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Abstract. This paper is devoted to the modelling of a temperature field in nonsaturated porous media
in the absence of phase change. We establish the energy equation at the macroscopic level, from
a description at the pore level by using the homogenisation method of multiple-scale asymptotic
expansions. Different macroscopic models are obtained depending on the values of the local Péclet
number and the local Fourier number. An example of the application of the different model catalogue
is presented which concerns the modelling of the hot pressing of a paper web.
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Notations

C C = ρ.Cp(J m−3 K−1)

Cp specific heat(J kg−1 K−1)

I identity matrix
l, L characteristic microscopic and

macroscopic size, respectively
n volume ratio
N unit normal vector
Pe, P, Nλ dimensionless numbers
t time (s)
T temperature (K)
v velocity (m s−1)

x, y dimensionless macro and
micro length, respectively

X dimensional space variable
α thermal diffusivity (m2 s−1)
ε scale factor
0kl interface between the domains

filled by the phasesk andl

λ thermal conductivity
(J m−1 s−1 K−1)

�, �i total volume, volume filled
by the phasei (m3)

ρ density (kg m−3)

Subscripts w, a, s are, respectively, liquid (water), gas (air) and solid phase.

〈∗〉�k = 1

|�k|
∫

�k

∗ d�

〈V〉 = 1

|�|
∫

�k

V d� = n〈V〉�k (k = w, a, s)
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1. Introduction

Improving the mechanical pressing yields substantial profits in papermaking by re-
ducing the high-cost drying stage. Many works are devoted to this subject (Campbell,
1947; Wahlstrom, 1960; Wrist, 1964; Nilsson and Larsson, 1968; Fekete, 1975;
Carlssonet al., 1983; Roux, 1986; Katajaet al., 1992). Increasing the temperature of
the wet web leads to a better dewatering due to the modification of both the Young
modulus of the fibrous network and the water viscosity (Back, 1985). The modelling
of the temperature field in a paper web during pressing is obviously of primary interest
in optimising the process. The temperature level in the technology investigated here
(hot pressing) is not sufficient enough to introduce an important phase change in the
paper web as well as on the contact surface between the paper web and the hot rolls.
Therefore, the phase change that may nevertheless appear, will be neglected as a first
approximation. The improvement of such a technology is essentially based on the
modification of experimental pilots. In order to bypass some expensive experiments,
a numerical modelling of the press section is to be hoped. In this aim, our paper
tries to steer the numerical resolution (by indicating the correct choice of the thermal
problem equations to be solved) dedicated to the industrial problem.

More generally, we investigate the modelling of the temperature field in a non-
saturated porous medium. Due to the complex structure at the pore scale, a useful
modelling is only possible at a macroscopic scale, where an equivalent continuous
medium is defined. The macroscopic modelling can then be solved in the boundary-
value problem constituted by the paper web between two rolls during pressing.
Solving this problem will enable us to optimise the process. This later extent is
the subject of intensive research (Bloch, 1995), out of the scope of the present work.

To obtain the macroscopic modelling, we start from a description at the pore level
and we use the method of multiple-scale expansions (Bensoussanet al., 1978). The
method used here is different from the classical average ones referenced in Kaviany
(1991). Compared to them the method of multiple scale expansions shows several
advantages (Auriault, 1991a):

– It needs first a local description, and secondly, a scale separation. Macroscopic
modellings are then deduced from the local description, only, without any
prerequisites concerning the macroscopic description. The volume averaging
process is not arbitrarily introduced in the process; it is a consequence of the
scale separation.

– It permits us to demonstrate, from a given local description, the existence, or
the nonexistence, of a macroscopic equivalent description, i.e., the homogenis-
ability or the nonhomogenisability of an heterogeneous medium. It also gives
the domain of validity of the macroscopic description.

