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Abstract  

An optimized upwind Taylor-Galerkin finite element method (UTGFEM) has been 
developed to simulate one-dimensional contaminant transport in groundwater. The 
model was employed to predict the transport of contaminants from continuous, pulse, 
and exponentially decaying sources for a wide range of dispersion coefficients and de- 
gradation rate constants. The dispersion coefficients considered were 0.0, 1.0, and 5.0 
m2/day. The degradation rate constant was varied between 0.007 and 0.028 (day) i. 
The model was found to predict the transport dynamics for all these conditions accu- 
rately when the dispersion coefficient was greater than or equal to 0.215 mZ/day. The 
model would introduce some numerical dispersion if the field dispersion were smaller 
than this limiting value. The need for numerical dispersion can be reduced significantly 
by making the length of the finite elements smaller. © 1998 Elsevier Science Inc. All 
rights reserved. 

Keywords: Taylor-Galerkin finite element method; Groundwater transport 

I .  I n t r o d u c t i o n  

Fini te  e lement  me thods  ( F E M s )  tha t  utilize piecewise l inear  basis  funct ions  
(PLBFs)  have been a topic  o f  extensive research in mode l ing  c o n t a m i n a n t  
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transport in groundwater. Consequently, a great deal of literature is available 
[1-5]. The FEMs can minimize solution error in a mathematically sound way 
and incorporate complex boundary conditions with relative ease. Additionally, 
the FEMs have been reported to introduce smaller numerical dispersion than 
finite differences [6]. 

Several FEMs are reported in the literature to provide stable and convergent 
results. However, the Galerkin FEM that utilizes asymmetric weight functions, 
referred to as Petrov-Galerkin FEM (PGFEM), has been reported to be the 
most stable one in modeling advective-dispersive transport [1,6-8]. A semi-im- 
plicit FEM based on Taylor series is also reported to be accurate for simulating 
advective~tispersive transport [3,9]. This method will be referred to as Taylor- 
Galerkin FEM (TGFEM). Hossain and Yonge [10] have shown that both 
TGFEM and PGFEM remain stable over a wide range of Peclet numbers from 
zero to infinity. However, the TGFEM was found to better predict the one-di- 
mensional transport of contaminants with smaller numerical dispersions but 
with some oscillations. The PGFEM, on the other hand, provided oscillation 
free predictions at the expense of introducing significant numerical dispersions. 
Introduction of numerical dispersions results in artificially faster movement of 
the contaminant and underestimation of the peak concentration for pulse 
sources, which is undesirable because in real world application it will lead to 
misleading conclusions. It is, therefore, imperative to develop a model which 
will minimize the numerical dispersion and will accurately predict contaminant 
transport in groundwater. 

The TGFEM, as mentioned, was found to relatively accurately predict 
transport of contaminants for a variety of field conditions [10]. The TGFEM 
predictions were, however, oscillatory. The oscillation can be avoided by intro- 
ducing upwinding [6]. The objective of this paper was to develop an upwind 
TGFEM (UTGFEM) utilizing PLBFs and optimize the degree of upwinding 
so that it provides oscillation free accurate results for a wide range of field con- 
ditions with regard to dispersion and source definition. 

2. Model equation 

The differential equation describing one-dimensional transport of contami- 
nants in a homogeneous and isotropic aquifer with uniform flow field can be 
written as follows: 

OC u OC DL 02C 
- ( 1 )  

Ot Ra Ox Ra Ox 2 

where C is the contaminant concentration in the groundwater (M/L3), t the 
time (T), u the velocity of flow (L/T), x the distance in the direction of flow 
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(L), DL the dispersion coefficient (L2/T), Rd the retardation coefficient, and 2 a 
decay constant (fiT). If U/Rd is replaced by v and (DL/Ra) by D then Eq. (1) 
can be written as follows: 

OC OC 02C 
= -V-~x + D-~-x2 - 2C. (2) 

Eq. (2) may be solved for the following bounuary and initial conditions: 

@t>~0,  x = 0 ,  C=Co(t), (3) 
OC 

@t>~0,  x=L, ~-x=O, (4) 

@ t = 0 ,  O<<.x<<.L, C=C(x), (5) 

where Co(t) is the source concentration (M/L 3) as a function of time, L the 
length of the modeled domain (L), and C(x) the spatially varying initial condi- 
tion (M/L3). 

