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Stresses in Long 
Ridges and Valleys 

The effect of  topography on near-surface, gravity-induced stresses has been 
analysed using an elastic solution similar to one originally given by Akhpatelov 
and co-workers. The topographic' features considered here are isolated sym- 
metric ridges and valleys, and explicit solutions are presented for these 
particular features. The main results are: ( 1 ) non-zero horizontal compressive 
stresses develop at and near ridge crests and decrease with increasing Poisson "s 
ratio, and (2) horizontal tensile stresses develop under the valley, but decrease 
and become compressive with increasing Poisson's ratio. For both geometries, 
all stresses increase with depth and approach a standard state of stress. The 
magnitude of the topographically induced stresses is on the order of the 
characteristic stress p gb, where b is the height of  the ridge or the depth of the 
valley. 

INTRODUCTION 

Horizontal stresses measured in the near surface of the 
earth's crust, either by overcoring or hydrofracturing, 
are nearly always compressive and in excess of the 
vertical stress due to the weight of overburden [1-3]. 
Because these measured horizontal stresses are not al- 
ways zero at the surface of the earth, they have been 
variably interpreted as being of tectonic, thermal, or 
residual origin (see [1] for further discussion). For the 
most part, except in regions of rugged topography [4], 
local topographic effects in areas of subdued relief were 
not thought to affect near-surface stresses. The recent 
work of McTigue and Mei [5], however, focuses atten- 
tion on the fact that topography affects the gravitation- 
ally induced horizontal stresses even in areas of low, 
regional slope. Similar observations can be made from 
the work of Akhpatelov and others [see 6, pp. 166-167], 
which is considered in greater detail in this paper. 

Because of mathematical difficulties, few exact sol- 
utions exist for gravitational stresses in elastic media 
with irregular boundaries. Baladi [7] and Perloff et al. [8] 
present an exact solution for gravitational stresses in a 
trapezoidal embankmenL These solutions are obtained 
by the Kolosov-Muskhelishvili method of complex po- 
tentials for plane elasticity. A Schwarz-Christoffel trans- 
formation maps the trapezoidal embankments into a 
half plane. Unfortunately, the numerical scheme used to 
evaluate the integral for the mapping function does 
not account for branch cuts [5, 9]. Consequently, the 
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solutions of Baladi [7] and Perloff et al. [8] may be in 
error. Silvestri and Tabib [10, 11] present exact solutions 
for stresses in finite elastic slopes using similar methods 
to those mentioned above. They include a solution for 
the interesting problem of gravity stresses in a vertical 
topographic step or wall. 

Akhpatelov and Ter-Martirosyan [12], Ter-Marti- 
rosyan and Akhpatelov [13] and Ter-Martirosyan et al. 
[14] give exact solutions for gravitational stresses in 
elastic half-spaces with smooth curvilinear boundaries. 
Some of their results for gravitational stresses in sym- 
metrical "hills" and "canyons" are illustrated in a review 
article by Tsytovich [6]. A different approach is taken 
by McTigue and Mei [5]; specifically, a perturbation 
method is used to obtain approximate analytical sol- 
utions for gravity stresses in elastic half spaces with 
curvilinear boundaries and small characteristic slopes. 

Although the work of Akhpatelov and co-workers 
[12-14] is of considerable interest and importance, much 
of it is published in Russian journals of limited avail- 
ability in the West. Moreover, in the available articles, 
critical mathematical steps involved in obtaining the 
closed-form solutions are omitted and too few examples 
are given to illustrate applications of the results. Because 
of the paucity of mathematical detail, it was necessary to 
rederive the solutions for gravity-induced stresses in 
isolated symmetric ridges and valleys. In what follows, 
the complete derivation for the solution of this im- 
portant problem is given and a number of examples to 
illustrate the application of the results are presented. 
Comparisons will also be made with the results of the 
perturbation method of McTigue and Mei [5] for an 
isolated, symmetric ridge of small slope. 
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S O L U T I O N  F O R  G R A V I T A T I O N A L  S T R E S S E S  
IN A S Y M M E T R I C  R I D G E  OR VALLEY 

Only a brief review of the Kolosov-Muskhelishvili 
method for solving plane elasto-static problems will 
be given here. Detailed treatments may be found in 
Muskhelishvili [15], Sokolnikoff [16] and Baladi [7]. 

For a plane elasto-static problem in orthogonal 
Cartesian co-ordinates (Fig. 1) where a constant body 
force, pg, is directed along the vertical y-axis, the 
equations of  equilibrium reduce to 

c3--7 + .... = O, (la) e y  

~x + ~ y  - -pg  = 0, ( I b )  

where p is the mass per unit volume, g is the gravi- 
tational acceleration, a~ and a~. are the normal com- 
ponents of stress and av~ and a~y are the shear com- 
ponents of stress all acting in the x- and y-directions. 
respectively. Because the resultant moment of body and 
surface forces over the body vanishes, a~  can be shown 
to be equal to a,.~ [16, pp. 41-42]. Tensile normal stresses 
are taken to be positive. 