– It permits us to investigate the physical meaning of the macroscopic physical
quantities. For example, considering a Darcy flow through a porous medium, the
process introduces the volume average of the local fluid velocity in the pores.
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It is possible to show that the volume average velocity is a surface average
velocity, that makes this quantity physically meaningful (Auriault, 1991b).

A catalogue of different modellings is obtained depending on the values of the
dimensionless numbers introduced by the pore-scale description. The adapted mod-
elling for an actual problem is then determined from the characteristic values of the
parameters that are involved in the studied situation.

The paper is divided as follows. Section 2 is devoted to the presentation of the
pore-scale description and to the dimensionless numbers of interest. Characteristic
values for a paper web saturated by air and water are then given in Section 3. These
permit us to determine some of these dimensionless numbers. We are left with two
variable dimensionless numbers, the Péclet and Fourier numbers, that are functions of
the scale ratio in the medium. Then in Section 4, the different macroscopic modellings
are given corresponding to different values of these two dimensionless numbers. An
example of the use of the result concerning an actual paper web pressing process is
presented in Section 5.

Information about the homogenisation process is given in the Appendix for a
particular case of interest. However, the reader interested in the details of the analysis
will refer to Auriault (1991a) or to the papers already published inTransport in Porous
Mediaas Auriaultet al. (1992, 1995).

2. The Pore-Scale Description

The non-saturated porous medium under consideration is composed of the porous
structure(s), the wetting phase (w = water) and the nonwetting phase(a = air).
We will denote�s, �w, �a the volumes occupied at the microscale by the solid,
water, and air phases, respectively. We assume each volume as one connected. The
distribution of the fluid constituents are supposed to be annular, i.e., there is no contact
between air and solid, as shown in Figure 1.

Figure 1. Schematic view of a pore.
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The energy equation for a domain�k (k = w, a, s) is given by

∂ρkCpk
Tk

∂t
+ vk · ∇(ρkCpk

Tk) = ∇ · (λk∇Tk), (1)

whereρ, Cp, T , v, t andλ are the density, the thermal capacity, the temperature, the
velocity, the time, and the thermal conductivity, respectively.

In the absence of phase change, the flux conservation of heat on the interface0kl,

(between the domainsk andl), whose unit normal isN, is written in the form

λkij

(
∂Tk

∂Xj

)
Ni = λlij

(
∂Tl

∂Xj

)
Ni. (2)

We also suppose that the thermal resistance is disregarded at the interfaces. We then
deduce that the temperatures are continuous on each interface0kl:

Tk = Tl. (3)

The medium is assumed as periodic. Random media yield similar macroscopic de-
scription modellings (Auriault, 1991b). The method is based on the existence of two
well-separated characteristic lengths:l is the characteristic pore size andL is, e.g., the
macroscopic characteristic length of the sample, with(l/L) = ε � 1. The process
may be summarised as follows:

(a) make the local description dimensionless.
(b) evaluate the dimensionless numbers in term of the scale separation parameter

ε.
(c) look for the quantities in the form of asymptotic expansions with respect to the

powers ofε.
(d) solve the successive boundary-value problems obtained by identifying like

powers ofε.
(e) obtain the macroscopic description from the existence condition of the different

terms in the asymptotic expansions.

To make Equations (1), (2) dimensionless, some parameters may be introduced
(thermal conductivity ratios, inverse P of the Fourier number and Péclet number
Pe):

Nλaw = λa

λW
, Nλsw = λs

λW
,

P =

∣∣∣∣ρCp

∂T

∂t

∣∣∣∣∣∣∣∣ ∂

∂Xi

λij

∂T

∂Xj

∣∣∣∣
, Pe=

∣∣∣∣ρCpVi

∂T

∂Xi

∣∣∣∣∣∣∣∣ ∂

∂Xi

λij

∂T

∂Xj

∣∣∣∣
.
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The Ṕeclet number links the mechanical and thermal aspects, and P, the inverse of
the Fourier number, is the ratio of the transient to the diffusive terms. The parameters
P and Pe take different values in each constituent.

