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Abstract

We study the probabilities that monitoring systems will be capable of detecting subsurface contaminant plumes. The analysis
is an extension of previous research which focused on detection of ore bodies and contaminant releases to the subsurface using prob-
abilistic models; the previous research assumed that releases to the subsurface are elliptical in shape, and that detections are absolute
when a monitoring point intercepts a release. New features are introduced into the analytical framework that include irregular, rather
than regular, sampling arrays, as well as nonuniform probabilities of a release occurring at a particular location of the site. These
features allow the user to optimize the location of sampling devices based on site knowledge, by concentrating monitoring locations
where a release is believed more likely. The stratified Monte Carlo approach used in this paper is tested on a number of cases with
uniform and nonuniform sampler distribution and release probabilities. The results provide statistical probabilities that one is capa-
ble of finding releases of different sizes with a system of monitoring points.

Introduction

Monitoring hydrologic conditions below waste disposal sites
is desirable to minimize future environmental damage during oper-
ational and post-operational time periods. However, methods for
evaluating monitoring system efficiency can be difficult to apply
without ready access to objective analytical techniques. Designers
and regulators must rely solely on training and experience to guide
them toward a decision on acceptability. Given the range of expe-
riences from person to person, subjective judgements could lead to
different decisions about the same monitoring strategy.

Analytical tools that provide more objective analyses could
assist the designers and regulators in their efforts to license and per-
mit disposal facilities from operational through post-operational peri-
ods. The tools could be used to study what happens to a monitor-
ing system if a monitoring point is removed from service (e.g., when
a sensor fails), and whether it is financially worth the cost of
adding a new monitoring point. Moreover, to minimize cost and
improve the ability of the monitoring system to detect releases to
the subsurface, it is important to optimize the number and placement
of monitoring devices. Because contaminants may leak in some
spots and not in others, monitoring systems need to be designed so
that the likelihood of intercepting a contaminant plume is greatest
for the number of devices available, Our research focuses on objec-
tively evaluating monitoring systems installed in the vadose zone.
This is analogous to detecting mineral deposits in geologic media
(Gilbert 1987, Freeze et al. 1992; Keller 1996). In their studies, the
latter authors also considered definitions of reliability. Similar
studies were done by Drew (1967, 1979), who discussed pattern
gridding for locating petroleum reserves in the United States. He
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considered optimum spacing of exploration boreholes, search the-
ory, and detection probability.

Zirschky and Gilbert (1984) and Gilbert (1987) presented
nomographs related to the probability of intercepting a randomly
located elliptical release given a rectangular or triangular sam-
pling pattern. They assumed that only a very small proportion of the
area was sampled and that the detection is clearly “yes” or “no.”
Calculations were performed with the Elipgrid program (Singer
1972). The plume used in Gilbert’s work was elliptical in cross sec-
tion; detection was assumed if a sampling grid point intercepted the
ellipse. Nomographs relate, for example, the probability that the
plume will be missed by the sampling points (called consumer
risk) given an ellipse radius. the ratio of the semi-major and minor
axes, the sampler spacing, and the sampling pattern. The probability
of a hit was plotted as a function of the ratio of the sampler spac-
ing to the release radius, with one curve for each drilling pattern and
ellipse eccentricity. Davidson (1995a, 1995b) developed and tested
a user-friendly version of Elipgrid called Elipgrid-PC. With this pro-
gram, one can calculate, for a rectangular or triangular sampling pat-
tern, the probability of at least one hit assuming an ellipsoidal
plume of given size and orientation. Other options allow the user
to solve for the grid size required to find a plume of a given size and
shape at a given probability, or for the radius of the smallest release
likely to be detected given the grid size and probability of a hit.

