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Abstract. This paper is devoted to the modelling of atemperature field in nonsaturated porous media
in the absence of phase change. We establish the energy equation at the macroscopic level, from
a description at the pore level by using the homogenisation method of multiple-scale asymptotic
expansions. Different macroscopic models are obtained depending on the values of thedtetal P
number and the local Fourier number. An example of the application of the different model catalogue

is presented which concerns the modelling of the hot pressing of a paper web.
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Notations
C C=p.C,(dm3K™ X,y dimensionless macro and
c, specific heatJ kg1 K1) micro length, respectively
I identity matrix X dimensional space variable
I,L characteristic microscopic and o thermal diffusivity (n¥ s72)

macroscopic size, respectively € scale factor
n volume ratio Tk interface between the domains
N unit normal vector filled by the phaseg and!
Pe, P,N dimensionless numbers A thermal conductivity
t time (s) @mis ik
T temperature (K) Q, Q; total volume, volume filled
v velocity (ms™?) by the phase (m°)

) density (kg nT3)

Subscripts w, a, s are, respectively, liquid (water), gas (air) and solid phase.
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1. Introduction

Improving the mechanical pressing yields substantial profits in papermaking by re-
ducing the high-cost drying stage. Many works are devoted to this subject (Campbell,
1947; Wahlstrom, 1960; Wrist, 1964; Nilsson and Larsson, 1968; Fekete, 1975;
Carlssoret al.,, 1983; Roux, 1986; Katajt al., 1992). Increasing the temperature of

the wet web leads to a better dewatering due to the modification of both the Young
modulus of the fibrous network and the water viscosity (Back, 1985). The modelling
ofthe temperature field in a paper web during pressing is obviously of primary interest
in optimising the process. The temperature level in the technology investigated here
(hot pressing) is not sufficient enough to introduce an important phase change in the
paper web as well as on the contact surface between the paper web and the hot rolls.
Therefore, the phase change that may nevertheless appear, will be neglected as a first
approximation. The improvement of such a technology is essentially based on the
modification of experimental pilots. In order to bypass some expensive experiments,
a numerical modelling of the press section is to be hoped. In this aim, our paper
tries to steer the numerical resolution (by indicating the correct choice of the thermal
problem equations to be solved) dedicated to the industrial problem.

More generally, we investigate the modelling of the temperature field in a non-
saturated porous medium. Due to the complex structure at the pore scale, a useful
modelling is only possible at a macroscopic scale, where an equivalent continuous
medium is defined. The macroscopic modelling can then be solved in the boundary-
value problem constituted by the paper web between two rolls during pressing.
Solving this problem will enable us to optimise the process. This later extent is
the subject of intensive research (Bloch, 1995), out of the scope of the present work.

To obtain the macroscopic modelling, we start from a description at the pore level
and we use the method of multiple-scale expansions (Bensoesabnl978). The
method used here is different from the classical average ones referenced in Kaviany
(1991). Compared to them the method of multiple scale expansions shows several
advantages (Auriault, 1991a):

— It needs first a local description, and secondly, a scale separation. Macroscopic
modellings are then deduced from the local description, only, without any
prerequisites concerning the macroscopic description. The volume averaging
process is not arbitrarily introduced in the process; it is a consequence of the
scale separation.

— It permits us to demonstrate, from a given local description, the existence, or
the nonexistence, of a macroscopic equivalent description, i.e., the homogenis-
ability or the nonhomogenisability of an heterogeneous medium. It also gives
the domain of validity of the macroscopic description.

— It permits us to investigate the physical meaning of the macroscopic physical
guantities. For example, considering a Darcy flow through a porous medium, the
process introduces the volume average of the local fluid velocity in the pores.
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It is possible to show that the volume average velocity is a surface average
velocity, that makes this quantity physically meaningful (Auriault, 1991b).

A catalogue of different modellings is obtained depending on the values of the
dimensionless numbers introduced by the pore-scale description. The adapted mod-
elling for an actual problem is then determined from the characteristic values of the
parameters that are involved in the studied situation.

The paper is divided as follows. Section 2 is devoted to the presentation of the
pore-scale description and to the dimensionless numbers of interest. Characteristic
values for a paper web saturated by air and water are then given in Section 3. These
permit us to determine some of these dimensionless numbers. We are left with two
variable dimensionless numbers, tleeet and Fourier numbers, that are functions of
the scale ratio inthe medium. Thenin Section 4, the different macroscopic modellings
are given corresponding to different values of these two dimensionless numbers. An
example of the use of the result concerning an actual paper web pressing process is
presented in Section 5.

