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ABSTRACT 

Youngs, E.G., 1985. An analysis of  the effect of the vertical fissuring in mole-drained 
soils on drain performances. Agric. Water Manage., 9: 301--311. 

Numerical solutions of the seepage equation of groundwater flow were used in an anal- 
ysis of  the effect on drain performance of the herring-bone pattern of vertical fissuring, 
with fractures fanning out from the central slit, in mole-drained soils. Drain performances 
were assessed from values of the dimensionless parameter W m = 2Em/qD 2, where E m is 
the 'seepage potential '  at the position of  maximum water-table height when the steady 
rainfall is q and the drain spacing is 2D. W m decreased with increase in the length of  the 
fractures and, to a lesser extent,  with decrease in the spacing of  them, showing that the 
fracturing enables a mole-drainage system to cope with higher rainfall rates and to pro- 
duce more rapid water-table drawdowns. 

INTRODUCTION 

An important  feature of  mole<irained softs is the vertical fissuring pro- 
duced by the mole plough in the vicinity of  the drain channels. As the chan- 
nel is formed by the bullet o f  the mole plough, the leg-blade, to which the 
bullet is at tached, makes a vertical slit in the soil above. From this slit frac- 
tures open up at regular intervals on either side, making an acute angle, ap- 
proximately equal to 45 ° , and pointing in the direction from which the mole 
plough travelled, thus producing the typical herring-bone system of  vertical 
fissures described by  Nicholson (1942, p. 99). 

The slit produced by the leg-blade persists for many seasons and remains 
an obvious feature whenever the ground dries out. The fractures are not  as 
wide as the slit but  nevertheless can be seen easily, particularly immediately 
after the mole draining. Godwin et al. (1981) examined the fissuring after 
mole draining in many soils at various soil-water conditions. They observed 
that the fractures were between 0.09 and 0.36 m long and between 5 and 60 
mm wide, repeated every 0.10 to 0.18 m, and that they extended down to 
the depth of  the mole drains. 
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The fissuring has always been considered to play an important  role in the 
drainage of  heavy soils. It is often assumed that the main purpose of  mole 
drainage is to induce easier removal of  surface water via the fissures, and that 
the role of the mole drains as sinks for groundwater control  is of  secondary 
importance.  However, the experiments of Leeds-Harrison et al. (1982) with 
mole drains formed in the usual way with fissuring and with mole drains 
specially formed without  fissuring show that mole drains do act as effective 
sinks in the groundwater zone. This paper examines theoretically, using seep- 
age analysis (Youngs, 1965; 1966; 1980), the importance of the extent  of 
vertical fissuring on the drain performance of mole-drained soils. 

ANALYSIS OF GROUNDWATER FLOW 

The herring-bone pattern of  vertical fissures, described by Nicholson 
(1942, p. 99) and in more detail by Godwin et al. (1981), that are produced 
to the depth of the drain channels during the mole-draining operation, is 
shown in plan view in Fig. 1. The width of  these fissures allows water to be 
conducted with little resistance compared with that moving in the soil itself. 
Thus the fissures, being connected to the mole channel, may be assumed to 
act as sinks in the groundwater region in a similar way to vertically faced 
ditch drains when there is a water table above drain level. 
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Fig. 1. Plan view of the vertical fissuring produced during mole draining. 

The flow of water to the mole drains via the fissures may be found from 
the hydraulic head distribution in the groundwater zone, obtained by  solving 
numerically Laplace's equation in three dimensions by the finite difference 
or finite element method.  However, if there is negligible flow below drain 
level, the horizontal seepage to drains in the groundwater region below the 
water table is described more simply in two dimensions by the seepage equa- 
tion (Youngs, 1965; 1966; 1980): 

a2E a2E 
J x  2 + - -  - q ( x , y )  (1) ay 2 
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where q(x,y) is the flux, measured positive downwards, through the water 
table at  the position (x,y) and E is the 'seepage potential '  defined by: 