Monitoring network design also has been used to optimize the
placement of monitoring points for detection monitoring at disposal
sites. These points would be a component of a monitoring plan most
likely implemented under U.S. EPA’s RCRA program, where
ground water impacts from the disposal site have not occurred
and potential future impacts are sought to be minimized. Integer pro-
gramming models have been used (for example, Loaiciga 1989 and
Meyer et al. 1994) to balance out competing objectives of the
monitoring system, such as minimizing the number of wells, max-
imizing the detection of contaminant plumes, and minimizing
costs. These models can be incorporated into ground water flow and
solute transport models of various complexities. A goal of the inte-
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ger programming approach is to minimize an objective function that
calculates the success (or failure) of the monitoring system to
detect a plume subject to a number of competing objectives, sev-
eral of which were listed previously. This approach can be made
more all-encompassing by including Bayesian updating of parameter
values based on prior knowledge of site-specific characteristics
(Freeze et al. 1990; Small 1997). Bayesian updating reduces param-
eter uncertainty, and thus risks associated with making decisions
about the number and locations of monitoring points and sam-
pling frequency. These two approaches (integer programming and
Bayesian updating) were shown to yield optimized monitoring
locations for systems presented in their examples.

However, the cost of using these integer programming and
Bayesian updating approaches is manifested by a need for more
complicated model development and data needs. For many ground
water or soil contamination problems, this level of complexity
may not be warranted or possible. For those cases where a regula-
tor, consultant, or researcher seeks to gain insight into monitoring
issues, the simpler approach described herein may be more useful.
Therefore, the objective of this study is to extend the work of
Gilbert (1987) and Davidson (1995b). We calculate the probability
of a randomly placed elliptical plume intersecting at least one of a
number of fixed location samples.

Theoretical

Field and Release Probability Function px(x,y)

A rectangular field is considered (although in principle, any
shape can be taken). In Figure 1, the field is taken of width w and
length 1. An array of n sampling positions are located at coordinates
(XY 1) (5,905 . . (X,,y,)- Normally, all samplers would be within the
field boundaries, although they could exist to the outside.

Within the field, the probability of a release p(x,y) is defined
with normalized integral of 1, i.e., the integral of p(x,y) over the
field is

[

The simplest case is when there is an equal probability of a
release occurring anywhere in the field. This uniform probability
function is simply a constant, p,(x,y) = (w £)~!. However, if prior

£ W
f p(x.y)dxdy = 1 (1)
0
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Figure 1. A rectangular field of width w and length ¢. The dots denote

sampler locations and a release is shown as the shaded ellipse with a
semi-major axis of r, and orientation angle 0.

knowledge suggests that release is more likely to occur in one
part of the field than another, this can be reflected in choice of
p(x,y). For example, a higher probability may be assigned to the
area corresponding to an original burial trench or along a hauling
path.

Figure 2 shows two areal probability functions over a square
field. On the left is a uniform distribution (with equal probability
of a release anywhere in the field). This is the case considered
implicitly by Gilbert (1987) and Davidson (1995a, 1995b). Also
shown is a binormal release probability with the maximum prob-
ability in the center (i.e., along x = 0.5). The standard deviation is
much smaller in the x-direction (o, = 0.1) than in the y-direction (0y
= 1), where the values for o, and o, are normalized according to
the field dimensions. The probability drops off rapidly from the cen-
ter in the x-direction and only gradually in the y-direction. Other
probability distributions could be chosen, including empirical as well
as specified continuous functions.

A Uniform

B Binormal

Figure 2. A uniform and binormal probability distribution. The binormal distribution is centered at x = 0.5 and y = 0.5 with standard devia-

tions of 0, = 0.1 and o, = 1.
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/V
Device with finite
detection radius

Figure 3. A circular release and a device with a finite detection radius
to the outside. The effective radius r* is the sum of r and the detection
radius of the device.