For  the problem of interest, a long symmetric ridge or 
valley under gravity, it is assumed that strains acting in 
the direction of the axis of the ridge or valley vanish. 
Hence, a state of  plane strain with three non-vanishing 
components of  strain exists with two non-vanishing 
components of  displacement acting in planes normal to 
the ridge or valley axis. These strains are functions of  
the displacements, and because the number of  strain 
components exceeds the number of  displacement com- 
ponents by one an additional relation between the strain 
components must be satisfied: namely, the equation of 
compatibility. By using Hooke's law for an isotropic 
medium [16] this equation is expressed m terms of 
stresses as, 

V2(a~ + ~y) = O. (2) 

Note also that under plane strain conditions Hooke's 
law requires that a third normal stress component, cZ., 
will act parallel to the ridge or valley axis. It can be easily 
shown to be given by [16, p. 251] 

a ~ = p ( a x + a y ) ,  (3) 

to the Airy, stress function U(.x. v) by 

?:L:Lv. y )  

c?ZUix, y) 
a = , , - pgy, (5b) 

CX-  

- ? : U L x ,  y )  

?x?v  
~5cl 

the equilibrium equations (equations l a and bJ are 
satisfied identically. The terms [~ 1 - #] pg)' and Pg3 are 
taken to represent a standard state of stress for a 
flat-lying horizontal region under gravity [18. p. 356]. 
Inserting equations (5a) and tbl m the compatibility 
equation (equation 2) it is found that U ( x . y )  satisfies 
the biharmonic equation 

V 4 U ( x , y ) = ~ +  2 ~ +  &--7 = ¢6) 

Solutions to equation (6) yield general solutions tbr 
stresses and displacements which satisfy equilibrium 
(equauons 1) and compatibility (equation 2}. 
Specification of  the stress function U (x,y)  to give 
stresses which satisfy particular boundary conditions 
(equauons 4a and b) then result in complete solutions for 
stresses and displacements in gravitating elastic bodies 
under conditions of plane strain. A variety of methods 
can be used to find those solutions. Among the more 
powerful is that of Kolosov-Muskhelishvili. It can be 
shown [15, p. 110] that a general solution of the bi- 
harmonic equation (equation 6) can be expressed in 
terms of  two analytic functions ~ (z) and Z (z) of the 
complex variable z = x + iy or 

U ( x , y )  = Re[~b (z) + Z (z)], (7) 

where /~ is Poisson's ratio. In addition, stresses at the 
surface of an elastic body must satisfy certain boundary 
conditions which in two dimensions can be expressed as 

n 

Tx = nxa., + nva,y, (4a) 

re 

T v = nxo',, + nya .... (4b) 

where "rx and ]', are the components of  surface force per 
unit area (tractions) at a point on the boundary and n, 
and n,, are the direction cosines of  the normal n to the 
boundary at that point. Finally, if the stresses are related 

(b) 

U 

Fig. 1. Conformal transformation for a symmetric ridge in 
x,y-Cooordinates into a haV-plane in u.r-co-ordinates and the 
definition of the parameters a and b which describe the shape of the 

ridge. 
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where Re indicates the real part of 2q~(z)+ X(z) and 
- = x - i v ,  Equation (7) can also be written as 

2 U ( x , y ) = - 4 9 ( z ) + z c ~ ( z ) + ) ~ ( z ) + z ( z ) ,  (8) 

where conjugate complex values are denoted by over- 
bars. Differentiating equation (8) with respect to x and 
y and using equations (5a) (b) and (c) yields 

PgY (9) a,. + a, = 4 Re[O (z)] + 1 - - ~ '  

where ~(_-)= q~'(z) and similarly 

a , . -  a~ + 2ia v = 215~b'(z) + ~ (z)] 

+ L ~ J  ogy, (IO) 

where q' (_-) = Z"(z)- Details of the derivation of equa- 
tions (9) and (10) are found in Muskhelishvili [15] and 
Sokolnikoff [16]. 

There are now expressions for the three stress com- 
ponents G,  a, and G,  in terms of two, as yet unknown, 
analytic functions of a complex variable q~ (z) and 7 j (z). 
Before proceeding to the determination, of these un- 
known functions for the case of a symmetric ridge or 
valley, the conformal mapping technique used to trans- 
form the ridge or valley into the lower half-plane and the 
transformation of the stress equations needed to find a 
closed solution are introduced. 

