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Abstract: Areal rainfall statistics are more relevant in flood hydrology and water resources management 
than point rainfall statistics when it comes to help designing dams or hydraulic structures. This paper 
presents a geostatistically based method to derive the areal statistics from point statistics. Assuming that 
the distribution models of point rainfall and areal rainfall belong to the same class of models and that the 
rainfall process is stationary, it is shown how the parameters of the areal distribution model can directly be 
computed from the parameters of the point distribution models in case of a non stationary process, an 
approximation is derived that yielded good results when applied to a mountainous region in Southern 
France. The method also allows the computation of the areal reduction factors in a very general form. 

Key words: Geostatistics, areal rainfall distribution, areal reduction factor, Gumbel distribution. 

1 Introduction 

Several methods of estimating high return periods for flOods rely on the statistical 
analysis of precipitation series. 

Some of these methods directly relate the ten or hundred year peak flow to the ten or 
hundred year rainfall using an empirical relationship. 

For its part, the gradex method (Guillot and Duband 1967) is based on the utilisation 
of the scale parameter o f a  Gumbel  distribution fitted to the rainfall series to extrapolate 
the observed runoff  distribution. 

In both cases, the meaningfull  rainfall statistics should be computed from areal rainfall 
series rather than from point series. It is, however, rarely possible to obtain long areal 
rainfall series for the direct fitting of a probabilistic model. This raises the question of 
deducing the areal distribution or some areal statistics from the point distribution. 

There are mainly two ways to tackle the problem: 
1) computing an areal reduction factor in order to compute the x year areal rainfall as 

the product of the x year point rainfall by the areal reduction factor, 

2) estimating the theoretical statistical distribution of the areal rainfall. 
The first approach was taken by the U.S. Weather Bureau (1958), Brnnet-Moret and 

Roche (1966) among others, the areal reduction factors being computed in an empirical 
manner  and thus only locally valid. The second was chosen by Rodriguez-Iturbe and 
Meija (1974), who were, to our knowledge, the first to propose a methodology based on 
the analysis of the spatial correlation structure of the rainfall process. All  the methods 
mentioned above have in common the assumption of the stationarity in the rainfall 
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process, i.e., the point rainfall distribution is the same at any point in the area considered. 
Based on the utilisation of the spatial correlation function widely used in g,eostatistics, 

the variogram, this paper shows how to compute the areal rainfall probability density 
function parameters and the areal reduction factors for any given probability of 
exceedance. A method is derived for obtaining reliable estimates of those parameters, 
even when it is not possible to consider the point rainfall process variance as a constant 
over the area. 

2 General framework 

2.1 The point  rainfall: definitions and notations 

Considered in a probabilistic context, the rainfall depths, Z, measured at a given location 
over a given duration of accumulation, are assumed to be the realizations of a 2D random 
process Z(u;co), where u is a space coordinate (u = (x,y)),  and co is an element of the set 
of events f~. The mean and the variance of Z are two functions of the space coordinate, 
noted jx(u) and ~2(u). The kth realization of Z, associated with the event cok is the func- 

tion zk(u). Following a current approach (e.g. Joumel and Huijbregts 1978), Z is con- 
sidered a set of random variables (RV) Zi(co ) defined at each gauge location u i =- (xi,Yi). 

The kth realization of Z i, is the value taken by z k at the point u i and is noted z~, which 

holds in fact for zi(cok). 

When analysing a point rainfall series, we focus on the distribution of a given RV Z i, 

independently of the spatial variability of Z in the 2D geographic space {u(x,y):  u ~ R2}. 
This distribution is characterized by its probability density function (pdf) f i .  Its first two 

moments are: 

= ~zi(co)fi(zi(co)) do) E{Zi} 

Var {Zi} = E {[Zi] 2} -- [E {Zi}I 2 

= ~[zi(co)]2fi(zi(co)) do.) - [E{Zi}] 2 

Clearly, the expectation operator has a climatological meaning, i.e., it applies to the 
whole set of possible values {z} associated with the events {co:co ~ ~2}. E[Zi} and 

Var{Zi} are in fact the values ~t i and G 2 taken by the functions bt(u) and o-2(u) respec- 

tively, at the point u i. These values are not exactly known, but estimated as: 

1 s  (-t i = m i = ~V~_'l i (1) 

and 

^ l ~ [ z  k ]2 
= i - mi , (2) = s f  K - 1  

where K is the number of events observed at gauge i. 