Sampling Device with a Finite Detection Radius

An assumption of the analyses by Gilbert (1987) and Davidson
(1995a, 1995b) is that each sampler is sensitive only at a point and
detection occurs when that point is included within the release
ellipse. This is addressed briefly by Keller (1996). For a finite
detection radius and a circular release, the result is the same as if
the radius of the release r is enlarged by the sampling radius of this
device. This is shown as r* in Figure 3. The sampler is ineffective
only when it is outside of r*. For an elliptical release the same prin-
ciple applies.

Parameterization of an Elliptical Plume
A contaminant plume is assumed to be elliptical (as in Gilbert

[1987] and Davidson [1995a, 1995b]). The ellipse is character-
ized by the major semi-axis r,, an aspect a, defined as the ratio of
the minor to major axes and, finally, an orientation angle 8 chosen
between the major axis of the ellipse and the horizontal. Such an
ellipse is depicted in Figure 1. Whether the ellipse intersects any
sampling points obviously will depend on sampler locations, where
the ellipse is placed, and the radius, aspect, and orientation of the
ellipse.

For an ellipse centered at (x_.y,), it becomes necessary to
know whether a sampling point (x,y,) is intersected, i.e., falls
within the boundary of the ellipse. With this in mind, it is conve-
nient to define a coordinate system (x’,y"), centered on the ellipse
with x’ directed along the major axis (Figure 4a). The sample
point in terms of the new coordinate system is (x/,y,") with
(Davidson 1995b, esp. p. 14):

%, = (x, = %) cos 0 + (y, ~ y,) sin @
and

The equation of the ellipse can be written in the form

"2
o+ O @)
aC
with r, and a_ defined as before (of course, for a circle, a, is unity
and the orientation angle can be taken as zero). The point (x.,y,")

will fall inside or on the boundary of the ellipse provided
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Figure 4. Coordinates oriented with the release ellipse (x', y') centered over pixel i,j (a). An ellipse of radius of r, will result in one point on the
curve showing probability of a hit (b). The release radius r, is defined as the length of the major semi-axis of the ellipse.
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Monte Carlo Strategies

A Monte Carlo simulation is a method useful for many types
of problems. In this case, the method may be considered as a
numerical sampling technique which is repeated a large number of
times, in order to evaluate the probability of whether a sampling
point intercepts an elliptical release. Although Elipgrid and the
Elipgrid-PC programs originally used geometric relationships to
determine whether a fixed-grid system intercepted a randomly
placed elliptical plume, a later version (Davidson 1995b) used a
Monte Carlo technique for the same problem.

For a simplified Monte Carlo simulation (Hammersley and
Handscomb 1964), a random point (x,,y,) is chosen on the field of
interest according to the probability distribution p(x,y) describing
the release. If the release probability distribution is totally ran-
dom (Figure 2a), then (x,,y,) is chosen from a uniform distribution,
If the distribution along x and y each satisfy a normal (or some other)
distribution (Figure 2b), then (x,,y,) would be chosen following that
distribution. Once the random point is chosen, then Equation 5 is
used to determine whether any of the existing sampling points fall
under the ellipse. If so, a value for a hit h, = 1 is assigned; other-
wise the ellipse does not fall over any of the points and h, = 0.
Additional points (X,,y,), (X3,y3),...(X,.y,) are chosen and h,,h,,...h
are found. The probability of a hit for randomly chosen release is
approximated by averaging the n values of h,

] n
P~ HEhj 6

i=1

As n becomes large, P converges to the true probability.
Although this Monte Carlo scheme is simple in principle,
generally, stratified methods are more efficient (Hammersley and
Handscomb 1964). With this in mind, we choose a stratified scheme
by dividing the field into n = (nx)(ny) pixels arranged in nx columns
and ny rows (Figure 4a). An individual pixel i,j with center at
(x,yy) is shown. An ellipse is centered over the center of each
pixel and the hit value h; = 0 or 1 determined as above. The prob-
ability of a randomly placed ellipse must take into account the spa-
tial dependence of the release probability p(x,y) and P becomes

nx

ny
p = E E hijps(xi’yj) BA; )
i=1j=1

where ESAij is the area of pixel i,j. As nx, ny become large, P
approaches the true probability P given by

£ w
P = fo fo h(x,y) py(x.y) dxdy (8)

The function h(x,y) depends on sampler locations and the radius,
orientation, and aspect of the release; the function p,(x,y) depends
on the release probability distribution.