The preceding theory is appropriate for orthogonal 
Cartesian co-ordinate systems with straight boundaries. 
For curvilinear boundaries, orthogonal curvilinear co- 
ordinate systems are introduced by a transformation 
z = f ( w )  where z = x + iy is a function of w = u + iv. 
Such a transformation that connects a point P ( x  + iy) 
in the z-plane to a point P'(u + iv) in the w-plane is 
conformal if angles between intersecting co-ordinate 
curves in the two systems are preserved. The conformal 
transformation for a symmetric ridge into a half-plane is 
given by 

ab 
z = f ( w ) =  w + - -  (1 la) 

w - ia' 

or separated into real and imaginary parts by, 

abu 
x = u + a)~, ( l lb)  

u-' + (t - - 

ab(v  - a) 
v = v u 2 + (v - a) ~' ( l lc)  

Here. b represents the ridge height. When u = a  
and c =  O. then x = a + b /2 and y = b /2, which are 
the co-ordinates of the inflection point on the ridge 
flank. The slope at this inflection point is given by 
dy/dx = - b / 2 a .  These relations and the conformal 
transformation are shown in Fig. 1. The transformation 
for a symmetric valley is obtained by changing the sign 
of b in equations (11). Note that for a valley, the 
parameter a must be greater than the absolute value of 
b otherwise a cusp is formed and transformation (1 1) will 
no longer be conformal. 

Because of the property that analytic functions remain 
analytic under conformal transformation [17] the region 
of interest can, in principle, be carried into the lower 
half-plane where a solution can be found. Under this 
transformation equations (9) and (10) become [7 and 15, 
pp. 381-383] 

1 
a,  + a,. = 4 Re[4~ (w)] + pg l m f  (w), (12) 

1 - p  

and 

. . . .  = 2 [  f ( w )  ~b'(w) + q' (w)] 
a , . -  a~ + 2ia~,. k f , (w)  

F 1 - 2 p l   mZ(w), (13) 

where Im denotes the imaginary part o f f ( w ) ,  that is, 
y = ImfOv). 

Boundary conditions on v = 0 of the w-plane are 
derived from the identity 

a, + a,. a, - a, + 2iG, 
N + iT = ÷ , (14) 

2 2 

where N and T represent applied normal and shear 
tractions. The boundary of the symmetric ridge or valley 
in the z-plane corresponds to the axis v = 0  in the 
w-plane (Fig. 1). Because the boundary of the symmetric 
ridge or valley is free of load, N + iT = 0 and 

f ( u )  2 Re 4, ( . )  + ~' (u)  +J'(U~ 'e (u) 
f ' ( u )  f ' ( u )  

(u) 

1 [ 1 - 2 #  1 f ' ( u )  (15) 
2 k  l - p  j pg l m f  (u) "(u) 

Denoting. the right-hand side of equation (15) by 
N,.~ + iT,. e and multiplying through by f ' ( u )  gives 

f ' ( u )  • (u) + f ' ( u )  • (u) + f (u) cb'(u) + f ' ( u )  71 (u) 

= f ' ( u )  IN,. e + iT,,,]. (16) 

The conjugate complex form of equation (16) is 

f ' ( u )  cb (u) + f ' ( u )  q~'(u) + f (u) ~ ' ( u )  + f ' (u)  ~ (u) 

= f ' ( u ) [ N , , , - i T , . e ] .  (17) 

By using certain properties of Cauchy integrals [15] 
and equations (15) and (16), the unknown stress func- 
tions cb(w) and ~u (w) are determined and hence the 
gravity-induced stresses in the symmetric ridge or valley 
by equations (12) and (13). Consider the terms on the 
left-hand side of equation (16). The term f ' ( u ) q ~  (u) is 
the boundary value of 

I (w + ia)2 _ ab 1 

assumed to be analytic in the lower half-plane except 
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when w =  - i a .  The term f ' ( u ) @ ( u )  is the boundary 
value of 

+ i a ) Z - a b  ~(  , 

assumed analytic in the upper half-plane. Note that the 
partial overbar on a complex function F ( w )  has a special 
meaning; that is [15], F ( w ) = F ( ~ v ) .  The next term, 
f ( u )  q~'(u), is the boundary value of 

assumed analytic in the lower half-plane except at 
w = - i a  and the last term on the left-hand side of 
equation (16) is the boundary value of 

(w -- ia) 2 -  ab 1 j (w) 

assumed to be analytic in the lower half-plane. 
For equation (17) the term on the left-hand side is the 

boundary value of 

[(Wuwia)2-ab]c~(w''~ 

assumed analytic in the upper half-plane except at 
w = ia, and the second term is the boundary value of 