Information about the homogenisation process is given in the Appendix for a
particular case of interest. However, the reader interested in the details of the analysis
will refer to Auriault (1991a) or to the papers already publishéd@ansportin Porous
Mediaas Auriaultet al. (1992, 1995).

2. The Pore-Scale Description

The non-saturated porous medium under consideration is composed of the porous
structure(s), the wetting phase (w = water) and the nonwetting ptaaseair).

We will denoteQ, Qu, Q24 the volumes occupied at the microscale by the solid,
water, and air phases, respectively. We assume each volume as one connected. The
distribution of the fluid constituents are supposed to be annular, i.e., there is no contact
between air and solid, as shown in Figure 1.

Figure 1. Schematic view of a pore.
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The energy equation for a domain, (k = w, a, S) is given by

8,0k C[?k Tk

o + Vi - V(o Cp Ti) =V - (M VTy), (1)

wherep, C,,, T, v, t anda are the density, the thermal capacity, the temperature, the
velocity, the time, and the thermal conductivity, respectively.

In the absence of phase change, the flux conservation of heat on the infgfface
(between the domairisand!), whose unit normal i, is written in the form

T; T
At 0Tk Ny = A 9T N;. (2)
T \IX; T\IX;

We also suppose that the thermal resistance is disregarded at the interfaces. We then
deduce that the temperatures are continuous on each int&yface

T, =T,. 3

The medium is assumed as periodic. Random media yield similar macroscopic de-
scription modellings (Auriault, 1991b). The method is based on the existence of two
well-separated characteristic lengthis:the characteristic pore size ahdk, e.g., the
macroscopic characteristic length of the sample, Witlh) = ¢ « 1. The process

may be summarised as follows:

(a) make the local description dimensionless.

(b) evaluate the dimensionless numbers in term of the scale separation parameter
E.

(c) look for the quantities in the form of asymptotic expansions with respect to the
powers ofe.

(d) solve the successive boundary-value problems obtained by identifying like
powers ofe.

(e) obtain the macroscopic description from the existence condition of the different
terms in the asymptotic expansions.

To make Equations (1), (2) dimensionless, some parameters may be introduced
(thermal conductivity ratios, inverse P of the Fourier number agde® number
Pe):

Aa As
N U =
haw Aw Asw X
c oT cv oT
A po | 0Xi|
a oT |’ |9 oT |’
e ~ M Ay
0x; 13X, 0x; 13X,
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The Feclet number links the mechanical and thermal aspects, and P, the inverse of
the Fourier number, is the ratio of the transient to the diffusive terms. The parameters
P and Pe take different values in each constituent.

I andL introduce two dimensionless (micro and macro) space varighteX /!
andx = X/L, respectively. We uskto make the equations dimensionless. For the
sake of simplicity, notations for dimensionless and dimensional quantities are left
similar, except for space variables. The dimensionless equations can then be written
in the form

—in Q
dC T, a aT; dC T,
Pt = = (a, =5 ) — Peyy, K, (4)
ot dy; 7y dyi
—onl'y
aT, aTy
N)\.kl)\'kij <_k) Ni = )"lij (_) Ni’ (5)
dy; dy;
I, =T (6)
with
Ak

Cy = ,Okak and Mk! = —.
Al
3. Reference Values

Reference values have to be chosen. As an example, we consider the paper web
characteristic reference values given in Table I.

Table I. Reference values for the physical properties of the porous
medium components

s Cps s s
@mlstK1Y QkgtkKl (kgm3 @m?s?h
0.33 133 x 10° 15x10° 16x1077

w Cpw w w
0.602 418 x 10° 10° 1.4 x 1077

a Cpa a a

0.026 16 1.23 21x 105
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The scale rati@ is defined as the ratio dthe characteristic microscopic size (pore)
to the macroscopic onle (sample). For a paper web, the characteristic lengths can
be estimated as= 10pm andL = 1 mm. We thus obtain ~ 1072,

Some of the dimensionless numbers are immediately evaluated in term of

N,,, = 0.043=0(), N, =0.548=O(1),

Cyl? CJl?
== =0("P),  Po="

P, =
W AwT AsT

= O(Pw)-

For simplicity, we will denote now P the value commonRg and Ps.

