
\
PERGAMON International Journal of Heat and Mass Transfer 31 "0888# 0936Ð0946

9906Ð8209:87:,*see front matter Þ 0887 Elsevier Science Ltd[ All rights reserved
PII ] S 9 9 0 6 Ð 8 2 0 9 " 8 7 # 9 9 1 9 7 Ð 6

Free convection in oblique enclosures _lled with a porous
medium

A[ C[ Baytasa\�\ I[ Popb

a Istanbul Technical University\ Institute for Nuclear Energy 79515*Maslak\ Istanbul\ Turkey
b University of Cluj\ Faculty of Mathematics\ R!2399 Cluj\ CP 142\ Romania

Received 12 April 0887

Abstract

Detailed numerical calculations are presented in this paper for the steady!state free convection within an inclined
cavity _lled with a ~uid!saturated porous medium[ The inclined walls are maintained at constant but di}erent tempera!
tures\ while the horizontal walls are adiabatic[ To simplify the e}ort in matching the grid mesh with the inclined walls
of the cavity\ the computational domain is mapped onto a rectangular shape cavity using a non!linear axis trans!
formation[ The governing equations "in the stream function and temperature formulation# are expressed in the new
coordinate system and solved numerically using the ADI "Alternative Direction Implicit# _nite!di}erence method[ Flow
and heat transfer characteristics "stream lines\ isotherms and average Nusselt number# are investigated for a wide range
of values of the Rayleigh number\ inclined angle and cavity aspect ratio[ The present solutions for a vertical cavity are
compared with the known results from the open literature[ It was found that these results are in very good agreement[
We believe that these results serve as a reference against which other solutions for the present problem can be compared
in the future[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

Nomenclature

a cavity width
A aspect ratio\ equation "09#
` acceleration due to gravity
k e}ective thermal conductivity of the porous
medium
K permeability of the porous medium
L cavity length
n unit vector
Nu local Nusselt number
NÞu average Nusselt number
qw wall heat ~ux
Ra Rayleigh number\ equation "09#
t time
T ~uid temperature
Tc temperature of the cold wall
Th temperature of the hot wall
x\ y Cartesian coordinates
X\ Y transformed coordinates\ equation "2#[

� Corresponding author

Greek symbols
a e}ective thermal di}usivity of the porous
medium
b coe.cient of thermal expansion
DT temperature di}erence
o prescribed error
u dimensionless temperature\ equation "6#
n kinematic viscosity
j\ h dimensionless variables\ equation "6#
s ratio of heat capacity of porous medium to that of
~uid
t dimensionless time\ equation "6#
f inclined angle
c¹ stream function
c dimensionless stream function\ equation "6#[

0[ Introduction

The subject of thermal convection in porous media has
been studied extensively in recent years and the growing
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volume of work devoted to this subject has been amply
documented in the monographs by Nield and Bejan ð0Ł\
and Ingham and Pop ð1Ł[ This interest has been motivated
by its importance in many natural and industrial appli!
cations[ Prominent among these applications are heat
exchangers\ solar power collectors\ migration of moisture
through air contained in _brous insulation\ energy
e.cient drying processes\ underground spread of pol!
lutants\ grain storage\ food processing\ packed!bed cata!
lytic reactors\ ~ows in water!percolated soils\ cooling of
radioactive waste containers\ to name just a few[

Free convection in a rectangular porous cavity\ whose
vertical walls are maintained at two di}erent tem!
peratures or heat ~uxes and the horizontal walls are insu!
lated\ is a fundamental problem in thermal convection in
porous media\ which has received the attention of many
investigations[ Walker and Homsy ð2Ł\ Bejan ð3Ł\ Prasad
and Kulacki ð4Ł\ Beckermann et al[ ð5Ł\ Gross et al[ ð6Ł\
Lai and Kulacki ð7Ł\ Manole and Lage ð8Ł have con!
tributed some important theoretical results to this prob!
lem[ The problem is still of continuing theoretical interest
because it provides a simple geometry on which numerical
techniques may be tested\ even though exact analytical
solutions do not exist[