3. Taylor-Galerkin formulation 

• OC" 
C "+l = C " + A t - - - ~ - + - - - -  

or, 

The TGFEM proposed by Donea [3] and later applied to advection domi- 
nated problems by Lee et al. [11] is a semi-implicit method. It is second-order 
accurate in time. The method utilizes Taylor series expansion of the concentra- 
tion, C "+~, at any time level n + 1, in terms of the concentration C" at the pre- 
vious time level n as shown below: 

• Ocn l~ t202cn  ~-O(At3). (6) 
C n+l =C n+At--~-~ 2 Ot 2 

Here O(At 3) is the summation of the higher-order terms and will be neglected. 
Therefore, 

A t  2 0 2 C  n 

2 0 t  2 (7) 

or, 

oc° A,2 o ( 
c °+' = c" + At--~- + T b ~  ot ] (8) 

OC" 02C" ) 
C n+l = C" + At - V~-x+D---O- ~ - 2C ~ 

At 20  
+-2---~t ( -  V Ox-x + 02C"-2C") (9) 
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or, 

or, 

or, 
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OC n 02C n ) 
C "+' = C" + A t  - v-~-x+D--o~--  2C" 

At 2 0  /_  OC ° 02C , 
- v-~-~x ~ V Ox-x + D o~-x2 - 2C") 

At 202 
+D~-~x2  ( -  v~-~-x+D~-x20C~ 02C~_2C, ) 

, At 2 _ 2C ,'x I/_ OC" 02C n 
) (10) 

OC" 02C" ) 
C "+l = C" + At - v ~ -  x + D-0~5-- 2 - 2C" 

At 2 02C n 03C n , OC n 
- v--~- ( -  v ~ + D ~ - z--~x ) 

Aft / 03C n 04C n . 02C n "~ 
+ D s -  (,- + D-0  - - ) 

° At 2 _ 2C .~  t/_ OC n 02C n 
- z T [~ V-~x +D-~x2 ) (11) 

At  2 ) V)~At2) OCn 
C "+l = 1 - 2 A t + 2 2  --2- C ' + ( - v A t +  Ox 

( 2At2 ) 0 2 C  n 
+ DAt+v --2---D2At 2 Ox 2 

03C" 2 At204C" (12) 
- v D A t  2 ~  + D ~ -  Ox 4 . 

When PLBFs  are used, the terms higher than second-order  can be neglected. 
The terms, higher than second-order ,  will not  contr ibute  to the discretized 
t ranspor t  equat ion.  Eq. (12) can, therefore,  be writ ten as follows: 

OC" 02C" 
C n+l : yl Cn +72---~x -~-)' 30x 2 , (13) 

where 

7 1 =  1 - 2 A t + 2 2  At2 2 ' (14) 

72 = -vAt + v2At 2, (15) 

y2 At2 
73 2 + DAt - D2At 2. (16) 
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4. Finite element formulation 
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The solution to the transport equation (13) begins with the construction of a 
trial solution. The trial solution is a linear combination of the basis functions 
~o. If C is the trial solution then it can be expressed as follows: 

N 

= Z G ( t ) % ( x ) ,  (17) 
i = 0  

where C~(t) is the magnitude of C at any node i and is a function of time only, 
and N is the number of finite elements. The trial solution can be written in the 
following form when the boundary condition at x = 0 is satisfied, 

N 

= c0(t) o0(x)+ ( 1 8 )  
i=1  

Since C is a trial solution it may not exactly satisfy the Taylor-Galerkin equa- 
tion (13). There will be residuals as shown below: 