With the preceding data, we are left with two variable dimensionless numbers:
the Feclet number Pe and the inverse P of the Fourier number.

Each physical quantity is then looked for in the form of asymptotic expansions
with respect to the powers of

¢=¢(0)+8-¢(2)+82'¢(3)+"' (7)

4. The Different Macroscopic Descriptions

By applying the homogenisation process, we obtain macroscopic models that are
approximations. The model accuracies are expressed in term of positive powers of
. So, the more the scale separation is important, the better is the result.

We first consider in Section 4.1 smaé&et numbers, i.e., small convection. Then
the Reclet number is increased (Section 4.2) and dispersion appears. We limit the
presentation to the resulting macroscopic models. However, the details of the analysis
incase of model B-1 (Section 4.2) are givenin the Appendix. The macroscopic models
are presented in dimensionless form. In the following, the first-order velocity term
V© is obtained separately from a classical Darcy problem, see Auriault (1991b) for
details.

4.1. SMALL PECLET NUMBER: DIFFUSION-CONVECTION
A-1: Pe< O(e?), P=0(?

The convection at the microscale is very weak, and does not appear at the macroscale.
The time variation appears in the macroscale descripfidhstands for the period
volume.

oT 0 oT
C T eff _—_ O(e), 8
(Chws 9 ox < ij axj> + O(e) (8)
with
1 0 X1k
kfffz_ Aii (I ~+—) de2, (9)
/ 12 Qu+s ! & 3)’j
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1
(Clws= — </ CydQ2 +/ Cs dQ). (20)
121 \Jaw Qs
X1 is given by a local boundary problem to be solved on the peind
3 3 3 X1 .
a_yi ()\'aik) = —a—yl ()\’aij W]k) R in Q. (ll)

Similar equations are obtained in ba¥), andQ2s. On the boundaries, we have

0
0= )LW,'/ (I jk + Xka) Ni’ on Iﬂwa, (12)
BN Yij
0 X1s 9 Xiwy
As, (I i+ %, ) N; = (I jk %, N;,  OnTys, (13)
Xia = Xw, ONDwa, (14)
Xis = Xiw,  ONTys, (15)

With Xio = x1e(3), (@ =W, &, s).

X« IS determined to an added arbitrary constant, of no importance (see Equation
(9)). Unicity is needed for numerical investigation. It can be obtained by prescribing
an extraneous conditiofiy,), = 0 or by fixing the value ofy,, at any particular
pointin the pores. Moreovex, may be calculated analytically for a simple geometry
(cf. Auriault et al, 1996). " is a classical effective thermal conductivity®" is
the ratio between volume-averaged temperature gradients and heat flux (see annex).

A-2: Pe<O(s?), P<O(ed)

The transient term order is now weaker, and disappears at the macroscale level:

9 aT
0= — (2" — ) +Oc). 16
" ( : 8x,~)+ @ (16)

The effective thermal conductivity is equivalent to the one presented in the case A-1.
A-3: Pe=0(e), P=0(d

The convection, being increased at the microscale, appears now at the macroscale
level:

aT 3 aT aT
Clws— = — (2T — ) — (CVi)g — + O(e). 17
(Cws or = ax < ij axj> (CVi)a 5%, + O(e) (17)

We remark that due to the contrast of the physical properties, the transient term takes
into account the solid and fluid phases only, contrary to the convective term.
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A-4: Pe=0(¢), P<O(®

The transient term disappears in the macroscopic description as in the case A-2, but
the convective effect has to be introduced:
a o 0T

oT
0= o ( lj ij) —(CVi)a Fr + O(e). (18)

A-5: Pgy = O(¢), Pe=0(s?), P=0(e?)

As an example, we may consider that the solid convective term is smaller than those
for water and air, at the microscale. Consequently, it disappears from the macroscopic
description:

T 0 T
R (N L
s 50 = o, ( i B
Conclusion.Note that the richest model is model A-3. It is possible to show that
there is a continuous passage from this model to the other ones. Notes also that the
effective conductivity.™ is similar in all models considered in Section 4.1.

oT
) —(CVi)aatu Py + O(e). (19)
Xi

4.2. DISPERSION

In the following cases, the&elet number is increased by an order of magnitude.

B-1: Pe=0O(1), P=0O(¢)

Details of the homogenisation process are given in the Appendix.