l andL introduce two dimensionless (micro and macro) space variablesy = X/l

andx = X/L, respectively. We usel to make the equations dimensionless. For the
sake of simplicity, notations for dimensionless and dimensional quantities are left
similar, except for space variables. The dimensionless equations can then be written
in the form

– in �k

P
∂CkTk

∂t
= ∂

∂yi

(
λkij

∂Tk

∂yj

)
− PeVki

∂CkTk

∂yi

; (4)

– on0kl

Nλkl
λkij

(
∂Tk

∂yj

)
Ni = λlij

(
∂T1

∂yj

)
Ni , (5)

Tk = Tl (6)

with

Ck = ρkCpk
and Nλkl

= λk

λl

.

3. Reference Values

Reference values have to be chosen. As an example, we consider the paper web
characteristic reference values given in Table I.

Table I. Reference values for the physical properties of the porous
medium components

s Cps s s

(J m−1 s−1 K−1) (J kg−1 K−1) (kg m−3) (m2 s−1)

0.33 1.33× 103 1.5 × 103 1.6 × 10−7

w Cpw w w

0.602 4.18× 103 103 1.4 × 10−7

a Cpa a a

0.026 103 1.23 2.1 × 10−5
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The scale ratioε is defined as the ratio ofl the characteristic microscopic size (pore)
to the macroscopic oneL (sample). For a paper web, the characteristic lengths can
be estimated asl = 10mm andL = 1 mm. We thus obtainε ≈ 10−2.

Some of the dimensionless numbers are immediately evaluated in term ofε:

Nλaw = 0.043= O(ε), Nλsw = 0.548= O(1),

Pw = Cwl2

λwτ
= O(ε−1Pa), Ps = Csl

2

λsτ
= O(Pw).

For simplicity, we will denote now P the value common toPw andPs.
With the preceding data, we are left with two variable dimensionless numbers:

the Ṕeclet number Pe and the inverse P of the Fourier number.
Each physical quantityφ is then looked for in the form of asymptotic expansions

with respect to the powers ofε:

φ = φ(0) + ε · φ(2) + ε2 · φ(3) + · · · (7)

4. The Different Macroscopic Descriptions

By applying the homogenisation process, we obtain macroscopic models that are
approximations. The model accuracies are expressed in term of positive powers of
ε. So, the more the scale separation is important, the better is the result.

We first consider in Section 4.1 small Péclet numbers, i.e., small convection. Then
the Ṕeclet number is increased (Section 4.2) and dispersion appears. We limit the
presentation to the resulting macroscopic models. However, the details of the analysis
in case of model B-1 (Section 4.2) are given in the Appendix. The macroscopic models
are presented in dimensionless form. In the following, the first-order velocity term
V(0) is obtained separately from a classical Darcy problem, see Auriault (1991b) for
details.

4.1. small péclet number: diffusion-convection

A-1: Pe6 O(ε2), P = O(ε2)

The convection at the microscale is very weak, and does not appear at the macroscale.
The time variation appears in the macroscale description.|�| stands for the period
volume.

〈C〉w,s
∂T

∂t
= ∂

∂xi

(
λeff

ij

∂T

∂xj

)
+ O(ε), (8)

with

λeff
ij = 1

|�|
∫

�w+�s

λij

(
Ikj + ∂χIk

∂yj

)
d�, (9)
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〈C〉w,s = 1

|�|
(∫

�w

Cwd� +
∫

�s

Cs d�

)
. (10)

χI is given by a local boundary problem to be solved on the period�:

∂

∂yi

(
λaik

) = − ∂

∂yi

(
λaij

∂χIaik

∂yj

)
, in �a. (11)

Similar equations are obtained in both�w and�s. On the boundaries, we have

0 = λwij

(
Ijk + ∂χIwk

∂yj

)
Ni , on0wa, (12)