H 
E =fo g ( z )  { h ( x , y , z ) - z } d z  (2) 

where K(z) is the hydraulic conductivity assumed to vary with height z, 
h(x,y,z)  is the hydraulic head at the point (x,y,z) in the groundwater zone, 
and H is the height of the water table at (x,y) above the datum level which is 
taken to be drain level. The components of the horizontal seepage Qx and 
Qy in the x- and y<lirections are given by: 

~E ~E 
Qx - ~x ' Qy - (3) ~y 

The boundary conditions to be applied to Eq. (1) are that  E = 0 at the fis- 
sures, assuming water is removed via the drain channels as fast as it enters 
thus maintaining the fissures empty,  and that  the gradient of E normal to the 
watershed is zero. In using this analysis it is assumed that  the scale of natural 
fissuring which is important  for water flow through clay soils, is small com- 
pared with that  of  the fissures created by the mole draining operation so that  
a hydraulic conductivity of the bulk soil can be used. 

The maximum water-table height H m that  is maintained by a steady-state 
rainfall rate q in drained lands, occurs at the position where E is a maximum, 
E m. It can be argued (Youngs, 1965; 1980) that  the maximum water-table 
height must lie between the bounds given by: 

It m 

f K(z) ( H  m - -  z )  d z  > E m 

o (4 )  
H m  H m H m 

> f K ( z ) ( H  m z ) d z  f K(z) i f  :o/K(z)~ Ozldz 
0 0 Z 

Thus if E m is found by solving Eq. (1) with the given boundary conditions, 
bounds for H m can be calculated. When K(z) increases with height, the 
bounds are found to be close. 

For an installation of parallel drain channels E = E m everywhere on the 
watershed that  lies midway between drains. With the herring-bone pattern 
of drainage fissures Chat occur with mole draining, the watershed still lies 
midway between drain lines if the fractures in adjacent drain lines are op- 
posite each other. The value of E rises and falls along the mid-line with the 
repetition of the fractures, although the difference between maximum and 
minimum values is very small indeed unless the fractures extend near the 
watershed. The maximum value E m occurs on the watershed at a position 
dependent  on the fracture length and spacing. If the fractures are not oppo- 
site each other, the watershed does not follow the mid-line between drains 
but zigzags about it. However, the deviation from the mid-line is negligible 
for the fracture lengths produced in practice in mole-drained lands, and it 
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will be assumed here that the mid-line is the watershed in all situations. Thus 
in the analysis of  the mole<lrainage problem, it is necessary only to consider 
the region PQRS shown in Fig. 1. Values of  E in this region are repeated 
throughout  the whole region with reflection in the line QR midway between 
drains and with values of  E on PQ being the same as on SR. 

The region PQRS is redrawn in Fig. 2 in which the boundary values of the 
drainage problem to be applied to Eq. (1) are shown. It is assumed that the 
drain line is in the x-direction. The boundary values are: 

E = 0 ,  O<~x<~c,  y = 0  

E = 0 ,  x = y, O <~ ~ <~ a 

aE (5) 
=0 ,  O<. x <~ c, y = D  

ay  

Z(O, y )  = E(c, y )  

where c is the repetit ion distance of  the fractures, a the length of  the frac- 
tures, and 2D is the spacing between the central slits of  the mole drainage 
system. 

The maximum value of E m can be found by solving Eq. (1) subject to the 
conditions (5). Bounds for the maximum water-table height can then be 
determined from Ineq. (4). 
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Fig. 2. Seepage reg ion  cons ide red  in t he  analysis.  
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NUMERICAL SOLUTION OF THE SEEPAGE EQUATION 

Equation (1) can be rewritten in the form: 

~2W ~2W 
+ - - - 2  (6)  

~X 2 ~ y2 

in terms of the dimensionless variables W = 2E/qD 2, X = x/D and Y = y/D. 
The boundary values (5) become: 