(w - ia_a_): - ab l 
( w - i a )  2 ] ~ ( w )  

assumed to be analytic in the lower half-plane. The term 
f ( u )  ~'-(u) is the boundary value of 

w + . ~ ' ( w )  
W -- la 

assumed analytic in the upper half-plane except at w = ia 
and the last term on the left-hand side of equation (17) 
is the boundary value 

[! w ia__)2_-abl ~ ( w  ) 
(w + ia)2 _] 

assumed to be analytic in the upper half-plane. 
Some useful formulae obtained from the properties of 

Cauchy integrals are given by Muskhelishvili [15, pp. 
269-272]. If a function F ( w )  is analytic in the upper 
half-plane with the possible exception of a finite number 
of points where it may have poles with the principal 
parts Gl(w),  G2(w) . . . .  , G, (w)  then 

1 [~  F _ ( u ) d U = F ( w ) _ G , ( w ) _ G : ( w ) _ . .  " 
2hi d_:,. u - w  

- G . ( w ) ,  (18a) 

for w in the upper half-plane and 

. . . .  1 f "  F ( u ) d u  = - G I ( w )  -- Gz(W) - . • . 
2~ij_., ,  u - w  

- -  G . ( w ) ,  (18b) 

for w in the lower half-plane. If F ( w )  is analytic in the 
lower half-plane with the possible exception of a finite 

number of points where it may have poles with the 
principal parts G~(w). G_,(w) . . . . .  G,,(w) then 

1 I ~ F ( u ) d u  
- - - -  = - F ( w ) + G ~ ( w j + G z ( w ) + . . .  

2rci j]_ ~. u - w 

+ G,,(w). (1%) 

for w in the lower half-plane and 

I f :  F ( u ) d U = G j ( w ) + G ~ ( w ) + . . . + G , , ( w ) ,  (t9b) 
. ,  , 5 - - w  

for w in the upper half-plane. 
Now introduce the following expansion about the 

poles at w = z ia .  Let 

4) ~ w ) .4 -~ A -. 
~20a) ( w ~ i a ) Z = f ~ ° ( w ) - - ( w  ~ i a )  ( w - - i a ) : "  

where the function f~(w) is assumed analytic in the 
lower half-plane and A -~ and A -, are complex constants. 
Expansion (20a) is then analytic in the lower half-plane 
except at w = - i a  and 

~(w) e'i d-, .~- .  

(w - i a )  2 = ~ ° ( w ) 4  (w - ia) (w - - ia )  2' (20b) 

is analytic in the upper half-plane except at w = ia. Also 
let 

45'(w) B-I 
- -  = Z o ( W ) +  (21a) 
(w + ia) (w + ia) '  

where the function ZOO*') is assumed analytic in the lower 
half-plane and B-~ is a complex constant. Then expan- 
sion (21a) is analytic in the lower half-plane except at 
w = - i a  and 

~'(w) B-t 
- -  = ~ ' 0 ( w )  ~ ( 2 1 b )  
(w - ia) (w - ia)" 

is analytic in the upper half-plane except at w = ia. 
Applying the formulae (18) and (19) to equation (16) 

and using expansions (20a) and (21a). it is found that 

abq~ (w ) 
f ' ( w ) ~ ( w ) =  - B ( w )  q ' ( w ) - w q ~ ' ( w ) + - -  

(w + ia}: 

abe ' (w)  ab [A-1 B-t] abA-2 

- ( w  + ia~) ( w  + i a )  - ( w  + ia):" 

(22) 

where 

1 f ~ ["(u)[N..,.- iT.,~] d u  
A ( W )  = ~ .... " . . . . .  ,, - w ( 2 5 )  

To find the complex constants A -~, B-~ and A ,2 consider 

where 

B ( w )  = ~ f f~ f ' ( u ) [ N , ~ + _ i T , , ] d u  (23) 
2~i J_ .~ u - w " 

Similarly, applying formulae (18) and (19) to equation 
(I 7) and using expansions (20b) and (21 b) it is found that 

ab[A-,  - B'I] abA'2 (24) 
f ' ( w ) q ~ ( w ) = - A ( w ) + ,  (w -- ia) + (-w - ia) 2' 
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the first three terms of a Taylofs series expansion of 
4)(w) about w =  - ia ,  or 

4) (w) = 4 ) ( - ia )  + 4) ' ( - ia ) (w  + ia) 

4)" ( - ia) (w + ia) 2 
+ (26) 

2 

Then 

4 ) ' ( w ) = 4 ) ' ( - i a ) + 4 ) " ( - i a ) ( w  +ia). (27) 