However\ relatively little work has been done on the
problem of free convection in an inclined rectangular
enclosure _lled with a porous medium[ An overview of
this problem has been documented in the review article
by Caltagirone ð09Ł and in other papers by Moya et al[
ð00Ł\ Vasseur et al[ ð01Ł and Shen et al[ ð02Ł[ Unlike the
porous rectangular cavity free convection ~ow problem\
the ~ow in an inclined cavity is not as simple to determine
because of the sloping walls[ In general\ the mesh nodes
will not lie along the sloping walls and\ as a result\ from
a programming and computational point of view\ the
e}ort required for determining the convective ~ow in an
inclined enclosure increases signi_cantly[

The present paper concerns a numerical study of the
steady free convection ~ow in an oblique cavity _lled
with a homogeneous porous medium[ Some ~ow and
heat transfer characteristics are determined for a large
range of inclination angles\ Rayleigh numbers and aspect
ratios[ To do it\ the computational domain is mapped
onto a rectangular shape cavity using a nonlinear axis
transformation as proposed by Liu and Guerra ð03Ł\ and
Facas and Mottioli ð04Ł[ The Darcy momentum and
energy equations are solved numerically using the Alter!
nating Direction Implicit "ADI# method proposed by
Douglas and Peaceman ð05Ł applied in the transformed
coordinate system[ Sample results of ~ow and heat trans!
fer characteristics are presented in graphical and tabular
forms[ Such graphs and tables can serve as a reference
against which other numerical solutions or experimental
data can be compared in the future for such inclined
cavities[

To the authors| best knowledge this general situation

of free convection in oblique enclosures has not yet been
investigated[

1[ Basic equations

The problem under consideration is shown in Fig[ 0"a#[
Two inclined isothermal walls at temperatures Th "hot#
and Tc "cold#\ and two adiabatic horizontal walls enclose
a ~uid!saturated porous medium[ The enclosure is of
width a\ length L and is inclined at an angle f with respect
to the vertical plane[ In the porous medium\ Darcy|s law
is assumed to hold\ the ~uid is assumed to be a normal
Boussinesq ~uid and the inertial e}ects are neglected[
Under these assumptions\ the conservation equations for
momentum "Darcy# and energy for unsteady two!dimen!
sional free convection ~ow can be written as\ see Nield
and Bejan ð0Ł\
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where x and y are the Cartesian coordinates measured in
the horizontal and vertical directions\ respectively\ t is
the time\ ` is the acceleration due to gravity\ a and K are\
respectively\ the thermal di}usivity and permeability of
the porous medium\ b is the coe.cient of thermal expan!
sion and s is the ratio of heat capacity of porous medium
to that of ~uid[ The stream function c¹ is de_ned in the
usual way u � 1c¹ :1y and v � −1c¹ :1x[

In general\ no rectangular grid mesh can be generated
that _ts all four surfaces[ However\ the computational
domain can be mapped onto a rectangular domain\ as
shown in Fig[ 0"b#\ by using the following trans!
formation\ used also by Lin and Guerra ð03Ł and Facas
and Mottioli ð04Ł\

Fig[ 0[ "a# Physical model and coordinate system[ "b# Trans!
formed computational domain[
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X � x−y tan f\ Y � y[ "2#

Note that using this transformation one has
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With "2# and "3#\ equations "0# and "1# became
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Further\ we introduce the following dimensionless
variables

j � X:a\ h � Y:"L cos f#\ t � t"a:saL cos f#\

c � c¹ :a\ u �"T−Tr#:DT "6#

where Tr �"Th¦Tc#:1 is a reference temperature and
DT � Th−Tc with Th × Tc[ Expressed in these variables\
equations "4# and "5# transform to
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where A is the cavity aspect ratio and Ra is the Rayleigh
number which are de_ned as