2.2 The spatial variability o f  rainfall 

Rainfall probably is the variable in hydrometeorology that varies the most rapidly in 
space. This has long been a main concern to hydrologists interested in water resources 
management and several methods are commonly used to account for it. Among them an 
increasingly favored one is the whole set of techniques known as 'geostatistics'.  Because 
geostatistics was developed as a new field of statistics with the aim of solving mine 
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recovery problems, the emphasis was put on the single realization context (K = 1), and 
the spatial variability of Z is mainly considered as being the variability observed between 
the values of this single realization. Due to the impossibility of computing m i and si 2 the 

variations of It(u) and ~2(u) are not readily available. The basis of the geostatistical 
approach is to get rid of these rather than to use them as part of our knowledge of the pro- 
cess. While this technique may sometimes prove useful in rainfall studies, it is by far 
preferable to use as much information as possible as long as this information originates 
from the same statistical population. This may be achieved by studying the rainfall fields 
in a climatological context. A comprehensive development of an interpolation method in 
such a context was undertaken by Gandin (1965), based on the spatial covariance func- 
tion: 

C(u,u')=E{[Z(u)-g(u)].[Z(u')-g(u')]},  (u,u')~ R 2 

As long as it is thought that good models of the functions It(u), ~2(u) and C(u,u') can 
be developed, the correlation p(u,u') between any two points (whether instrumented or 
not) is computed, which in turn permits the calculation of some rainfall statistics. This is 
however rather infrequent, due to the poor density of long rainfall series, especially at 
small time steps (less than 24 hours). The estimates of the values of the functions, g, cy 2 
and C, are thus obtained in a very limited number of points, which prevents the deriva- 
tion of their analytical representation, unless some further assumptions are made. Since 
first applied by Delhomme and Delfiner (1973), the geostatistical framework has been 
widely used in areal rainfall analysis. Assuming the stationarity and the isotropy of the 
differences [Z(u + h) - Z(u)], the covariance function is replaced by the variogram: 

y = l E { [ Z ( u + h ) - Z ( u ) ] 2 } ,  (u,h) c R 2 (3) 

In order for to estimate Y, the function It(u) is assumed to be constant: 

g(u) = mz, u ~ R 2, (4) 

but the inference of Y does not require prior knowledge of Itz- 

In case of a finite variance (i.e., the process Z itself is stationary), we have the follow- 
ing relations: 

Y = r - C(h) (5a) 

and 

p(h)= C(h) = 1 -  Y 
Cyz~ cvz~, (5b) 

where Cyz 2 is the variance of the process (~2 = C(o)), and C(h) and p(h) are the covari- 

ance and correlation functions, respectively (depending on the distance between u and u" 
only since the process was assumed isotropic). Calculations based on the variogram may 
thus be carried out using the correlogram and vice-versa. On the other hand, when the 
variance is a priori not finite, these calculations are possible only when using the 
variogram. A further complication occurs if the process is assumed to be non stationary. 
This requires the inference of either a model of the drift and the underlying variogram, or 
of a so-called Generalized Covariance (GC) (Matheron 1972). 

Acceptance or rejection of the assumption of rainfall stationarity depends heavily on 
the rainfall type of interest, the area over which the rainfall is studied, and the available 
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records. But, from the estimation point of view, the most important factor conditioning 
our analysis, is the density of the measurement network with respect to the range of 
correlation of the data. As a matter of fact it will determine the limit distance of utilisa- 
tion of the structural function (whether covariance, variogram or GC). We are then more 
interested in the plausibility of a local stationarity than in the overall stationarity of the 
process. Therefore, even though it is obvious that rainfall is not a stationary process at 
large scales, it is worthwhile to notice that several authors have concluded that the com- 
bination of a constant drift and a variogram was an appropriate representation of the rain- 
fall structural function for the purpose of local interpolation. (e.g., Chua and Bras 1980, 
Creutin and Obled 1982, Lebel and Bastin 1985, Desbordes 1987). This conclusion is 
also supported by Joumel (1986) who incidentally remarks that in general "Universal 
kriging, or for that matter IRF k, is needed only in cases of extrapolation when the point 
being estimated is beyond the range of any datum". 