λsij

(
Ijk + ∂χIsk

∂yj

)
Ni = λwij

(
Ijk + ∂χIwk

∂yj

)
Ni , on0ws, (13)

χIa = χIw, on0wa, (14)

χIs = χIw, on0ws, (15)

with χIα = χIα(y), (α = w, a, s).
χIα is determined to an added arbitrary constant, of no importance (see Equation

(9)). Unicity is needed for numerical investigation. It can be obtained by prescribing
an extraneous condition,〈χIα〉α = 0 or by fixing the value ofχIα at any particular
point in the pores. Moreover,χI may be calculated analytically for a simple geometry
(cf. Auriault et al., 1996). eff is a classical effective thermal conductivity:eff is
the ratio between volume-averaged temperature gradients and heat flux (see annex).

A-2: Pe6O(ε2), P6O(ε3)

The transient term order is now weaker, and disappears at the macroscale level:

0 = ∂

∂xi

(
λeff

ij

∂T

∂xj

)
+ O(ε). (16)

The effective thermal conductivity is equivalent to the one presented in the case A-1.

A-3: Pe= O(ε), P = O(ε3)

The convection, being increased at the microscale, appears now at the macroscale
level:

〈C〉w,s
∂T

∂t
= ∂

∂xi

(
λeff

ij

∂T

∂xj

)
− 〈CVi〉� ∂T

∂xi

+ O(ε). (17)

We remark that due to the contrast of the physical properties, the transient term takes
into account the solid and fluid phases only, contrary to the convective term.
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A-4: Pe= O(ε), P6O(ε3)

The transient term disappears in the macroscopic description as in the case A-2, but
the convective effect has to be introduced:

0 = ∂

∂xi

(
λeff

ij

∂T

∂xj

)
− 〈CVi〉� ∂T

∂xi

+ O(ε). (18)

A-5: Pea,w = O(ε), Pes = O(ε2), P = O(ε2)

As an example, we may consider that the solid convective term is smaller than those
for water and air, at the microscale. Consequently, it disappears from the macroscopic
description:

〈c〉w,s
∂T

∂t
= ∂

∂xi

(
λeff

ij

∂T

∂xj

)
− 〈CVi〉�a+�w

∂T

∂xi

+ O(ε). (19)

Conclusion.Note that the richest model is model A-3. It is possible to show that
there is a continuous passage from this model to the other ones. Notes also that the
effective conductivityλeff is similar in all models considered in Section 4.1.

4.2. dispersion

In the following cases, the Péclet number is increased by an order of magnitude.

B-1: Pe= O(1), P = O(ε)

Details of the homogenisation process are given in the Appendix.
Both the transient term and the convection exist at the microscopic level. A second

transient term appears in the first term of the equation. The dispersion is also present,
as can be seen from the effective thermal conductivity. The macroscopic description
is given by (A.24).

(〈C〉�w+�s + ε〈C〉�a)
∂T

∂t
+ ε〈Cχ II i

〉�w+�s

∂2T

∂t∂xi

= ε
∂

∂xi

(
λ∗∗eff

ij

∂T

∂xj

)
−
(

〈CVi〉� ∂T

∂xi

)
+ O(ε2),

(20)

with

λ∗∗eff
ij = 1

|�|
∫

�w,s

[
λij

(
Iij + ∂χII j

∂yl

)
− C(0)V

(0)
i χII j

]
d� (21)

and where

〈V(0)
i 〉∗ = 〈C(0)V(0)

i 〉�
〈C〉�w+�s

(i = w, s)
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χII (different fromχI ) is defined by the following local boundary problem to be
solved on the period�:

C(0)
a V (0)

ak
= ∂

∂yi

(
λaij

(
Ijk + ∂χIIak

∂yj

))
− C(0)

a V (0)
ai

∂χIIak

∂yi

, in �a, (22)

C(0)
w (〈V (0)

wk
〉∗ − V (0)

wk
)