Dividing both sides of expansion (26) by 0v + &)2 
and comparing coefficients of like powers of (w + / a )  
between expansions (20a) and (26) gives A-~ = 4 ) ' ( - m )  
and A-~ = 4 ) ( -  ia). Dividing both sides of equation (27) 
by w + ia and comparing coefficients of like powers 
of w + i a  between expansions (21a) and (27) gives 
B - l = 4 ) ' ( i a ) = A - l .  Thus. equations (22) and (23) 
become 

f ' O r ) t P O c ) = - B ( w ) - 4 ) ( w ) -  w + ~  4) (w) 

ab [4) (w ) - 4) ( -  ia )] 
+ (28) 

(w + ia) 2 

and 

.f '(w)4) (w) = - A  0v) -+ 

f ' ( w )  = 1 

ab 4) ( - ia ) 
(W -- ia) 2 " 

ab 
(w - ia) 2 

Since 

equation (29) can be written as 

(29) 

ab4) (w ) abU~ ( - ia ) 
4) 0 0  - - =  - A ( w ) +  (w -- ia) 2 (w -- ia) 2 ' 

which becomes 

4a4) ( - i a )  + b [4) ( - i a )  + Ub ( -  ia)] = - 4 a A  ( - i a ) ,  

at w = - i a .  Let 4 5 ( - i a ) = 7 + i f l  

4a [~ + ifl] + 2bc~ = 4aA ( - i a ) ,  (30) 

and 4 ) ( - i a )  can be found the real and imaginary parts 
of A ( - m )  which will be determined below, 

Equation (1 la), the right-hand side of equation (15) 
and equations (23) and (25) yield 

-pga2b [ i[4a + b] ( l 
A ( w ) -  5 f: i LsS- , G) ab 482( i ,~ -  ._  ia)2 

i ) { i[4a + b] "~l (31) 

and 

- p g a ' b  ~ i[4a + b] 

( ,  
+ ab 4a'-(w-- ia) 2 

[ i(4a + b) 
(1 - 2 . )  

; )) 
2a(w-  ia) 3 . (32) 

From equation (31) it is found that 

A ( _ i a ) = p g b [ ( 4 a + b ) ( l - - p ) + b  1 
16a(1 p) ' 

which is real. Thus, fl in equation (30) vanishes, and 
hence 

[(4a + b)(l - p) + b 1 
4) ( - ia )  = ~ ( - i a ) =  - p g b  L + A (33) 

Dividing equations (28) and (29) by f ' ( w )  yields, 
finally, expressions for ~P(w) and 4)(w) from which 
stresses in the symmetric ridge or valley can be obtained 
through equations 02) and (13). These expressions are 

- ( w  - ia) 2 ( 
(w) =  B(w) + 4) (w) 

[ ab 1 [4) (u ' )~  4)( ~_-ia)].]? (34) + w + - -  4 ) ' ( w ) -  ab 
w + ~a (w + ia)- J' 

and 

(w--ia)2 { ab4) ( - ia ) ~ ( ;  -T i--~J" 4 ) ( W ) = O , - - i a f ~ a b  A(w)  (35) 

The derivative of 4) 0 v) with respect to w in equation (34) 
is 

-- pgb { 
4) ' (w)= 8 [ (wZ~a-~-ab]  i [4a+b]  

2ab 6ia2b } 
+ (1 - t0(w -- ia) (1 - #)(w - ia) 2 

2ab [4) (w) + 4) ( -  ia)] 
(w - ia)[(w - ia) 2 - abl" (36) 

A singularity apparently occurs in equation (34) when 
w = - i a .  However, substituting expansions (26) and 
(27) into equation (34) and evaluating the resulting 
expressions at w = - i a  one finds that 7J(w) is con- 
tinuous; that is, 

-40 { 
~ ( - i a ) = 4 a + b  x B ( - i a ) + 4 ) ( - i a ) - i a 4 ) ( - i a )  

ab4)"(- ia)}  (37) 
"~ 2 ' 

where 4)"( - ia)  derived from equation (36) is given by 

1 
4)" ( - i a )  = 

a (4a + b) 

I pgb 2 ] 
x 24) ( -  ia) - 8ia4) '(-  ia) + 16a (1 - #) ' [38) 

To obtain the gravity-induced stresses in the symmetric 
ridge or valley one has from equations (12) and (35) 

(w - ia) 2 
G + a , , =  - 4 R e  ( w - i a )  2 - a b  

ab4) ( - ia)7) 1 
(39) 
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and from equations (I la), (13), (34) and (36) 

2 ( w - i a )  2 f[~'(~'+ia)+ab] 
a, -- a~ + 2ia~, = (w ~-- i ~  f -~ ab ~, + ia 

k. 

x ~ ' (w)  - B(w)  - ,I, (w) 

- -  W + 1 4 ,  

+ (w + ia) 2 J 

+ F l - ] 
Pgy. (40) 