A � L:a\ Ra � `KbDTa:"an#[ "09#

Using "3# and "6#\ the relevant hydrodynamic and ther!
mal boundary conditions of equations "7# and "8# can be
written as
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The problem is to _nd the functions c and u which
satisfy the governing equations "7# and "8#\ and boundary
conditions "00#[ The solution of this problem is depen!
dent on the parameters A\ Ra and f[

Having determined c and u\ we can evaluate the heat
~uxes from the oblique walls

qw � −kn =9T "01#

where k is the thermal conductivity of the porous medium
and n is the unit vector normal to the oblique walls

n � "−cos f\ sinf#[ "02#

Using "6#\ "01# and "02# we can express qw as
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The local Nusselt number\ which is de_ned as
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then becomes
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Finally\ the average Nusselt number is given by

NÞu"j# � g
0

9

Nu"j\ h# dh[ "06#

2[ Results and discussion

The coupled equations "7# and "8# along with the
boundary conditions "00# are solved numerically using
the Alternating Direction Implicit "ADI# method
developed by Douglas and Peaceman ð05Ł for heat ~ow
problems and adapted by Wilkes and Churchill ð06Ł for
natural convection in enclosures[ The method leads to
three diagonal systems of simultaneous equations that
are much easier to solve than the penthadiagonal systems\
which arise when fully implicit methods are used[ The
iteration process is terminated when the following cri!
terion is satis_ed

s
i\ j

=xn¦0
i\ j −xn

i\ j = >s
i\ j

=xn¦0
i\ j = ¾ o "07#

where x stands for c or u^ n denotes the iteration order
and o is a prescribed error "o � 09−4#[ A good description
of this method is given in Baytas ð07Ð19Ł and it is
unnecessary to repeat the details here[

Numerical results were obtained for a cavity with an
aspect ratio A � 9[6\ 9[8 and 0[9 "square cavity# when
the inclination angle f � 9>\ 204>\ 229>\ 234> and
259>[ The values covered for the Rayleigh number are
Ra � 09\ 099\ 0999\ 4999 and 09 999[ Tables 0 and 1
compare the accuracy of the average Nusselt number
Nu for A � 0[9 and f � 9> "vertical enclosure#\ with
A � 9[6 and 9[8\ and di}erent values of the Rayleigh
number with some numerical solutions reported by
di}erent authors[ It is seen from these tables that the
agreement between the present and the previous results
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Table 0
Comparison of Nu for A � 0 and f � 9> with some previous
numerical results

Ra

Authors 09 099 0999 09 999

Walker and Homsy ð2Ł 2[986 01[85 40
Bejan ð3Ł 3[1 04[7 49[79
Beckerman et al[ ð5Ł 2[002 37[8
Gross et al[ ð6Ł 2[030 02[337 31[472
Manole and Lage ð8Ł 2[007 02[526 37[006
Moya et al[ ð00Ł 0[954 1[790
Present results 0[968 2[05 03[95 37[22

Table 1
Comparison of Nu for f � 9> with some previous numerical
results

Ra

0999 4999

Prasad and Prasad and
Kulacki Present Kulacki Present

A ð4Ł results ð4Ł results

9[6 02[40 09[02 27[84 23[13
9[8 03[08 01[16 24[38 20[75

is very good[ Therefore\ we are con_dent that the results
presented in this paper are very accurate[

The combined e}ects of inclination and Rayleigh num!
ber on the ~uid ~ow patterns "streamlines and isotherms#
are illustrated in Figs 1Ð5[ It is seen from these _gures that
isotherms "left# are equally spaced between the maximum
temperature of the hot wall and the minimum tem!
perature of the cold wall[ The streamlines "right# are also
equally spaced with speci_ed increment between a value
of zero on the boundaries and the extreme value cmax[ It
is worth mentioning that the results for the vertical square
cavity "f � 9># compare very well with those of Prasad
and Kulacki ð4Ł[ Further\ we see that a su.ciently large
value of the Rayleigh number "Ra � 093# causes a bound!
ary layer ~ow in which the dominant mode of heat trans!