2.3 Kriging in a climatological context 
Of course this raises the question of the utility of the kriging approach as compared to 
Gandin's. As stated earlier, the main impediment to the use of Gandin's method is that 
the inference of the covariance function requires the knowledge of the mean and the vari- 
ance at each point of interpolation. Thus, the fields of the observed means and variances 
has to be interpolated, resorting to a method allowing the interpolation in a single realiza- 
tion context (such as kriging for instance). The main advantage of geostatistics as com- 
pared to covariance based methods is to provide a framework which is valid in many dif- 
ferent situations, even in the simplest case of a formal equivalence with Gandin's clima- 
tological approach. In this way, Delhomme and Delfiner (1973), estimating the areal 
rainfall over the Ouadi Kadjemeur, found it hazardous to infer the variogram storm by 
storm with a limited number of raingauges. They introduced the concept of average 
variogram, which was further developed by Bastin et al. (1984), who separated the 
variogram model into a time-varying but space-invariant factor and a time invariant 
variogram. More recently, a mean square interpolation error method was derived by 
Lebel and Bastin (1985) to indentify a scaled climatological variogram. This scaled 
variogram g is the structural function of a scaled process W defined as: 

Z(m,u) = a(m)W(u), (6) 

where A(m) is a scaling RV and W is assumed to be ergodic. The experimental 
variogram is built by mixing several realizations w k, k = 1,K, that is by computing 
(w~-wjk) 2 for every pair of stations (i,j) and every realization index k. The value a le 
taken by a for a given realization {o k is computed as the experimental standard deviation 

s k of the observed values z/k: 

( 1 U[z  ~ ]1/2 
sk= lNi~=l ' --mk]2} , 

where N is the number of measurement sites and 

1 Nz~ ' 
mk=Ni~l=li 

is the arithmetic mean of the observations. As a matter of fact, for strong rainfall events 
spreading over the whole region of study, s k is a good measure of the rainfall event mag- 
nitude, and it may be assumed that the scaling removes the variability in magnitude from 
one event to another. Furthermore if W is stationary and has finite variance, g is 



249 

bounded to one, and is very simply related to the correlogram by the following 
expression: 

g(h) = 1 - p(h). (7) 

3 Mean areal rainfall distribution 

3.1 Basic assumptions 

The main areal rainfall, 

ZA = l fAZ(U) du, 

over a given area A, with the total surface of a, is a random variable, and we are 
interested in inferring its cumulative distribution function (CDF), F A, or at least some of 

its statistics. This can be done in a way similar to what is currently done for any RV Zi, 
provided a long areal rainfall series is available. However, the scarcity of long term 
raingauge series (especially for recording raingauge needed at small time steps) makes it 
often impossible to derive such a series. A direct assessment of F A, using several long 
point series, is nevertheless possible on a few assumptions: 

A1) The point and areal CDFs belong to the same M set of probabilistic models; 

A2) This set of models is characterized by two parameters (O1,O2), a given pair of 

values of (O 1,O2) corresponding to a particular model within this set M; 

A3) The fitting of a model to a given series requires the inference of the mean and the 
variance of the parent distribution only. 

These assumptions seem reasonable as long as: 1) the area under consideration is not too 
large (under 1000 km2), and 2) the rainfall data originate from homogeneous meteorolog- 
ical events. 

3.2 Computation of the distribution parameters when Z is stationary 

If  Z is a stationary process, with mean ~t z and variance oz  2, the variogram y is related to 
the covariance by expression (5a). The mean and the variance of the areal rainfall Z A is 

then given by (Matheron 1972): 

~A = ~tz (8a) 

r ~ = o } - - ~  ~ ~A T( U ,u ") dudu ". (gb) 

Assumptions A1, A2, and A3 are then sufficient to estimate the areal rainfall distribution 
parameters from Eqs. (8a) and (8b), by means of a numerical integration of the variogram 
y over the surface A. This integration is routinely performed when computing the vari- 
ance of the estimation error of Z A by kriging. 

In the particular case of the Gumbel extreme value type 1 (EV1) distribution, we have: 

Ol(U) = 0.78~(u) (9a) 

and 

O2(u) = ~t(u ) - 0.57701 (u), (9b) 

which translates into: 
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Ol(u) = 0.78a z (9c) 

and 

O2(u) = gz - 0"57701(u), (9d) 

when g(u) = gz and (~(u) = o z. 
Since the variogram is actually an estimated model of the spatial structure of the pro- 

cess Z, combining (8) and (9a) provides an estimate of the scale parameter | of the 
areal rainfall distribution: 

or 
1/2, 

~)IA = (~)IZ --.608/AeI~AY(U, u') dudu' (10a) 

where |  is the scale parameter of the point rainfall distribution. 

