside it (that is valid for the description of a 
flow about spherical bubbles at Rev >> 1), have obtained 

Ct = l+a2  or vflveo= I - 2 a 2  [13.12] 

that is in a good agreement with the experimental data on the lift of an ensemble of bubbles. 
The same authors have considered by using[13.10] the effect of the nonindividuality of 

bubbles (at the chaotic distribution of the distances between them) in the Rayleigh-Lamb 
equation for radial oscillations of bubbles and have obtained 

~o, "~= 1-4.5az, ~0,  (2~'~- 1 - -  12a2 [13.13] 

Additionally, it was shown that the use of P , ( r )  with the 6-singularities at distances multiple 
to a twofold cell radius a~t~ t/3 (see Curve 3 in figure 4) led to the same results as also the 
cellular scheme. So, the validity of this approximate approach is in the fact that it permits 
simulation of different dispositions of particle centers and to obtain the effect of this disposition 
on the coefficients taking into account constraint. 

In the work of Buevich et al. (1977) an approach was used that was slightly different from 
that described above, where a creeping flow about a sample particle was considered as the flow 
of uniform "averaged" liquid with the effective viscosity of mixture/z and the average density 
O about it. In the case of suspension settling, it leads to the following equilibrium equation 

ot2pz° g - a2p°  g + 9[2a21za-Z(  v - Vg) = 0 [13.14] 

# =/xj(1 + 5/2a2), p = Ol°a~ + p2°a2. [13.15] 

Hence with the allowance for [13.4] 

vg = allZ ~. 1 - 7/2a2 [13.16] 
Veo /~ j 

is obtained that although it differs from [13.7] and the results marked previously for the chaotic 
structure of monodispersive mixture, can be considered as one of possible formulas for the 
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description of dispersed mixtures with a chaotic distribution of particle centers in an extremely 
viscous fluid due to the multiple value of experimental data at hand and the insufficient 
substantiation of the modern theoretical approaches. 

We have one more approach that was suggested by Brinkman and was discussed by Tam 
(1969), where in the analysis of a creeping flow of viscous fluid about a sample particle the 
effect of the secondary particles is taken into consideration by the drag force, additionally 
distributed in the liquid and proportional to v l -  v,. As a result, a correction in the force is 
obtained as intermediate between [13.6] and [13.7] 

vg/VgO = al/¢f = I -3/2X/(2a2). [13.161 

Apart from the abovementioned, there are a number of phenomenological or empirical 
methods to account the effect of volume concentration a2 of the dispersed phase on the force [ 
per one particle for moderate values of a2. 

In conclusion we shall note one interesting fact. The corrections of an order of a2 or a ~/3 to 
the nonindividuality of particles in the expression for the viscous friction force Is and in the 
equation for radial bubble fluctuations depend on a structure of the disposition of particles in a 
mixture. At the same time the correction (5/2)a2 at the coefficient of mixture viscosity 
(see [12.38]) and the correction ~'~. (see [11.17]) that define the shear parts of stress tensor, do 
not depend on the mentioned structure. 
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