fer is convection[ This can be seen more clearly in Fig[
1"b#[ Then\ Figs 1"b#Ð5"b# show that the ~ow _eld com!
prises a primary cell of relatively high velocity\ circulating
around the entire enclosure[ This cell becomes smaller as
f increases[ A cell also arises for the temperature _eld at
a sharper corner\ as can be seen from Fig[ 4"d# left[
However\ Fig[ 5"d# left indicate that two cells occur at
f � −59> due to the much lower velocity prevailing at
that corner and they occupy nearly half of the cavity
area[

Values of the local Nusselt number Nu on the left and
right walls of the square cavity "A � 0# are plotted in Fig[
6 against the dimensionless coordinate h for Ra � 092[
Figure 6"a# shows the variation of Nu for f � 34> and
Fig[ 6"b# is for f � −34>[ It can be seen from Fig[ 6"a#
that on the hot wall Nu _rst increases and then decreases
taking a minimum value near the top wall of the cavity[
This is because of lower convective velocity on the top
wall[ However\ on the cold wall\ Nu _rst decreases and
then increases and reaches its maximum value near the
top wall[ In contrast\ Fig[ 6"b# shows that on the hot
wall\ Nu decreases monotonically from its maximum
value near the bottom side to zero near the topside[ But\
Nu at the cold wall increases monotonically from zero at
the bottom side to a maximum value at the topside of the
wall[ This is consistent with the observed higher con!
vective ~ow in the upper and lower corners of the cavity\
as can be seen from Figs 1Ð5[

Finally\ Fig[ 7 illustrates the variation of the average
Nusselt number Nu at the hot "left# wall of the square
cavity "A � 0[9# when Ra � 099\ 0999 and 09 999[ As
expected\ Nu increases as Ra is increased[ It is also seen
that Nu decreases almost linearly for relatively low values
of Ra but\ as Ra increases to 09 999\ the variation of Nu
deviates from its linear variation[

3[ Conclusions

Steady!state ~ow and heat transfer characteristics have
been investigated for the free convection ~ow in an
inclined cavity _lled with a porous medium[ With numeri!
cal integration of the complete set of couplet partial
di}erential equations\ based on time ADI method\ we
have been able to con_rm the stable steady!state solu!
tions\ obtaining very good agreement with known results
from the open literature[ However\ computations are
increasingly di.cult as f increases[ The results show
that near the sharp corners of the cavity the ~ow and
temperature break down into a series of subvortices[ The
subvortex system grows in size with increased inclination
and Rayleigh number[

We hope to report further results on this problem soon\
especially as regards to other values of the parameter A[
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Fig[ 1[ Isotherms and streamlines for A � 0[9 and f � 9>^ "a# Ra � 092\ "b# Ra � 093[
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Fig[ 2[ Isotherms and streamlines for A � 0[9 and Ra � 092^ "a# f � 04>\ "b# f � 29>\ "c# f � 34>[
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Fig[ 3[ Isotherms and streamlines for A � 0[9 and Ra � 092^ "a# f � −04>\ "b# f � −29>\ "c# f � −34>[
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Fig[ 4[ Isotherms and streamlines for A � 0[9 and Ra � 093^ "a# f � 04>\ "b# f � 29>\ "c# f � 34>\ "d# f � 59>[
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Fig[ 5[ Isotherms and streamlines for A � 0[9 and Ra � 093^ "a# f � −04>\ "b# f � −29>\ "c# f � −34>\ "d# f � −59>[
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Fig[ 6[ Variation of Nu with h for Ra � 092 and A � 0[9^ "a#
f � 34>\ "b# f � −34>[
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