The location parameter O2A is estimated as: 

~2A = ~A -- 0"577(~1A (10b) 

3.3 The non-stationary case 

In regions where the spatial variability of rainfall is large with respect to the distance of 
interpolation, it would be unrealistic to assume that both gz and (y2 are constant. An 

example is given in Fig. 1, where a map of the scale parameter ~)1 is drawn for a region 
of rather rugged topography. If one focuses on the watershed located in the southern part 
of the region, it is impossible to assume that Ol(u) (and hence (~(u) according to relation 

(9a)) is constant. Equation (9a) does not hold and thus any direct computation of (y2 

using Eq. (8b) is precluded. A natural step would be to turn to a GC in order to account 
for this non-stationarity, but this move raises three objections. (i) As stated in Section 2 
ordinary kriging often proves as efficient as universal kriging in terms of interpolation 
accuracy, even though a non constant drift is present at large scales. (ii) The inference of 
a GC allows the computation of the variance of the linear combination F.)~iZi that filters 

out the drift (it does not however allow the computation of the variance (~2). (iii) GC's 

account for the spatial variation of gz but not for that of (~2. Consequently, rather than 

resorting to a sophisticated model of the covariance function, it is more suitable to find a 
way to both take into account the variability of (~2 in space and to obtain a good, however 

rough, estimate of the correlation between any two points of the area A. Furthermore, 
since in real life applications Z is replaced by an estimate, a practical step consists of 
using the linear combination of the observed RVs: 

N 
Za = ~ ' i Z i  , (11) 

i=1 

the variance of which is used as an approximation of (~2 as, 
N N 

Var{ZA} = y~ ~;.;.~i~jCov(Zi,Zj). (12) 
i=lj=l 
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The weighting coefficients ~-i are computed by solving a linear system, such as kriging. 

Denote gij the value of g for two RVs Z i and Zj~ and P6 the correlation between these 

two RVs. Then Eq. (7) leads to: 

PO = 1 - gij 

or  

C o v ( Z i J j )  = Pij 'oicYj,  

where 02 and 02 are respectively the variances of Z i and Zj .  Making use of this relation 

in Eq. (12), yields: 
N N 

~A ~ = Z Z~,~jPij'~i~j 
i=lj=l 

or  

N N 
6A 2 = ]~ X~'i~j( 1 - gij)Oicij.  

i=lj=l 

3.4 Appl ica t ion  to the G u m b e l  dis tr ibut ion 

The Gumbel distribution is widely used in extreme rainfall analysis. It constitutes a good 
example in detail of the application of the above expressions to a particular model. Sub- 
stituting into Eq. (9a), it is possible to compute O1A" 

+IA = - g i j )OiOj  ~ . (13) 
ti=lj=l J 

From Eq. (11) it is straightforward to estimate IXA as: 

N 

~A = Z X i ~ i  , 
i=1 

and Eq. (9b) takes the form of, 
N 

O2A = ~_~i~i  -- 0-57701A" (14) 
i=1 

The two parameters of the Gumbel distribution of the areal rainfall are thus identified. 
The methodology is valid for any distribution which is a function of the first two 
moments of the random variable only. 

3.5 E x a m p l e  

Following a comprehensive study of the rainfall series at various time steps (1 to 24 
hours) over the Cevennes region (south eastern France), Slimani and Lebel (1986) found 
that the EV1 distribution fits the experimental distribution of the point rainfall monthly 
maxima well. The study was limited to the fall season (September-October-November) 
to guarantee climatological homogeneity of the data, this season being the period of 
major rainfall events. This study led to the contour mapping of the scale parameter of the 
EV1 distribution used as an index of the extreme rainfall risk on which the gradex 
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method relies (Obled et al. 1986). In so far as they give a quick indication on the value 
of 01 at any given point, such maps are very usedful (see another example in Laborde 
(1984)). They do not however provide a direct and reliable estimate of Ola when the 
surface of A is large with respect to the spatial variability of 01. The availability of a 
method allowing for the direct computation of a reliable estimate Ola based on some 

point values Oli, is thus a complement of great practical interest. In this respect and in 
order to assess the performance of the method proposed above, it was decided to compare 
three estimates of the scale parameter OlA of the Gumbel distribution of the areal rainfall 
monthly maxima over a few watersheds, the surface of which ranged from 150 to 550 
kna2: 