LS-=-F- 
Expressions for a,, - G and G~. are obtained by taking 

the real and imaginary parts of equation (40). As this can 
be done readily in FORTRAN [19], no further detail is 
necessary here, except to note that values for G and G. 
at each point in the ridge or valley can be obtained by 
forming sums and differences between G + G given by 
equation (39) and G - G  given by the real part of  
equation (40). The expressions for the stresses satisfy the 
conditions of  the problem: namely, the shear stresses on 
the ridge (valley) surface and the stresses normal to the 
ridge (valley) surface vanish; the shear stresses vanish on 
the axial plane Of the ridge (valley), and the stresses 
approach a standard stress state (equations 5a, b and c) 
away from the topographic feature. 

EXAMPLES 

Contour diagrams of  dimensionless stresses G/pgb, 
oy/pgb and Gy/pgb obtained from equations (39) and 
(40) for three symmetric ridges and three symmetric 
valleys are shown in Figs 2-7. Because of  symmetry, only 
the right half of each feature is presented. Note that the 
signs of ax/Ogb will be opposite on the left-hand halves. 
Figures 2-4 show three ridges for a/b = 0.5, 1 and 3:333, 
respectively and Poisson's ratio of 1/4. For the steepest 
hill, a/b = 0.5 (Fig. 2), note that G/pgb and Gy/pgb are 
concentrated on the lower side of the ridge. As the ridges 

broaden and their slopes (b 2a) decrease, the concen- 
trations of stresses diminish somewhat for a b = 1 (Fig. 
3) and vanish for a/b = 3.333 (Fig. 4). Also, with 
decreasing surface slope the contours of a, pgb and 
o,/pgb become smoother and more nearly follow the 
ridge shapes. 

Figures 5-7 show three valleys for a/b = -1.1.  - 2  
and 3. respectively and Poisson's ratio of t.3. For the 
narrowest valley, a/b = - 1.1 (Fig. 5), there is a concen- 
trauon of tensile ax, pgb at the valley bottom, enclosed 
by the zero contour of Gipgb and a concentration of 
G / p g b  on the lower flanks of the valley. As the valleys 
broaden, the region of tensile G; pgb increases and two 
regions develop where G~./pgb is concentrated; one near 
the valley bottom and the other at greater depth and 
away from the valley bottom. Signs for these two 
concentrations are different as they lie on opposite sides 
of  the zero shear-stress contour. For a b = - 3 (Fig. 7~ 
the region over which G pgb is tensile is again larger, as 
are the two regions where shear stresses of  opposite sign 
are concentrate& Finally, in each of the latter two cases. 
contours of G/pgb follow the valley shape. 

Figure 8a shows the orientations of principal stresses 
a~ and a 3 in a symmetric ridge (a/b = 1:/~ = 1/4). Using 
engineering convention, the most compressive principal 
stress is a3 and the least compressive principal stress is 
ot. Note that the principal stress trajectories formed by 
curves that are everywhere tangent to the principal stress 
directions are of the interlocking type just below the 
ridge crest (Fig. 8a). Thus. on the centreline of the ridge 
there will be an isotropic point where o~ = a,.  

Orientations of  principal stresses for a valley 
(a/b = - 2 :  ~ = 1/4) are shown in Fig. 8b. There are no 
isotropic points in this case: hence, a3, the most com- 
pressive principal stress, is nowhere equal to ~r~. 

Figures 9a-c show the variation of G, pgb, a./pgb (the 
out-of-plane normal stress defined by equation 3), and 
G/pgb  with y/b along the centreline of the ridge 
(a/b = 1) for different values of Poisson's ratio. The 
short, dashed lines in the figures represent the variation 
of the standard stresses for the case when h = 0: that is. 
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when there ts no ridge. The topographically-induced 
stresses in the ridge become, with increasing depth. 
asymptouc to these standard stresses. As would be 
expected, a broader ridge affects the stress field to a 
greater depth. For example, the stress caused by the 
broad ridge (a/b = 3) is 1.5 times the far-field standard 
stress at a depth 3 times the ridge height; whereas, the 
stress caused by a narrow ridge (a/b = 0.5) is within 10~o 
o f  the far-field standard stress at comparable  depths. 
lncreasmg the Poisson's ratio. #, causes a decrease o f  
a.dpgb at the ridge crest but an mcrease at greater depth. 
The dimensionless,  out-of-plane stress, a._/pgb, is little 
affected by changes in # at the ridge crest but increases 
with/a at depth. The effect o f  changes in # on a,./pgb is 
negligible for all depths. The depth at which the isotropic 
point occurs on the centreline o f  the ridge can be 
estimated by comparing Figs 9a and c: for # = 1 4 the 
isotropic point is approximately at y/b = 0.6. 