If results are of interest for more than one radius of an ellipse,
the Monte Carlo scheme can be repeated to define the probability
as a function of radius of release (Figure 4b). Although radius is an
obvious variable for plotting probability of a hit, other variables
could be used, such as sampling density, aspect of ellipse, etc.

Numerical Examples

A program “detect.for” was written to carry out the stratified
Monte Carlo scheme just described. Normal probability functions
needed for defining py(x,y) were from Abramowitz and Stegun
(1964, esp. Equation 26.2.27). Sampler locations are read by a
data file and probabilities of at least a single hit are calculated for
an array of r values. All of the following examples were run with
10,000 pixels.

Example: Uniform Sampler Distribution and a Circular Release

A uniform 4 X 4 sampling pattern over a square field is con-
sidered first. The positions are shown in Figure 5 as well as contours
showing the distribution of distances away from the sampling
point. The maximum distance d,_,, away from the samplers occurs
at internal points equidistant from four sampling points and at cor-
responding points on the boundary. For the square field, each point
is centered in an equally sized pixel and d, . is

1 1
d

max 20.5nX = 2045ny = 0.177 (9)

A B
1.0
Minimum - _
distance *  Uniform
to samplers = 7 Binormal
< -
% -
£ 0.5 —
n —
8
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a
0.0 =TT
0.00 0.06 0.10 0.15

Release radius

Figure 5. Uniform array of 16 detectors in a square field (a) and probabilities of a hit for circular releases with a uniform and binormal release

probability (b).
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Figure 6. Probability of a hit for a release ellipse of r, with orientation
angles of 8 = 0, 45, and 90 degrees. The sampling grid is as in Figure
5a and the release probability is uniform.

The resulting probabilities of at least a single hit are shown in
Figure 5b for a uniform detector spacing and uniform release prob-
ability density function p(x,y) = (w€)~! (note length and widths of
field are € = 1 and w = 1). For a tiny release radius, the probabil-
ity of a hit is nearly zero. As the release radius increases, the prob-
ability value increases until it is impossible to miss withr=d =
0.177. Also, it is easy to show that when r is less than or equal to
0.5 Ax, no more than one sampling point can be intersected and the
probability of this occurring is the fraction of the area covered by
one circle overlying each sampling point, i.e., P is

nr?

P=E,2rsAx=Ay (10)

This result provides an analytical expression for checking some of
the Monte Carlo results. For example, at a release radius r =
0.5 Ax = (0.125, the theoretical result is P = /4 = 0.785, which can
be compared to the plot.

Changing to the binormal release probability function given by
Figure 2b does little to change the results for the uniform distrib-
ution of sampling points. This is illustrated by the solid line in
Figure 5b which falls nearly on top of the results calculated for the
uniform probability distribution.

Elliptical Release Example with a Square Sampling Pattern
The aforementioned probability calculations are repeated for
ellipses where the ratio of the minor to major semi-axes is 0.5
(i.e., aspect = 0.5). For ellipses with major-semi axes oriented at
6 = 0 and 0 = 45 degrees, the results are shown in Figure 6 for a uni-
form distribution (this case is also included in Elipgrid, Davidson
1995a). The probability for small radii are independent of the
direction, as the “area of interception” for each ellipse is exactly the
same. However, the probability is higher for the 45 degree orien-
tation as the radius becomes larger than about 0.12. As r becomes
still larger, both results converge toward a probability of 1. For an
orientation of 8 = 90 degrees, the results are exactly the same as for
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Figure 7. Eleven point sampler grid with three points along x = 0.5 (a)
and probabilities of a single hit for both the binormal and uniform
release probabilities (b). (The results for 16 samplers and a uniform
release probability are repeated from Figure 5b.)