(O1A) t is obtained by fitting the EV1 distribution to the experimental distribution of the 

estimator Za of the areal rainfall. ZA is computed using the climatological kriging 
method as described in Lebel and Bastin (1985). 
(OlA)* is the mean of the point rainfall distribution parameters Oli, i = 1, n 

(O1a) g is computed using Eq. (13) and the climatological variogram used in previous stu- 

dies by Lebel and Bastin (1985). This variogram is a spherical model, the range of which 
is approximately given by the following relationship: 

R = 25t ~ 

where R is the range in km and t is the duration of rainfall accumulation in hours. 
In order f o r  ( O 1 a )  t t o  be a good estimate of OIA , the areal rainfall Z A has to be com- 

puted with as dense a network as possible. To fulfill this requirement, data from the 
period 1971-1980 were chosen. This period is shorter than the one on which the contour 
mapping of the Fig. 1 is based, but a greater number of recording raingages is then avail- 
able over the area of interest (18 against 13 in 1966 for instance), which means a gage 
area (Ag) of about 100 km z (Fig. 2). 

HOURLY RAINFALL(MM) : SCALE PARAMETER 
OF THE GUMBEL DISTRIBUTION 

0 i0 20 30 40(kin) 

MONTHLY MAXIMA: S E P T - O C T . - N O V  0 4 8 12 I~ km "5  

Figure l Figure 2 

Figure 1. Contour mapping of the scale parameter of a Gumbel distribution fitted to the observed point 
rainfall monthly maxima (1966-1980) of the fall season (Cevennes region of France) 

Figure 2. Recording raingage network over the Gardon watershed 
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Figure 3. Fitting of the Gumbel distribution to monthly areal rainfall maxima. The areal rainfall is 
estimated by kriging of the rainfall measured at the 18 raingages shown in Fig. 2 

Prior work by Lebel and Bastin (1985) showed that with such a density in this region, 
the theoretical variance of estimation error O'2(ZA-ZA) varies from 0.001 to 0.04 

depending on the watershed area. Considering these low values of the scaled variance of 
estimation error, it may be acceptable to approximate the distribution of Z A by that of ZA, 

keeping in mind that the variance of ZA slightly underestimates that of Z a. The hourly 

values of ZA, were computed for three watersheds and for all the significant rainfall 

events of the fall season over the period 1971-1980. These values were then aggregated 
to make up samples of 2, 4, 6, 12, and 24 hour rainfalls. It was then possible to plot the 
experimental distributions of the 30 monthly maxima for the various time steps which are 
fitted well by the EV1 distribution for all three watersheds (Fig. 3). It is especially 
noteworthy that the goodness of  fit is as good or better than that of  most fitting to point 
rainfall series. It may consequently be concluded that in this region the EV1 distribution 
is a depending model of the monthly maxima areal rainfall distribution for watersheds of 
which the area is less than 1000 km 2. Thus (O1a) t is considered the reference scale 
parameter to which are compared the two other estimates (O14)g and (O1a)*. 
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In the first step (O1A) g and (Ota)* are compared with the network of 18 stations used 

to compute ;~A and are compared to (O1A) t. The values of (O1A) g are close to the refer- 
ence values, while (O1a)* overestimates them (Table 1). This is a direct consequence of 

the implicit assumption of a perfect correlation between all the stations underlying the 
computation of (Ola)*. 

In the second step two networks of lower density were used to test the robustness of 

(O1A) e and (O1a)*, while (Oia) t remained the reference value. The first network is 

made up of 13 stations (#1 to 13 in Fig. 2) operated at least since 1965, and the second 
one of  8 stations (#1 to 8 in Fig. 2) operated since 1963. For the purpose of comparison 
with (O1a) ~ the values of the point estimates O1 computed from the period 1971-1980 
were kept, even though better estimates were available using the full record length. In 
fact, as can be seen from Table 2, there is a slight difference only between the point esti- 
mates computed from the period 1963-1980 and those computed from the period 1971- 
1980. It is clear from Figs. 4a and 4b that the lower the network density, the worse the 
performance of (OIa)*, while (Oia) g remains a close estimate of the reference value 

(O1A) t. These results are related to the decrease of the correlation between the point 

values used in the estimation process when the network density is reduced. Since the 
computation of (O1A)* implicitely assumes a correlation of one between these point 

values, the estimate performs relatively well when the correlations are high but rapidly 
worse as the correlation coefficients decrease. On the other hand, the steadily good 
behaviour of (Ola) g tends to support the idea that the climatological variogram used to 
estimate the correlation coefficients as a function of the distance between the point values 
is a robust tool. In other words the error introduced by modeling of structural function 
remains relatively small as compared to other errors involved in the estimation process. 