W=O, 

W=O, 

aW 
- 0 ,  O < . X < c / D ,  Y = I  

~ Y  

O<.X<.c/D, Y = O  

X =Y,  O < x / X  2 +Y2 <a /D  
(7) 

W(O, Y) = W(c/D, Y) 

In solving Eq. (6) numerically, the region PQRS in the (X, Y) space is 
divided into a grid of m × n nodes with an interval distance h in both the X- 
and Y~lirections so that  h = c/mD = 1/n. The finite difference form of Eq. 
(6) for the values of W at the nodes is: 

Wi, y+ 1 + Wi, j -  1 + Wi+ 1, j  - 4 Wi, y = - 2 h  2 (8) 

When the values of W at the nodes are not in agreement with Eq. (8), a 
better estimate W~, j of  Wi, j is given by: 

W~,j = Wi, j + 60 (Wi,  j+ 1 + W i , j -  1 + Wi+ 1 , j  + W i -  1, j  - 4 Wi, y +2h 2 ) (9) 

using the successive overrelaxation method (for example, see Roache, 1972, 
pp. 117--119), where co is a factor between 1 and 2 that  improves the con- 
vergence of the iteration procedure. For rectangular regions co may be cal- 
culated, but in our case the fracture ST where W = 0, cutting into the region 
PQRS, does not permit a theoretical estimation of co. In working out solu- 
tions for the drainage problems, co = 1.6 gave satisfactory convergence with 
I(W~,j - Wi,j)/W~,jl < 10 -6 after 1000 iterations with a grid of between 400 
and 800 nodes and with h lying between 0.01 and 0.05. With larger values 
of ~ it was found that  the process diverged. 

Using an initial trial solution for W corresponding to the drainage situation 
of a single slit wi thout  the fracture ST: 

Wr, s = hs(2 - hs) (10) 

where Wr, s is the value of W at any node (r, s). Equation (9) was applied to 
each node in turn,  beginning with the nodes closest to the boundary SP at 
Y = 0 and working outwards towards the watershed boundary QR at Y = 1. 
The nodes were thus recalculated in the following order: 
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Wo,1, W1,1, W2,1, ..., W i n -  1,1 

Wo.2, W1,2, W2,2 , ..., W m -  1,2 
(11) 

Wo, n, Wl,n, W2,n, ..., Wm_l,n 

taking note of  the conditions at the boundaries imposed by the repetition of  
the region PQRS, namely, W0, s = Wm,s and W_ 1, s =Wm -1,  s for the calcula- 
tion of  the nodes along RS, and Wr, n + ~ = Wr, n -  1 for the nodes along QR. 
When all the nodes had been calculated, the iteration procedure began again 
at the node W0,1 until the values of  W at all the nodes changed insignificantly 
on applying Eq. (9). The values of  W at the nodes then were a numerical 
solution of  Eq. (6) subject to the conditions (7). 

EFFECT OF FRACTURE LENGTH AND SPACING ON DRAIN PERFORMANCE 

The dimensionless parameter Wm (= 2Em/qD 2) is related to the shape fac- 
tor  A of a drainage system, introduced by Youngs (1980) in connection with 
drainage areas of  different geometries, by the equation Wm = 2A/D 2. For 
parallel ditch drains dug to an impermeable floor and maintained empty,  Wm 
= 1. Wm may be regarded as a measure of drain performance since it com- 
bines the maximum water-table height and hydraulic conductivity in the 
variable Era, the steady rainfall rate q and the half drain spacing D. For the 
same water-table height in a given soil, the bounds of  E m given by Ineq. (4) 
are independent of the geometry of  the drainage installation. Thus, if Wm 
varies on account  of  different geometries, q or D or both  q and D can change 
to keep E m constant  and therefore to maintain the same water-table height 
in the soil. 