0 degrees for a square sampling pattern. Results were all calculated
for the binormal probability distribution of Figure 2b, but are not
shown as they are essentially the same as for the uniform p (x,y) dis-
tribution.

Circular Release Example with Concentration of Samplers in
Zone of Higher Release Probability

In this case, an 11-point sampling pattern is chosen by first elim-
inating the samplers along x = 0.125 and x = 0.875 of Figure 5a.
Three points are then added along x = 0.5 to the remaining eight
points, as shown in Figure 7a. The probabilities of a single hit are
calculated as a function of r for uniform release probability and given
in Figure 7b. The result for the 16-sampler example is repeated for
a direct comparison. The 16 samplers, of course, lead to higher prob-
abilities of a single hit. The difference is especially striking as r
becomes large (0.1 to 0.25) with the large difference due to the fact
that no samplers are present in large regions to the left and right in
the field. However, a different result is found if the release is more
likely to occur along x = 0.5, in particular, with the release proba-
bility p,(x,y) defined as the binormal function of Figure 2b. In
this case, with the 11-point sampler pattern, the probability of a sin-
gle hit is considerably higher for smaller releases. For large r
approaching 0.15 or so, both the 11-point pattern and the 16-point
pattern are close to P=1.



0o 30 60
X (m)

Probability of a hit

Uniform
Binormal

0.0 1 T I T 1 I ! 1

0 3 6 9
Release radius (m)

Figure 8. A dense 224-sampler array (a) and probabilities determined for the uniform and binormal release probabilities of Figure 2 (b).

Dense and Irregular Sampling Point Array

In a final example, 224 irregular samplers are considered on a
50m X 50 m area. This represents an array of samplers in existence
as part of a field monitoring study at the Maricopa Agricultural
Center in Arizona (Young et al. 1996). The location of the samplers
are shown as Figure 8a. Included are samplers only 1 m apart on
three continuous transects—two in the y-direction and one in the x-
direction. These represent subsurface horizontal tubes used for
neutron thermalization determinations of soil water. An additional
less intense transect of greater spacing is shown in the y-direction,
as well as four additional but sparse transects in the x-direction. This
sampling array leads to probabilities of hits shown in Figure 8b for
uniform and binormal release probabilities. In this case, for small
release radii, the probability of a hit is much larger for the binormal
than for the uniform release probabilities. For example, compare
P = 0.4 to P < 0.2 at a release radius of 1 m for the binormal and
uniform cases, respectively. This reflects the higher probability of
arelease occurring along the center of the field for the binormal case,
which coincides with the greater density of samplers. Eventually,
for the large release radii (cf., r = 6 m or larger), the probability of
a hit for both cases is about the same and close to unity. In this case,
the release radius is approaching the maximum distance of any point
of the field to an adjacent sampler.

Sources of Uncertainty in Analytical Approach

We have identified three possible sources of uncertainty in the
analytical approach presented here, which are from (1) model devel-
opment used to predict contaminant plume locations and size (includ-
ing parameter and boundary condition uncertainties); (2) fitting of
the release probability map to the predicted contaminant plume; and
(3) the resolution (e.g., number of pixels) used in the search algo-
rithm. For the purposes of this manuscript, we have not discussed
model errors and uncertainties; though we believe that the uncer-
tainties can be incorporated into the probability location map, sized
either conservatively large or small depending on the application.