Table 1. Comparison of three estimates of the scale parameter of the Gumbel distribution (network of 18 
stations, values in ram) 

W#1(165 km ~) W#3,(545 km ~) , 
'"1 2 4 6 12 ...... "24 1 2 4 6 12 24" 

(hours) (hours) 
(O1A) t 7.7 14.1 20.7 25.2 34.1 56.2 8.1 14.3 21.8 26.5 34.6 53.3 
(01A) g 8.1 13.9 20.2 25.3 34.8 55.8 8.6 8.0 14.5 21.9 26.5 35.2 
(O1,0" 10.2 17.8 25.3 30.0 41.1 60.4 10.1 18.7 26.4 32.3 40.6 57.0 

(OlA)t: Scale parameter of the Gumbel distribution fitted to the monthly maxima of the areal rainfall esti- 

mates. 
(O1A)g: Direct computation of OiA using Eq. (13). 
(O~A)* : Arithmetic mean of the point rainfall distribution Gumbel scale parameters. Note: Data for W2 are 

omitted 

Table 2. Influence of the sampling period on the estimation of the scale parameter O1 

RAINGAGE Duration (hours) 
and Period 1 2 4 6 12 24 

4~10 1971-1980 9.4 t.4.t 20.2 27.2 41.1 64.8 
1961 - 1980 9.9 14.5 21.7 28.2 44.0 63.7 

#2 1971-1980 9.1 12.3 20.4 28.1 42.0 51.8 
1963-1980 8.6 11.7 19.2 25.4 38.5 52.2 

Ol: value of the scale parameter (mm) of the Gumbel distribution fitted to the point rainfall monthly max- 
ima (September, October, November). 
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Figure 4. Comparison of the three estimates of the Gumbel distribution scale parameter. 4a: 13 station 
network (#1 to 13 in Fig. 2). 4b: 8 station network (#1 to 8 in Fig. 2) 

4 Areal reduction factors 

4.1 General formulation 

The concept of  an areal reduction factor applies to areas over which the point statistics 
are assumed stationary. This means that the parameters O] and 0 2 of  the point rainfall 

distribution are constants OIZ and O2z. On the other hand the rainfall CDF can be 

expressed as a function of  a reduced variate Y, such as: 

Y = ( Z  - -  O 2 ( O , ~ [ ) ) / O I ( ( ~ , I L L ) ,  

and reciprocally: 

Z = Y'Ol(6,~t) + O2(r 

where ~t and ~ are the mean and the variance of  the random variable. 
The percentiles of  the point rainfall and of the areal rainfall corresponding to the pro- 

bability, P,  of  non exceedance are: 

Z(P) = Ye "O1Z -t- O2Z, 

and 

ZA(P ) = Yp'O1a + 02A. 

The areal reduction factor is a function of  both P and A: 

K (P,A ) = ZA (P )/Z(P ), 

or  

K(P ,A ) = 01A/|  P + O ~ / 0 1 a ) / ( Y p  + 02Z/O1Z)] , 

w h i c h  c a n  b e  w r i t t e n  a s ,  

K(P,A ) = [(O1a/O1z)'Yp + 02A/O2Z]/[Yp + 02z/O1z ] (15) 
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4.2 Application to particular distributions 

a. The Normal distribution. In this case we have: 

O l = o  and O2 = [L. 

Thus: 

O1A/O1z : OA/ffZ, 

or: 

O1A/O1z = F(A) 

with: 

1 I~a ~(u ,u') dudu" ]1/2, 
r (A)=  1 A2ff2 

and 

OZA/O1Z ---- 02Z/O1Z ---- CV 1, 

where C v is the coefficient of variation of Z. 