Figures 10a-c show the variation of  a,./pgb, a./pgb 
and a,./pgb with v/b along the centreline of  a valley 
(a/b = 3) for different values o f  Poisson's ratio. The 
short, dashed lines in these figures again indicate the 
variation o f  the standard stresses in the absence of  ~ 
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COMPARISON WITH McTIGUE AND 
MEI'S APPROXIMATE SOLUTION 

FOR A SYMMETRIC RIDGE 

McTigue and Mei [5] present approximate plane- 
strain elastic analytic solutions for the effect of  top- 
ography with small slopes on gravity-induced stresses. 
Their solutions are based on a perturbation scheme 
which gives approximations of the dimensionless stress 
fields to an order e-~ where ~ is a characteristic slope. The 
slope E is equal to H/L, where H is a characteristic height 
(equivalent to b in this paper) and L is a characteristic 
length of a topographic feature. Although several 
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Fig. 9. Variation ofa~/pgb (a) and a:/pgb (b) with y/b along the central 
plane of  a symmetric ridge (a .'b = 1) for four values of  Poisson's ratio. 
The variation of  a,/pgb (c) with depth is little affected by changes in 
Poisson's ratio. The dashed lines indicate the change of the dimension- 

less stresses with depth in the absence of topography (b = 0). 

valley (b = 0). As before, the stresses associated with the 
valley become, with increasing depth, asymptotic to the 
standard stresses. However, in valleys the gravitationally 
induced stresses approach the far-field standard stress 
rapidly for all values of a/b. This occurs because the 
valley, unlike the ridge, represents a deficiency in mass. 
As Poisson's ratio, #. increases, the dimensionless 
stresses chpgb and a:pgb become less tensile (more 
compressive) for all depths, while changes in p have a 
negligible effect on or, pgb.  
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different topographic features are discussed in their 
paper, only their approximate solution for an isolated, 
symmetric ridge is considered here. Expressions for 
surface topography and stresses in a symmetric ridge are 
given in terms of  x/L, y /L and a parameter a which is 
called a' to distinguish it from the parameter a used in 
this paper. When the expressions of  McTigue and Mei 
[5] are normalized by our b rather than L (for the 
purpose of  comparing the two solutions) it is found that 
the two parameters, a and a ' ,  are related by a '  = Ea and 
that x/b = x/eL. Figure 1 la compares the surface top- 
ography (in terms of  a and b) of  the right half of  the 
symmetric ridge from McTigue and Mei [5] (dashed line) 
with that given by equation (1 lc) (solid line) in this 
paper. As can be seen, the two surface topographies are 
reasonably similar. 

Figures l lb -d  show comparisons between o pgb for 
the exact (solid lines) and approximate Idashed lines) 
solutions on the centreline of the symmetric ridge for 
a/b =3.3,  /~ =1/4;  a:b =8.  u =1 '4 :  and a b  = 13. 
/~ = 1/3, respectively. For the case a/b = 3.3. t~ = 1.4 
(Fig. 1 l b) the value of a~ pgb obtained by the approx~- 
mate solution nearly matches the exact solution at the 
ridge crest, but becomes tensile with depth. The exact 
solution indicates no tension, rather the stress com- 
ponent asymptotically approaches the far-field standard 
stress state. For the case a/b = 8, tt = 1 '4 (Fig. 1 Ic) both 
solutions predict that at pgb remains compresswe with 
depth, however, with the exception at the ridge crest, the 
comparison between the two solutions is still not good. 
It is of interest to note that for a b = 6 .  y = 1 ' 4  t a 
geometry intermediate to those shown in Figs l lb  and 
c), the approximate solution predicts that the value 
of ~rx/pgb remains constant at - 0 .583  for all depths. 
Finally, for the case a/b = 13. # = I 3 (Fig. 1 ld) the two 
solutions give comparable results in the vicinity of  the 
ridge. This case, however, represents a broad ridge with 
small surface slopes (tan -t (b 2a~ = 2.U). 

Figure 12 shows contour plots of a,/pgb and ax>ipgb 
for a symmetric ridge (a/b = 3,3. ~ = 1/4) predicted by 
the approximate solution of McTigue and Mei [5]. These 
plots are identical to Figs 2a and c in their paper except 
that the solution is extended to greater depth and the 
horizontal scale is in terms ofx/b  rather than x/L. These 
contour plots of stresses can be compared with those for 
the exact solution shown in F ig  4 of  this paper. Again 
the comparison is poor  in terms of  the distribution, 
magnitude and sign of the stress components. 