- 0C" 0ZC" (19) 
R T = ~.+1 _ 71C. _ ~,2 ~ . _  X _ 7 3  o ~  2 • 

The T G F E M  minimizes the residual R T over the domain by making it orthog- 
onal to the PLBFs, % as defined below, 

~0i=0 i f x < ~ x i _ l ,  (20a) 
X - -  X i _  1 

~oi - - -  if xi-l  <<.x<~xi, (20b) 
Xi -- Xi- 1 
Xi+ 1 -- X 

~0 i - - -  if xi <<. x <<. xi+l, (20c) 
Xi+l - -  Xi 

q~i=0 i fx>/x i+l .  (20d) 

The U T G F E M  differs from T G F E M  in that it utilizes two weight functions to 
apply the principle of orthogonality to the residual R T. The weight function for 
the advective term in Eq. (19) is taken to be the upwind basis functions 
(UBFs), rp a, given in Eqs. (21a)-(21d). The PLBFs are used as weight functions 
for the rest of  the terms, 

q0a=0 i f x<~x i -1 ,  (21a) i 

~p,, x - x i - l  3~ (x- --Xi-l)(X--Xi) if xi-~ <<.x<~xi, (21b) 

o x , + ,  - x - x , ) ( x  - 
q~i = - -  + 3a (x if x~ <~ x <~ xi+l, (21c) 

x ,+ ,  - x ,  (x ,+,  - 

rp ~ = 0 if x >I- Xi+l. (21d) i 

In the above equation ~ is a free parameter that spans between 0 and 1. The 
magnitude of ~ determines the degree of  upwinding. If  :¢ is set to zero, then 
the UBFs become the standard PLBFs. 
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The introduction ofupwinding and the application of Galerkin principle to 
the residual R v, as discussed in Section 3, lead to the following system of 
ODEs, 

RTq~/dx = cn+lq0j - -  ~lCn~pj - ~ 2 ~ x  fpj - 323~x2 (pj dx 

for j = 1 ,2 , . . . ,N .  (22) 

Appropriate mathematical manipulation transforms the above equation to the 
following: 

[A]{C} "+' = y, [A]{C}" + ?2[A"]{C}" - 73[Ad]{c}" + {D}, (23) 

where 

/? aij = e~(x)q~j(x) dx i , j  = 1,2, 3 , . . . ,  N,  (24) 

ai~ = qo~(x)dx i , j  = 1 ,2 ,3 , . . . ,N ,  (25) 

[L dqoi(x) d~oj(x) dx i , j  = 1,2, 3, N ,  (26) 
dx " 

Ax ,+l Ax , 72(1 +c¢) 73 for i =  1, (27) 
d~ = - T C ~  +71-6- G ~ + ~  

d i = O  f o r i ¢  1, (28) 

where C~ +~ and C~ are the source concentrations at n + 1 and n time levels, re- 
spectively. 

5. Solution technique 

The U T G F E M  is semi-implicit in nature. The matrix equation given in the 
U T G F E M  formulation can be written in the following form: 

[A]{C} "+1 = {R}, (29) 

where {R) = V, [A]{C}" + 72[Aa]{C} n - 73[Aa]{C}" + {D}. 
The matrix [A] was decomposed into lower and upper triangular matrices by 

employing the principle of lower and upper (LU) decomposition. Details of LU 
decomposition can be found elsewhere [12]. At each time step the decomposed 
system of equations were solved for concentrations at the nodes by forward 
and backward substitution. Burden and Faires [12] provide a good treatment 
of forward and backward substitution. 
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6. On TGFEM 
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The breakthrough profile presented in Fig. 1 is for unretarded advective 
transport of a contaminant in a uniform flow field of length of 100 m. A con- 
tinuous source of 1 mg/L was considered for this simulation. The flow velocity 
was 2 m/day. The advective transport was considered because it is the most im- 
portant transport mechanism from stability considerations. Further, stability 
for advective transport is an assurance of stability for advective~tispersive 
transport with or without degradation. 

It is reported by Peraire et al. [9] that T G F E M  for advective-dispersive 
transport should remain stable if the following condition is satisfied. 