Uncertainties from fitting the probability location map to the pre-
dicted plume can be significant. Though not presented in this man-

uscript, probability maps can be generated for multiple contaminant
plumes predicted for the same flow field. The maps can overlap one
another or be placed in disparate areas. Normalizing is performed by
summing values of p(x,y); (from Equation 1) for all releases, where
i varies from one to the number of probability location maps cho-
sen by the user. The Monte Carlo algorithm then proceeds as
described before. In this way, multiple, or odd-shaped, predicted
plumes can be more closely approximated than if a single location
map were used, reducing uncertainty from the fitting.
Uncertainties from pixel resolution were studied by taking
the example presented in Figure 7 (11 point, binormal), using the
binormal probability distribution from Figure 2b, and varying the
number of pixels from 10 to 10 million. We then calculated the root
mean squared error (RMSE) for each example, assuming that the
probabilities from the high-resolution example approached those
described by Equation 8. Figure 9 shows how the RMSE varies from
pixel resolution when compared to the high-resolution example. We
found that differences in detection probabilities decreased below 1%
for all release radii when the number of pixels exceeded 5000;
thus, we recommend pixel resolutions greater than 5000. Reducing
potential uncertainties further by increasing pixel resolution will
come at the cost of much higher computational effort, and may not
be justified. Moreover, computational errors due to roundoff and
approximations of probability functions become more critical.

Discussion

Determining the probability that a sampler array will intercept
an elliptical release has been demonstrated for a variety of hypo-
thetical examples. The results are dependent on the sampler loca-
tions, the radius of the release, and the aspect (eccentricity) and direc-
tion of the ellipse. Results are included for irregular sampling
patterns in a finite size field for both uniform and nonuniform
release probability density functions p(x,y). Previous methods
(e.g., Gilbert 1987 and Davidson 1995a, 1995b) considered only infi-
nitely large fields, a uniform release probability across the field, and
regular sampler patterns.
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Figure 9. Root mean squared error (RMSE) associated with reducing
pixel resolution. We assume that 10 million pixels approaches Equa-
tion 8, and the true probability.

For a regular pattern of samplers, the effect of the release
probability density was somewhat minor for most of the calculations
shown. This was true both for circular and elliptical releases with
aspects of 0.5 (defined as ratio of minor to major axes), indepen-
dent of the direction of ellipse orientation. However, when the
sampler points were concentrated in the high release probability
region, then the probability of a hit increased well above the uni-
form sampler pattern. This is shown in Figure 7. The effect will be
more pronounced for more extreme release probability functions
(i.e., releases with very high probabilities in localized regions,
with near-zero values otherwise).

Optimal sampling patterns can be developed to account for a
priori information about the field size, i.e., known subareas in the
field where releases were more likely to have occurred. The
approach suggests assigning new sampler locations or augmenting
existing sampler locations taking into account more of the known
historical information.

As discussed, the areal extent of measurement sensitivity of a
sampler may be taken into account by extending the radius of the
release ellipse by an effective radius of the sampler. Another more
difficult problem deals with the fact that sensors offer varying
degrees of reliability, so that the answer provided is not always a def-
inite “yes” or “no.” Sensor reliability may be addressed in part by
extending the analysis to include probability of multiple hits. This
would allow redundancy in the field monitoring system. Another
approach is to simply retire one or more sensors from the calcula-
tions, which would simulate failures or ineffective measurements.

This analysis can, in principle, be codified and added as a mod-
ule in saturated or unsaturated zone model packages. This could be
done with only a small amount of extra data input. Then, as the
model simulation progresses in time, and a contaminant plume
develops in the flow field, the module would represent the plume
as a binormal release function in the location predicted by the
model. Multiple plumes generated by the model could be represented
by multiple release functions. The module would then check pro-
posed monitoring locations in relation to the release functions and
determine the probability that the release intercepts a monitoring
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point. In this way, uncertainties in the detection algorithm are lim-
ited to uncertainties in the simulation itself. By treating certain model
parameters (such as hydraulic conductivity) as random variables with
known statistical properties, Monte Carlo flow and transport sim-
ulations can be performed to bracket conservative and nonconser-
vative estimates of transport rates; hence, detection probabilities like-
wise would be bracketed and constrained by the same restrictions
as the simulation model.
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