Both the transient term and the convection exist at the microscopic level. A second
transient term appears in the first term of the equation. The dispersion is also present,
as can be seen from the effective thermal conductivity. The macroscopic description
is given by (A.24).

(C) +¢(C) )8T+ (Cxu,) il
& —_— ) . Y
Qu+Qs Q2a ot X QW+Qsat8Xi
(20)
9 oT oT
=e— (a2 ) — ((CVi)q — ) + OD),
o (7 5;) ~ (1eva g )+
with
1 X,
Pl rij (L + =) = cOvOxy, | da 21
; il Qw,s[ ,( + ayz) i X (21)
and where
cOv©
(VEO))*ZM i=w,9)

(C)aw+as
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xn (different from x,) is defined by the following local boundary problem to be
solved on the periog:

0 9 Xia 9 Xlla .
COVO = — ([, (1 + L)) —cOy©@ 2258 in Q. 22
A dy; 'Y I dy; a & 9y ? (22)

G (Vi)™ = Vi)

9 9 Xiw © 1,0 IXiw, .
COUVO)Y = vO)
0 d Xus 0 dXiis .
=—ag, (L +—=2)) - COVO L2200 in @, 24
o (o (1)) 0w 5 @
a
0= )“Wij (Ijk + XIIWk) N;, on Iya, (25)
Yj
9 Xis; 9 Xiw,
As, (I K+ %, Ni = Aw;; (i + %, Ni,  on Ty, (26)
Xiia = Xiws  ON Twa, 27)
Xis = Xiw, 0N Dys, (28)

with x4 = xi1e(y) (@ =w, a,9).

The above boundary-value problem defings to an arbitrary constant, that may
be fixed using the conditiofyi¢ ), = O.

1*€ can be proved to be a dispersive thermal conductivity. It depends on the
Darcy velocityV @, where the exponeff represents the first-order approximation.

B-2: Pe= 0(1), P=0(s?)

Now, the transient term and the convection exist. Dispersion is also present:

oT ) oT oT
Clws— =e— (1= ) —(CV)g — + O(£?), 29
£(Chus gy =3 (47" 5 ) = (Va1 + 0 (29)

with

1 axm
joeft _ vl 1) —cOyO. | do. 30
S ] Qw,s[”(” ayz> F 0
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1€l is also a dispersive thermal conductivity, different fraitie®. x,, is deter-
mined by the following boundary problem to be solved:

d 9 Xllla 01,0 9Xlla .
cPVO = F™ (,\ai.j (I,-k + ﬁ)) A a—k in Qa  (31)

0 9 Xiw 9 Xiiw ,
0)1,(0 0)y,(0) ZATWE
N =5 (o (a5 ) w2

a a ) .
C§°)Vs(kO) _ 7 <ij (Ijk+ gmtsk)) —Céo)VS(.O) glll.Sk’ in Qs (33)

dyi Yij i
0
0= )"Wi/' (I/k + XI”Wk) Ni, on Iya, (34)
AN ay;

9 Xliis 9 Xiiw
Asij <|jk + ayjk) Ni = Aw; (ljk + 5y, “ ) Ni, on Ty, (35)
Xila = Xiw, 0N Dwa, (36)
Xiis = Xuw, 0N Dys, (37)

with Xl = Xlla(y) (Ol =W, aq, S)-
xm is determined to an arbitrary constant.

B-3: Pe= 0O(1), P<O(e?)
Now, the transient term disappears in the macroscopic description

a aT oT
O=¢— (A" — ) —(CV)q — + O(e?). 38

¢ 8)6,' ( Y an) ( >Q axi + (8 ) ( )
Conclusion.Considering all the models B, model B-1 appears as the richest one. It
is analysed in details in the Appendix.

The cases with P& O(¢ 1) are not homogenisable. It means that no equivalent
macroscopic description exists. A macroscopic description can be obtained by a
mathematical technique different from the multiple scale separation method, e.g.,
the volume averaging method. However, in such a case, the obtained macroscopic
model is dependent on the macroscopic sample size and on the applied macroscopic
boundary conditions. That is to say, such a macroscopic model is not intrinsic to the
studied materials.

5. Example of the Model Catalogue Use: Hot Pressing of a Paper Web

As an example, we consider the hot pressing of a paper web, see Figure 2.
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A Paper

Felt

Figure 2. Schematic view of a press section.