11 1 (30  Cr ~< ~ + 3 Pe 

Here Cr = vAt/Ax,  and is the mesh Courant number. Pe is the Peclet number 
and is equal to v&x/D. The stability of pure advective transport is, therefore, 
assured when Cr ~< 1 / v ~  = 0.577. The model was found to remain stable as 
long as Cr was less than or equal to 0.577. The breakthrough profile in 
Fig. 1 is for a Courant number of 0.001 corresponding to At = 5 x 10 .5 days. 
The model prediction is in good agreement with the analytical results. The cor- 
relation coefficient was computed to be 0.999. However, the prediction is oscil- 
latory and the model also predicted negative concentrations at the early part of 
the breakthrough curve. Negative concentration is a physical impossibility and 
is a numerical phenomenon. The oscillation is also a numerical phenomenon. 
Both oscillation and negative concentrations are, therefore, undesirable and 
should be avoided for the model to be accurate and predictive. 

1.2 

t.O 

0 .8-  

~ -  0.6 

0 0 .4-  

0 ,2 .  

0.0 

-0.', 

. . . .  TGFEM 

-'_ : ;  t~, A r.  ^ ~ . . . . . . . . . .  

; I L j V V V  v -  . . . . . . . . . . . . . . . . . .  

, , , , i  . . . .  L . . . .  : : . . . .  b . . . .  i , , , q  . . . .  i , , ~  

0 2  0,4 0 .6  0 .8  1.0 1.2 1.4 1.6 1.8 2.0 

t ( d a y )  

Fig. 1. TGFEM prediction versus analytical solution of advective transport for a continuous 
s o u r c e .  
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7. Optimization of UTGFEM 

The oscillation and the numerical phenomenon of negative concentrations 
are usually controlled by the introduction of upwinding as discussed earlier. 
The magnitude of  upwinding is defined by the parameter ~ in Eq. (21). Higher 
value of ~ results in higher numerical dispersions. Therefore, ~ is to be deter- 
mined in a way that it eliminates numerical oscillation leading to avoidance of 
negative concentrations and, at the same time, minimizes numerical dispersions. 

A numerical experiment was performed to obtain the optimum value of  c~ 
which is sufficient to eliminate oscillations and to avoid negative concentra- 
tions in the model prediction by UTGFEM,  The experiment was conducted 
for a wide range of Peclet and Courant numbers. The flow field simulated 
was 30 m long. The flow velocity was 0.60 m/day.  The dispersion coefficient 
was varied from 0.0 to 5 m2/day. Therefore, the Peclet number was varied 
from 0.40 to infinity. The Courant number was varied from 0.005 to 0.1. A 
functional relationship was then developed to express optimum ~ as a function 
of Peclet and Courant numbers as shown in Eq. (31), 

 o  ,mum [0 144 4  0 80771 + 123 39  007  6 l r e 
This expression for the optimum value of  upwinding, as mentioned, was devel- 
oped by considering a constant source boundary condition. It was found that it 
also holds for a pulse input or an exponentially decaying boundary condition. 

8. Model predictions versus analytical results 

The accuracy of  the optimized model was verified by comparing its predic- 
tions with analytical results reported by van Genuchten [13]. The simulated 
flow field was 100 m long and was divided into 100 finite elements. Therefore 
Ax was equal to 1 m. The velocity of  flow was 2 m/day.  The dispersion coef- 
ficient was varied between 0 and 5 m2/day and At was equal to 5.0 x 10 -4 day. 