Numerical solutions of  Eq. (6) with boundary conditions (7) for W were 
found for a series of  fracture lengths a between zero and 0.6D for values of  
the fracture spacing c of  0.1D, 0.2D, 0.3D, 0.4D and 0.5D. Values of  Wm, 
the maximum value of  W in the region PQRS on the watershed QR, obtained 
in these solutions, are shown in Fig. 3 plotted as a function of  the dimen- 
sionless fracture length aiD for the values of  dimensionless fracture spacing 
c/D used in the calculations. It is seen that Wm decreases considerably as 
a/D increases from zero to 0.6 but  increases only slightly as c/D increases 
from zero to 0.5 for all values of a/D. 

The variation of  the parameter W over the seepage region is shown in Fig. 
4 for fracture lengths of  0.56D and 0.28D when the repetition distance of  
the fractures is 0.4D. Also included in Fig. 4 is the situation for drainage to 
parallel slits with no fractures when W is given by: 

W = Y ( 2 -  Y) (12) 

The positions of  the maximum values Wm are shown in Fig. 4. However, 
along the watershed, the value of  W changes little and is to all intents and 
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purposes constant ](or a given fracture length and spacing, indicating that 
the water-table height midway between drain lines varies negligibly in spite 
of  the fractures penetrating into the region from the slits. This is found to 
be the case even for fractures penetrating half-way towards the mid-drain 
line when the variation in W is less than one part in 10 4. 
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Fig. 3. Variation of  Wm (= 2Em/q D2) with dimensionless fracture length a/D for various 
dimensionless fracture spacings c/D. 
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Fig. 4. Variation of  W over the seepage region for a fracture spacing c of  0.4D when the 
fracture length a is: (a) 0.56D; and (h) 0.28D. The variation of W for drainage to parallel 
slits with no fractures is shown in (c). 
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Fig. 5. Variation of the relative rainfall acceptance rate qf/qo with dimensionless fracture 
length a/D for various dimensionless fracture spacings c/D. 

If qo is the steady rainfall rate that  maintains the water-table height at 
height H m when there is no fracturing but  just a central slit drainage chan- 
nel, then the rainfall qf that will maintain the water-table height at Hm when 
there is fracturing is given by: 

qf = 2Em/Wm D2 = qo/Wm (13) 

Wm < 1.0 and, as seen in Fig. 3, is very dependent  on the fracture length and 
slightly dependent  on fracture spacing. The relative rainfall acceptance rate 
qf/qo is plot ted in Fig. 5 as a function of  the fractional length a/D for the 
range of  fractional fracture spacings c/D for which calculations were per- 
formed. It is seen that the rainfall acceptance rate is considerably increased 
when the fractures penetrate some distance towards the mid-drain line. 

The spacing of  a system of mole drains required to maintain the water- 
table height at a given level with a given steady state rainfall rate is wider 
the greater the extent  of  fracturing. If 2Dr is the spacing of  a mole drainage 
system with fractures, for the water-table height to be maintained at a height 
corresponding to a given E m -value with a steady state rainfall rate q, 

Em = qWmDf  2/2 = qDs2/2 (14) 

where 2D s is the spacing of  an equivalent parallel drainage system without  
fractures required to maintain the same water-table height with the rainfall 
q. Thus Ds, the equivalent parallel drain half-spacing, is given by: 

Ds = Df/x/Wm (15) 
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When there is continuous rainfall at a high rate on poorly conducting soils, 
ponding of  water on the soil surface cannot be prevented even with the most 
intensive drainage system. In such situations the rate of fall of the water 
table after the cessation of rainfall is a more realistic indication of the ade- 
quacy of a given drainage installation than the steady state rainfall rate re- 
quired to maintain the water table at a given level. Assuming that  the non- 
steady state falling water-table situation can be approximated by a succes- 
sion of steady states, we can write: 

dHm 
q = -S  - -  (16) 

dt 

for the average flux q through the water table at time t, where S is the specif- 
ic yield. Thus, writing q = 2 E m / W m  D2,  Eq. (14) can be integrated to give: 

y t 
t = W m ( S D 2 / 2 E m )  dH m (17) 