DISCUSSION 

The ideas and results presented here are an outgrowth 
of  an interest in measurement and analysis of stress fields 
in the near surface of  the earth. It is envisioned that 
near-surface stress fields are primarily composed of  
gravitational stresses, thermal stresses and tectonic 

.El 
- I  

- 2  

- 3  

-41 
0 

- 0 6  

2 3 o 1 2 3 

x / b  x / b  

Fig. 12. Contour plots of a~,lpgb (a) and aJpgb (b) for a symmetric ridge (a/h = 3.3, I~ = 1,,4) computed by the perturbation 
method of McTigue and Mei [5]. 
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stresses. Analyses of  the topographic modification of a 
far-field tectonic compression or tension are given in 
Jaeger and Cook [18, p. 361], and by Harrison [20], 
McTigue and Mei [5], and McTigue and Stein [21]. 
Presently, we are developing our own analysis of  this 
effect on the near-surface stress fields and will publish 
the results separately. Thermal stresses result from the 
passage of annual temperature waves from the surface 
downward,  and from the geothermal gradient. Measure- 
ment and analyses of  these stresses are given in Hooker  
and Duvall [22], Harrison and Herbst  [23], Berger [24], 
Sbar et  al. [25] and Swolfs and Savage [26]. The influence 
of topography on gravitational stresses in two particular 
cases is the subject of  this paper, in which the mathe- 
matics broadly outlined by Akhpatelov and co-workers 
is derived in detail. 

Interest in the topographic modification of grav- 
itational stresses was originally directed towards the 
work of McTigue and Mei [5]. However, after carefully 
considering the implications of  their analysis, it seemed 
physically implausible to have tension develop in sym- 
metric ridges of  small to moderate  slope under the action 
of gravity alone. This led to the available Russian 
literature which, as mentioned earlier, was incomplete 
and not always explicit. Moreover,  as presented, the 
solutions were quite complicated and, in fact, character- 
ized as cumbersome by Ter-Mart i rosyan et  al. [13]. This 
is, indeed, true when the solutions are separated into real 
and imaginary parts [12]. However, if the expressions are 
left in complex form as in equations (39) and (40), then 
a~/pgb ,  a , / p g b  and ax~/pgb can be directly obtained 
using a F O R T R A N  program [19] that greatly reduces 
the algebraic and computat ional  efforts. 

The results obtained from equations (39) and (40) 
should give reasonable estimates of  the stresses in iso- 
lated symmetric ridges and valleys provided that the 
earth materials making up these features behave elas- 
tically (or nearly so), excavation or accretion of these 
earth materials is not occurring [27], thermal effects are 
accounted for and tectonic stresses are absent or can be 
independently estimated. Of  particular note is that, even 
for isolated symmetric ridges of  low surface slope 
(Fig. 11), there persist non-zero compressive horizontal 
stresses near the crest of  the features. Such stresses have 
indeed been measured [1], but interpreted in various 
ways as tectonic, residual, or otherwise, because it was 
generally believed that corrections from the topographic 
effect would be small. Of  importance also is the predic- 
tion of  tensile stresses in valley bot toms for typical 
laboratory values of  Poisson's ratio. One would suspect 
that such tensile stresses could not be maintained in 
rocks of  low tensile strength, or, perhaps, Poisson's 
ratios are high enough to preclude the development of  
tensile stresses in valleys (see Fig. 10a). 

Clearly, the effect of  topography defined by equations 
( l l a ,  b and c) on far-field tectonic stresses can be 
analyzed separately in the manner  outlined in this paper. 
This would allow the independent estimate of  tectonic 
stresses mentioned earlier, as well as an assessment of  the 
near-surface stresses due to both a body force and a 

tectonic stress in the vicinity of  a symmetric ridge or 
valley. 

CONCLUSIONS 

An analysis of  the topographic modification of  the 
gravitationally induced stresses using an elastic solution 
similar to one originally given by Akhpatelov and 
co-workers [12-14] has been presented. The results, as 
stated here in equations (39) and (40), explicitly yield 
estimates of  the stresses in the vicinity of  isolated 
symmetric ridges and valleys. The magnitude of these 
stresses are of  the order of  the characteristic stress, pgb,  

where b is the height of  the ridge or the depth of  
the valley and vary with Poisson's ratio. Non-zero 
horizontal compressive stresses develop at or near ridge 
crests, persist even when surface slopes are small and 
decrease with increasing Poisson's ratio. Large hori- 
zontal tensile stresses develop under valleys, but decrease 
and become compressive with increasing Poisson~s ratio. 
In the far field, all stresses approach the standard state 
of  stress; that is, they are all compressive. The impli- 
cations of  this work are of  importance and should aid in 
the solution of problems in regional geomechanics, 
tectonics and structural geology. 

Received 4 January 1985: rerised 26 March 1985. 
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