Fig. 2 presents the predicted breakthrough profiles for dispersion coeffi- 
cients of  0.0, 1.0, and 5.0 m2/day. The model predictions are in excellent agree- 
ment with the analytical results for the larger dispersion coefficients. The 
computed correlation coefficients were 0.999. The agreement is not quite as 
good for pure advective transport i.e., when the dispersion coefficient is zero 
and it was reflected in the poor correlation coefficient of  0.955. Similar results 
were obtained for advective-dispersive transport with degradation. Fig. 3 pre- 
sents model predictions for a widely ranging degradation rate constant of 
0.007- 0.028 d i and for a dispersion coefficient of  1.0 m2/day. The excellent 
agreement between the model predictions and the analytical results yielded a 
high correlation coefficient of 0.999. 
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1.2. 
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. . . . .  N u m e r i c a l  

= 0 m Z l d a y  ,, D 

"°~ ,,g a 1 

z o" i 

10 

= /day  

i D = 1 mZ/_day 

:; . . . .  t . . . .  i . . . .  i . . . .  i . . . .  = 
20 30 40 50 50 70 80 90 100 

t (day)  

Fig. 2. UTGFEM predictions versus analytical solution of advective dispersive transport for a 
continuous source. 
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~. = 0 . 0 0 7  d a y  "1 

~. = 0 . 0 1 4  d a y  "1 

~. = 0 . 0 2 8  d a y  "1 

40 50 60 70 80 90 1 ~ 

t (days)  

Fig. 3. UTGFEM predictions versus analytical solution of advective~tispersive transport with de- 
gradations for a continuous source. 

Fig. 4 contains the model  predictions for a pulse source o f  durat ion 5 days 
and for a dispersion coefficient o f  1.0 m2/day.  The computed  correlat ion 
coefficient was 0.999 indicating the excellent agreement  between the model  
prediction and the analytical solution. Similar agreement  was observed for a 
dispersion coefficient o f  5.0 mZ/day too. 

An  exponentially decaying source was also considered. The boundary  con- 
dition given in Eq. (3) can be written as follows: 

Co(t) = Coe -~t. (32) 
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0 0 A  

0 . 2  

0.0 

-0.2 

Ana l y t i ca l  
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Fig. 4. UTGFEM predictions versus analytical solution of advective~lispersive transport for a 
pulse source. 

The model predictions for this boundary condition are presented in Fig. 5. The 
source decay constants, ~:, utilized were 0.01, 0.03, and 0.05 (day) -]. The dis- 
persion coefficients for these predictions were 1.0 m2/day. The model predic- 
tions are again in excellent agreement with the analytical solution. The 
correlation coefficient was 0.999. The agreement was also excellent for the dis- 
persion coefficient of 5.0 m2/day. 

Therefore, it can be concluded that the model predictions are in excellent 
agreement with the analytical solution for advective-dispersive transport. 
The model appears to introduce some numerical dispersion when the disper- 
sion is zero. The numerical dispersion introduced is the minimum needed to 

1.2.  

D = 1 m2 /day  

1 .o -  

~ 0 . 6 -  

- '  / u 0 ,4  

K=  
0.2 

0.0 . . . . . . . .  ,. • ~ . . . . . . . .  , . . . .  i . . . .  i . . . . . . .  

10 20  30  40  50  60  70  80  90 100 

-0.2 1 (day) 

Fig. 5. UTGFEM predictions versus analytical solution of  advective~tispersive transport for an ex- 
ponentially decaying source. 
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eliminate oscillation and avoid negative concentrations and was equal to 
(~opt~umVAX/2) ~ 0.215 m2/day. The model was found to provide excellent 
agreement between its prediction and the analytical solution when the disper- 
sion coefficient was greater than or equal to 0.215 m2/day. If a smaller numer- 
ical dispersion is desired then it can be achieved by making Ax smaller because 
the numerical dispersion is proportional to it. 

9. Conclusions 

The optimized UTGFEM was employed to simulate contaminant transport 
in groundwater for continuous, pulse, and exponentially decaying sources. The 
model was found to provide accurate predictions for dispersion coefficients 
greater than or equal to a limiting value 0.215 mZ/day. If the dispersion coef- 
ficient is smaller than 0.215 mZ/day then some numerical dispersions need to 
be introduced to obtain oscillation free results and to avoid physically impos- 
sible negative concentrations. The magnitude of the numerical dispersion intro- 
duced is 0.215 mZ/day minus the field dispersion. The magnitude of the 
numerical dispersion to be introduced can, further, be reduced by making Ax 
smaller. 
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