= ∂

∂yi

(
λwij

(
Ijk + ∂χIIw k

∂yj

))
− C(0)

w V (0)
wi

∂χIIw k

∂yi

, in �w, (23)

C(0)
s (〈V (0)

sk 〉∗ − V (0)
sk )

= ∂

∂yi

(
λsij

(
Ijk + ∂χIIsk

∂yj

))
− C(0)

s V (0)
si

∂χIIsk

∂yi

, in �s, (24)

0 = λwij

(
Ijk + ∂χIIw k

∂yj

)
Ni , on 0wa, (25)

λsij

(
Ijk + ∂χIIsk

∂yj

)
Ni = λwij

(
Ijk + ∂χIIw k

∂yj

)
Ni , on 0ws, (26)

χIIa = χIIw , on 0wa, (27)

χIIs = χIIw , on 0ws, (28)

with χIIα = χIIα(y) (α = w, a, s).
The above boundary-value problem definesχIIα to an arbitrary constant, that may

be fixed using the condition〈χIIα〉�α
= 0.

λ∗∗eff can be proved to be a dispersive thermal conductivity. It depends on the
Darcy velocityV(0), where the exponent(0) represents the first-order approximation.

B-2: Pe= O(1), P = O(ε2)

Now, the transient term and the convection exist. Dispersion is also present:

ε〈C〉w,s
∂T

∂t
= ε

∂

∂xi

(
λ∗∗∗eff

ij

∂T

∂xj

)
− 〈CV 〉� ∂T

∂xi

+ O(ε2), (29)

with

λ∗∗eff
ij = 1

|�|
∫

�w,s

[
λij

(
Iij + ∂χIII j

∂yl

)
− C(0)V

(0)
i χIII j

]
d�. (30)
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λ∗∗∗eff is also a dispersive thermal conductivity, different fromλ∗∗eff . χIII is deter-
mined by the following boundary problem to be solved:

C(0)
a V (0)

ak
= ∂

∂yi

(
λaij

(
Ijk + ∂χIIIak

∂yj

))
− C(0)

a V (0)
ai

∂χIIIak

∂yi

, in �a, (31)

C(0)
w V (0)

wk
= ∂

∂yi

(
λwij

(
Ijk + ∂χIIIw k

∂yj

))
− C(0)

w V (0)
wi

∂χIIIw k

∂yi

, in �w, (32)

C(0)
s V (0)

sk = ∂

∂yi

(
λsij

(
Ijk + ∂χIIIsk

∂yj

))
− C(0)

s V (0)
si

∂χIIIsk

∂yi

, in �s, (33)

0 = λwij

(
Ijk + ∂χIIIw k

∂yj

)
Ni , on 0wa, (34)

λsij

(
Ijk + ∂χIIIsk

∂yj

)
Ni = λwij

(
Ijk + ∂χIIIw k

∂yj

)
Ni , on 0ws, (35)

χIIIa = χIIIw , on 0wa, (36)

χIIIs = χIIIw , on 0ws, (37)

with χIIα = χIIα(y) (α = w, a, s).
χIII is determined to an arbitrary constant.

B-3: Pe= O(1), P6O(ε3)

Now, the transient term disappears in the macroscopic description

0 = ε
∂

∂xi

(
λ∗∗∗eff

ij

∂T

∂xj

)
− 〈CV 〉� ∂T

∂xi

+ O(ε2). (38)

Conclusion.Considering all the models B, model B-1 appears as the richest one. It
is analysed in details in the Appendix.

The cases with Pe= O(ε−1) are not homogenisable. It means that no equivalent
macroscopic description exists. A macroscopic description can be obtained by a
mathematical technique different from the multiple scale separation method, e.g.,
the volume averaging method. However, in such a case, the obtained macroscopic
model is dependent on the macroscopic sample size and on the applied macroscopic
boundary conditions. That is to say, such a macroscopic model is not intrinsic to the
studied materials.