This leads to the following expression for the areal reduction factor: 

C~ 1 + r(A)(Y e) 
K (e  Ct ) - 

c ~  ~ + ( re )  

b. The Gumbel distribution. The parameters O 1 and 02 are such as: 

O 1 = 0.78o and 02 = Ix - 0.57701, 

or: 

O2z/Olz = 1.28Cv 1 - 0.577 

O2A/Olz = 1.28C~ 1 - 0.577r(A), 

and expression (15) becomes: 

C~ 1 + r(A )(O.78Yp - 0.45) 
K(P,A ) = 

Cv 1 + (0.78Yp - 0.45) 

(16) 

(17) 

(18) 

4.3 Assessment o f  r(A ) 

Function r(A) is a function of both the surface A and the variogram T. The question of 
infering a variogram has been widely addressed in the literature. Several practitioners of 
geostatistics have pointed out that, in rainfall studies, a good estimation of the spatial 
correlation at the distances used in the interpolation process is a major factor, the func- 
tional type of the variogram being of less importance. It is noticeable that Rodriguez- 
Iturbe and Mejia (1974) came to the same conclusion when adjusting a spatial correlation 
function for the purpose of estimating long term" areal mean rainfall. Among the 
variogram models corresponding to relations (5a) and (5b), two are very often used: 

1) the spherical model: 

T = o213/2(h/~) - l/2(h/~) 3] 0< h <]3 

y = ~z 2 h > ~ (19) 
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where [[3 is the range or the decorrelation distance, and 

2) the exponential model: 

y = o2(1 - e - h / P ) .  (20) 

The analytic treatment of Eq. (16) is possible for these two models, when A is a simple 
geometrical form (such as a rectangle, see Serra (1976)). As long as the surface area is 
small compared to 132, [1 - r(A)] is well approximated by a power law function of A (Fig. 
5): 
For spherical model: 

1 - r ( A )  = 0 . 3 9 9 ( A U 2 / 1 3 )  ( r  s = 1) 

1 - r ( A )  = 0.434(A 1/2/13) ( r  s = 2) 

1 - r(A)  = 0.484(A uz/13) (r s = 3) 

For exponential model 

1 - r ( A )  = 0 . 2 4 5 ( A 1 / 2 / 1 3 )  ( r  s = 1) 

1 - r ( A )  = 0.265(A1/2/13)  ( r  s = 2)  

1 - r ( A )  = 0.295(A 1/2/13) ( r  s = 3) 

where r s is the side ratio of the rectangle. 
For a square surface, these expressions reduce to: 

1 - r ( A )  = 0.4A1/213 -1 (21a) 

and 

1 - r ( A )  = 0 . 2 5 A  1/2~1-1 ( 2 1 b )  

When the above range of the spherical model is equal to 1.6 "13 (exponential model), the 
behaviour of the two models at small distances is equivalent (Fig. 6), and the above 
expressions are equal. The increase of [1 - r(A)] remains lower than 10% for rectangles 
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Figure 5. Evolution of the correction factor 1 - r(A) with the scaled area A/]32 

Figure 6. Comparison of the spherical and exponential models having same sills. The range of the spheri- 
cal model is equal to 1.6 times the shape parameter ]3 of the exponential model 
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Figure 7. Data location and topography of the Nancy region 

of which the side ratio is less than 2. For the Gumbel distribution, a rough assessment of 
K(P,A) may thus be obtained using a first guess of the decorrelation distance of the pro- 
cess and expression (21a) which leads to: 

K(P,A) = Cvl  + (0"4 A ~ ) ( 0 ' 7 8 r e  - 0.45) 

C~71 + (0.78g e - 0.45) (22) 

Equation (22) is a function of C v and [3 only and holds for many of the shapes normally 

found in real life applications. The estimated value of C v comes from the analysis of 

long term series, while the study of the spatial variability of W (see Eq. (6)) provides the 
value of [3. This latter study also permits the fitting of a variogram model possibly better 
suited to the data than the spherical one. In such a case a better estimate of [1 - r(A)] is 
obtained by a numerical integration of the variogram over the surface A, and used in Eqs. 
(17), (18) to compute K(P,A) more precisely. 

4.4 Example 

The data of 4 raingages in the urban area of Nancy (Eastern France) covering an approxi- 
mate area of 50 km 2 (Fig. 7) were recorded for eight years. Despite the few stations 
available, it is possible to estimate the areal reduction factors by inferring the structural 
function of the rainfall process, a computation that would have been difficult to carry out 
by empirical methods. This inference is based on the rainfall events having yielded more 
than 2 mm in one hour or 5 mm in one day at one raingage at least. This selection pro- 
cedure guarantees, to a certain extent, the meteorological homogeneity of the data, with 
no marked seasonal pattern. The resulting sample includes 500 rainfall events, with a 
total of 5700 hours of observations at each raingage. The rainfall depths are aggregated 
over 1, 2, 3, 4, 5 and 6 hour durations and the correlation coefficients are computed for 
the six durations and for each pair of raingages (Table 3). 