Ho 

for the time t for the maximum water-table height to fall from Ho to Hr.  
The integral in Eq. (17) depends only on the water-table height and soil 
properties and not on the length and spacing of  the fractures. The time t is 
proportional therefore just to the value of Wm and hence is reduced with 
more extensive fracturing. Thus, writing tf for the time t for the given water- 
table drawndown when there are fractures and to for the time when there 
is drainage only to a central slit drain, we have: 

t f  = W m t  o (18) 

Since W m <  1.0, tf < to. Equation (18) gives the reduction in time of the 
water-table drawdown as a result of the presence of fractures. 

DISCUSSION 

The physical model of the mechanism of groundwater movement into 
mole drains assumes that  the water level in the vertical fissures is maintained 
at drain level. With no back pressure in the mole<lrain channel, this is the 
case for the wide central slit. However, the fractures that  fan out  from this 
slit taper away from the mole drain channel, thereby increasing the resis- 
tance to flow of  water and hence giving rise to a higher water level in them. 
Thus the value of  E must increase on the fracture ST in Fig. 2 towards T, and 
the assumption that  E = 0 on ST is an approximation. However, when the 
hydraulic conductivity of the soil increases with height, as is usually the case, 
the increase in E at the fracture is small compared with E m and thus there is 
little effect on the value of Wm which is a measure of drain performance. 
Even for a soil of uniform hydraulic conductivity,  a rise in water level in the 
whole of  the system of  fissures would need to be 0.316 H m for there to be a 
10% increase in the value of Win. 
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For drains drawn 2 m apart, the most extensive of the patterns of frac- 
tures observed by Godwin et al. (1981) produces a reduction of the value of 
W m from 1.0 for no fracturing to a value of about 0.5. Thus from Eq. (13) 
such a system of fractures has the effect of being able to accept twice the 
rainfall rate required to maintain the water table at the same height above a 
drainage system without  fractures. In particular it is able to accept twice the 
rainfall rate without  surface ponding. It follows that  for the same water-table 
height the drain outflow would be doubled. Also, from Eq. (18) the time for 
a given water-table drawdown would be halved. The experimental work of 
Leeds-Harrison et al. (1982) confirms these theoretical predictions concern- 
ing the effect of the vertical fissuring on groundwater flow. The outflow 
from the drains of  the plots that  contained mole drains with normal fractur- 
ing was greater than that  for the plots with mole drains drawn without  
fracturing. Also the time that  the drains flowed for the former was less than 
for the latter, indicating a decrease in the time for the water-table drawn- 
down. Thus, both theory and experiment show that  the herring-bone pattern 
of vertical fissures in mole-drained soils plays an important role in the 
groundwater flow as well as in the removal of surface water. 

The graphs presented in Fig. 3 show the importance of fracture length in 
mole-drained lands. Godwin et al. (1981) observed that  the fracture length 
increased as the soil dried out, while experiments in a soil tank at Silsoe Col- 
lege by Dr. P. Leeds-Harrison (personal communication, 1983) have demon- 
strated that  it is greater the wider the leg-blade of the mole-plough. Galvin 
(1983) noted the production of wider and longer fractures with the wider leg 
of a gravel mole-drainage machine than with an ordinary mole plough, and 
considered that  the production of such wider vertical cracks is important  for 
the drainage of impermeable soils that  are subject to creep failure. He drew 
at tention to the need for the re-design of mole-drainage machines if a wider 
leg is to be used and for further investigations in order to reconcile conflict- 
ing demands of wider cracking and mole stability. Other factors to be con- 
sidered are the greater drawbar pull and energy requirements for the produc- 
t ion of wider cracks that  occur in drier soils and with wider leg-blades on 
the mole plough. Consideration of  all these factors would lead to opt imum 
fracturing for the best drainage of mole drained soils. 
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