5. Example of the Model Catalogue Use: Hot Pressing of a Paper Web

As an example, we consider the hot pressing of a paper web, see Figure 2.
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Figure 2. Schematic view of a press section.

The parameters P and Pe can be evaluated as follows. We consider a constant web
velocity during the process. Therefore, using Euler variables, the time-dependence
disappears and P= 0. Furthermore, from the characteristic values in Table I and a
Darcy velocity equal to 10−2 m s−1, we obtain the Ṕeclet number as

Pe= ρCpV l

λ
#

103 × 103 × 10−2 × 10−6

0.5
= O(10−2) = O(ε).

Consequently, the adopted model for the hot pressing numerical modelling should
be model A-4:

0 = ∂

∂xi

(
λeff

ij

∂T

∂xj

)
− 〈CVi〉� ∂T

∂xi

. (39)

Due to the complexity of the pore geometry, the effective conductivityλeff is generally
difficult to determine. Therefore, three complementary hypotheses may be adopted
to simplify the model:

− The first one concerns the thermal effective conductivities of the fluid and the
solid. They are of the same order of magnitude,λw = O(λs). For simplicity, they
can be assumed as isotropic and constant. Therefore, Equation (39) becomes

0 = ∂

∂xi

(
λw (nw + ns) Iij

∂T

∂xi

)
− 〈CVi〉� ∂T

∂xi

, (40)

wherenk (k = w, s) is the volume ratio andI is the identity matrix.
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Figure 3. Temperature field in the paper during hot pressing: an example.

− In a paper web pressing process, the gas volume is generally very small in
comparison to the solid and liquid ones:ns+nw#1. Equation (40) may therefore
be written in the form

0 = ∂

∂xi

(
λwIij

∂T

∂xi

)
− 〈CVi〉� ∂T

∂xi

. (41)

− Finally, the contribution of the air in the convective term can be assumed to be
negligible:ρaCpaVa � ρwCpwVw, then Equation (41) simplifies to

0 = ∂

∂xi

(
λw Iij

∂T

∂xi

)
− 〈CVi〉�s+�w

∂T

∂xi

. (42)

Equation (42) was used for the numerical modelling of the paper web hot
pressing (Bloch, 1995). An example of a numerical result is shown in Figure 3.

Note that Equation (42) has been obtained,afterdetermining the correct structure
of the energy equation and then introducing simplifying assumptions.

6. Conclusion

Despite the physics at the pore scale being similar, we obtain different law structures
with different effective coefficients for the equivalent medium. In practical cases,
the right macroscopic model is determined by evaluating the different dimensionless
numbers, in function of the scale factorε (defined as the ratio of the microscopic
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characteristic dimension to the macroscopic one). Then a convenient model is found
in the presented catalogue. There is a continuous passage from the most appropriate
model to the others. It is necessary to underline the importance of theε factor, because
the evaluation of the dimensionless parameters will depend on its value.

Note that, in the case of very large Péclet number, the medium cannot be ho-
mogenised. That means that the experimentally determined macroscopic properties
are not intrinsic to the media but are specific to the boundary problem considered in
the experiment. One should then be very careful when using macroscopic models,
which are shown in the paper to be valid, in restricted ranges. Finally, note that the
presented results are applicable to any porous medium that satisfies the microscopic
hypotheses in use here.