Whatever the duration considered the amplitude of the mean intervals never exceeds 
+8% around the mean value, and that of the variance intervals never exceeds +11% (e.g. 
z = 7 . 3 + 8 %  and ~yz=29.8+8% in 1 hour, or z=12.6+_6% and ~yz=30.6_+11% in 4 

hours). It is thus assumed that the process is stationary, permitting the use of the correlo- 
gram as well as the variogram for characterizing the spatial structure of the process. Pre- 
vious studies by Lebel (1984) and Laborde (1986) showed that in many regions of 
France, the l] parameters of the models (19) and (20) vary as a power type function of the 
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Table 3. Correlation coefficients compu~d with 5700 hours of observation 

Distance h Duration (hour) R~ngages 

(km) 1 2 3 4 5 6 
5.08 .57 .68 .72 .76 .79 .80 1-4 
5.56 .53 .63 .67 .70 .75 .79 3-4 
5.61 .50 .57 .61 .63 .66 .69 1-2 
5.80 .56 .66 .71 .76 .78 .81 1-3 
7.47 .50 .56 .58 .61 .65 .67 2-3 

10.13 .44 .50 .51 .54 .56 .59 2-4 

duration t. Selecting the exponential  model  and combining Eqs.s (5b) and (20), the 
correlogram model  is thus a function of  both h and t: 

p(h ,t) = exp(-h/at b) 

The estimation of  a and b is carried out by minimizing the sum of squares of  the differ- 
ences between the Z Fisher transform of the theoretical and experimental  correlation 
coefficients (Z = 1/2Ln(1-p)/(1 + p)). This yields the fol lowing model: 

p(h,t)  = exp(-h/9.3t~ 

which is represented in Fig. 8, along with the experimental  values and the 90% confi- 
dence interval based on the residual standard deviation of  the correlation between Z 
transformed variates. 

As P tends to 1 in Eqs. (17) and (18), YP tends to infinity and thus: 

K(P --- 1, A) = 1 - (0.25"~-)/(9.3t ~ 

o r  

g(e = 1, A )  = 1 - (-~fA-)/(37t 0"43) 

It is worth noting that this expression is very similar to that resulting from an experimen- 
tal study carried out in the Paris region by the French Ministry of  Agriculture (1980): 

K(P = 1, A)= 1/(1 + ffA-/(30t~ 

It can be seen from this example that a statistical approach permits the computation of  
meaningful  areal reduction factors from a limited number of  raingages. Present studies 
using a more dense network of  recent telemetered stations seem to yield results in agree- 
ment with the above expressions. 
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Figure 8. Correlation coefficients as a function of distance and duration 
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5 Conclus ion  

Considering the point rainfall as a spatially organized random process, the spatial correla- 
tion of  which may be characterized by a structural function, it was shown that the param- 
eters of  the areal rainfall pdf  can be deduced from the parameters of  the point rainfall 
pdf 's ,  estimated at the measurement  stations. The fundamental idea is the combination of  
the information provided by long duration series which are scarce in space with that pro- 
vided by the more dense networks which are in operation since a few recent years. In 
addition to classical t ime series analysis techniques, geostatistics provides a broad frame- 
work permitting the analysis of  various types of  random processes: stationary/non sta- 
tionary; isotropic/anisotropic. The "climatological  kriging" technique is one of  the 
methods developed within this f ramework and further permits hydrologists to take advan- 
tage of  the multi-realization context  of  most  hydrometeorological  studies. A preliminary 
step was to verify that the same model  fits all the point rainfall series distributions and 
then to assume that this model  stands for the areal value distribution as well. Given this 
assumption and if the process is stationary, a direct computation yields values of  the unk- 
nown parameters of  the areal rainfall model  based on the values of  the various point ra in-  
fall model  parameters. On the other hand, when the process is not stationary, cl imatolog- 
ical kriging permits the derivation of  a method yielding parameter estimates that were 
shown to be close to some reference values selected for comparison purposes. The 
method proved to be also suitable for the computation of  areal reduction factors in a very 
general way. 
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