Appendix: Model B-1: Pe = O(1) P = O(ε)Pe= O(1) P = O(ε)Pe= O(1) P = O(ε)

By usinge to make dimensionless the local equations, we obtain

ε2Ca
∂Ta

∂t
= ∂

∂yi

(
λaij

∂Ta

∂yj

)
− CaVai

∂Ta

∂yi

, in �a, (A.1)

εCw
∂Tw

∂t
= ∂

∂yi

(
λwij

∂Tw

∂yj

)
− CwVwi

∂Tw

∂yi

, in �w, (A.2)

εCs
∂Ts

∂t
= ∂

∂yi

(
λsij

∂Ts

∂yj

)
− CsVsi

∂Ts

∂yi

, in �s, (A.3)

ελaij

(
∂Ta

∂yj

)
Ni = λwij

(
∂Tw

∂yj

)
Ni, on0wa, (A.4)

λsij

(
∂Ts

∂yj

)
Ni = λwij

(
∂Tw

∂yj

)
Ni on0ws, (A.5)

Ta = Tw on0wa, (A.6)

Ts = Tw on0ws. (A.7)

Introducing expansions like (7) successively yields

in �a

∂

∂yi

(
λaij

∂T
(0)
a

∂yj

)
− C(0)

a V (0)
ai

∂T
(0)
a

∂yi

= 0 (A.1.0)

0 = ∂

∂yi

(
λaij

(
∂T

(1)
a

∂yj
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(0)
a

∂xj
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∂yj
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− C(0)
a V (0)

ai

∂T
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. (A.1.2)

in �w
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∂yi
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, (A.2.1)
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in �s

∂

∂yi

(
λsij

∂T
(0)
s

∂yj

)
− C(0)

s V (0)
si

∂T
(0)
s

∂yi

= 0, (A.3.0)
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on0wa:

0 = λwij

(
∂T

(0)
w

∂yj

)
Ni, (A.4.0)

λaij
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Ni = λwij

(
∂T

(1)
w

∂yij
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(0)
w
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)
Ni, (A.4.1)

λaij
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(1)
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∂yj
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(0)
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∂xj
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Ni = λwij

(
∂T

(2)
w
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(1)
w
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)
Ni, (A.4.2)

on0ws:
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(
∂T

(0)
s

∂yj

)
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)
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λsij

(
∂T

(1)
s

∂yj

+ ∂T
(0)
s

∂xj

)
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λsij

(
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(2)
s

∂yj

+ ∂T
(1)
s

∂xj

)
Ni = λwij

(
∂T

(2)
w

∂yij

+ ∂T
(1)
w

∂xj

)
Ni, (A.5.2)

on0wa:

T (0)
a = T (0)

w , (A.6.0)

T (1)
a = T (1)

w , (A.6.1)

T (2)
a = T (2)

w , (A.6.2)

on0ws:

T (0)
s = T (0)

w , (A.7.0)

T (1)
s = T (1)

w , (A.7.1)

T (2)
s = T (2)

w . (A.7.2)
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First boundary-value problem

As a first boundary-value problem of unknownT (0), we consider Equations (A.2.0),
(A.3.0), the fluid incompressibility at the first order(divy(ρ

(0)v(0)) = 0), Equa-
tions (A.4.0) (A.5.0) and (A.7.0), and finally Equation (A.1.0) on�a together with
Equation (A.6.0). It is possible to show that

T (0)
w = T (0)

s = T (0)
a = T (0)(x) (A.8)

Second boundary-value problem

The second boundary-value problem is for the unknownT (1). Integrating
Equations (A.2.1) and (A.3.1) on domains�α(α = w, s), respectively, adding,
member to member, the resulting equations and using the divergence theorem with
the conditions (A.5.1) and (A.4.1) yields

〈
C(0)

〉
�w+�s

∂T (0)

∂t
= −〈C(0)V

(0)
i

〉
�

∂T (0)

∂xi

(A.9)

with

〈C〉�w+�s = 1

|�|
(∫

�w
Cwd� +

∫
�s

Csd�

)
.

We now investigateT (1) successively in domains�w and�s and next in domain�a.
For water and solid, Equation (A.2.1) or Equation (A.3.1) may be rewritten in the
form

C(0)
α

∂T (0)

∂t
= ∂

∂yi

(
λαij

(
∂T (1)

α

∂yj

+ ∂T (0)
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))
+ ∂
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(
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∂yj

)
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− C(0)
α

(
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∂T (1)
α
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∂yi
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αi

∂T (0)

∂xi

− C(1)
α V (0)

αi

∂T (0)

∂yi

(α = w, s). (A.10)

Then, using Equation (A.8) yields

C(0)
α

∂T (1)
α

∂t
= ∂
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(
λαij

(
∂T (1)

α

∂yj
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(
V (0)
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∂T (1)
α

∂yi

− V (0)
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∂T (0)
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)
. (A.11)

Moreover, Equation (A.9) may be rewritten in the form

∂T (0)

∂t
= −〈V (0)

i

〉∗ ∂T (0)

∂xi

(A.12)
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with

〈
V

(0)
i

〉∗ =
〈
C(0)V

(0)
i

〉
�

〈C〉�w+�s

.

Hence we get
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− 〈
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(A.13)

It is possible to show that the boundary-value problem forT (1)
α , α = w, a, s, has a

unique solution. Because of the linearity, it can be put in the form

T (1)
α = χαII i

∂T (0)
α

∂xi

+ T α(x, t) α = w, s. (A.14)

The boundary-value problem forχII is given above by Equations (22)–(28).
Considering now the gas (air), Equation (A.1.1) can be rewritten in the form

0 = ∂
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(A.15)

Using Equation (B.8) gives

0 = ∂
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. (A.16)

The boundary-value problem forT (1)
a has a unique solution. Its linearity yieldsT

(1)
a

in the form

T (1)
a = χaII i

∂T
(0)
a

∂xi

+ T a(x, t). (A.17)

Consequently, we have for each component of the porous material

T (1)
α = χαII i

∂T (0)
α

∂xi

+ T α(x, t) α = (w, s, a). (A.18)
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Third boundary-value problem

We achieve the process by considering the third boundary-value problem of unknown
T (2). Integrating Equations (A.2.2) and (A.3.2) on their respective domains of def-
inition and using successively the divergence theorem applied to (A.7.2), (A.6.2),
(A.5.2), (A.4.2) and (A.1.1), yield

∂
〈
C(0)T (1) + C(1)T (0)

〉
�w+�s

∂t
+ 〈
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)
(A.19)

with

λ∗
ij = 1

|�|
∫

�w+�s

λij

(
δkj + ∂χII k

∂yj

)
d�.

Now, introducing the expression ofT (1) in the convective term gives

∂
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C(0)T (1)

〉
�w+�s
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〉
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) (A.20)
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λij
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∂yl

)
− C(0)V

(0)
i χII j

]
d�.

Macroscopic models

By adding, member to member, Equation (A.8) to Equation (A.20) multiplied byε,
we get
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. (A.21)
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Now, using the following relation

〈
C(0)T (1)
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T
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(A.22)

changes Equation (A.21) into
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]
. (A.23)

Finally, we obtain for the temperature field up to the second order(T = T (0)+εT (1))

(〈C〉�w+�s + ε〈C〉�a

) ∂T

∂t
+ ε 〈CχII i〉�w+�s

∂2T

∂t∂xi

= ε
∂

∂xi

(
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ij

∂T

∂xj

)
−
(

〈CVi〉�
∂T

∂xi
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+ O(ε2)

(A.24)

with

λ∗∗eff
ij = 1

|�|
∫

�w,s

[
λij

(
Iij + ∂χII j

∂yl

)
− C(0)V

(0)
i χII j

]
d�.

The first term in the right-hand member of Equation (A-24) stands for the divergence
of the macroscopic flux. This one appears as the volume averaging of the local flux. On
an other hand, the macroscopic gradient of temperature of component(∂T (0)/∂xi) is
also the volume averaging of the local gradient(∂T (0)/∂xi)+(∂T (1)/∂yi). Therefore
the effective conductivityλ∗∗eff stands for the ratio between the volume-averaging
heat flux and the volume-averaging temperature gradient.
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