The parameters P and Pe can be evaluated as follows. We consider a constant web
velocity during the process. Therefore, using Euler variables, the time-dependence
disappears and B 0. Furthermore, from the characteristic values in Table | and a
Darcy velocity equal to 1 ms%, we obtain the Bclet number as

_ pGpVi " 10° x 10° x 102 x 1076
A 0.5

Pe = 0(107%) = O(e).

Consequently, the adopted model for the hot pressing numerical modelling should
be model A-4:

0= (xeﬁ £) (Ve (39)

Bxi i ij axl

Due to the complexity of the pore geometry, the effective conductiditys generally
difficult to determine. Therefore, three complementary hypotheses may be adopted
to simplify the model:

— The first one concerns the thermal effective conductivities of the fluid and the
solid. They are of the same order of magnitudge = O(As). For simplicity, they
can be assumed as isotropic and constant. Therefore, Equation (39) becomes

0 oT oT
O=— | Aw (W +ng)lijj — ) = (CVi)g —, (40)
8x,~ 8x,~ 8x,~

wheren; (k = w, s) is the volume ratio andlis the identity matrix.
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Figure 3. Temperature field in the paper during hot pressing: an example.

— In a paper web pressing process, the gas volume is generally very small in
comparison to the solid and liquid onag#n,#1. Equation (40) may therefore
be written in the form

a aT aT
0=_— <)»w|ij —) —(CVi)g ——. (41)
X; ox i

— Finally, the contribution of the air in the convective term can be assumed to be
negligible: paCpaVa < pwCpwVw, then Equation (41) simplifies to

ad aT aT
O=— (I lij — ) — (CV; — 42
8x,~ < W 8)6,') < >QS+QW ax,- ( )
Equation (42) was used for the numerical modelling of the paper web hot
pressing (Bloch, 1995). An example of a numerical result is shown in Figure 3.

Note that Equation (42) has been obtairedter determining the correct structure
of the energy equation and then introducing simplifying assumptions.

6. Conclusion

Despite the physics at the pore scale being similar, we obtain different law structures
with different effective coefficients for the equivalent medium. In practical cases,
the right macroscopic model is determined by evaluating the different dimensionless
numbers, in function of the scale factor(defined as the ratio of the microscopic
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characteristic dimension to the macroscopic one). Then a convenient model is found
in the presented catalogue. There is a continuous passage from the most appropriate
modelto the others. Itis necessary to underline the importance ofdlstor, because

the evaluation of the dimensionless parameters will depend on its value.

Note that, in the case of very larg&get number, the medium cannot be ho-
mogenised. That means that the experimentally determined macroscopic properties
are not intrinsic to the media but are specific to the boundary problem considered in
the experiment. One should then be very careful when using macroscopic models,
which are shown in the paper to be valid, in restricted ranges. Finally, note that the
presented results are applicable to any porous medium that satisfies the microscopic
hypotheses in use here.

Appendix: Model B-1: Pe= 0O(1) P = O(¢)

By usinge to make dimensionless the local equations, we obtain

aT. 0 aT. aT.
2 a a a .
Ca— = — | As. — CaVa—, in Qg A.l
& aat ayi<ajayj> aaai a ( )
aTw ad 0Ty Ty .
Co— = — |y, — ) — CuViw,——, In Qy, A.2
8w8t ayi(w,jayj> Ww,ai w ( )
aT. ad aT. a7 .
SCS_S - )\.Sl_s - C3VS[ _S, n QS, (AS)
at Ay \ 9y, i
aT. aT,
dy; dy;
aT. aT,
As, (—S> Ni = hwy (—W) N; onTys, (A.5)
dy; "\ dy;
Ta == TW on Fwa, (A.6)
Ts=Ty ONTys. (A7)

Introducing expansions like (7) successively yields
in Q,

i) 975 97"
ey | RV =2 =0 (A.1.0)
dyi dyj dyi

9 ar? T d AT
0= —(%s + + — | Aq —
8yi / 8y] 3Xj Bx,- / ay]
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(1) (0) (0)
_coyoda  ~opmdTa _coye e 0Ta
2 9y 2 By ax;
7.0
@y ©Ta”
PV (A.1.1)

i) aTs" AT
+ — | 2a, + -
ax,- / Byj 8)6]'
@ M ©
co (yodla”  wila®  dla )
2 & 8yl & 0 i & 3)’z
@ © ©
co [yodTa”  ,oiTa cwy©9Ta
a & 9x; & 9x; a 0x;
@ © ©
c (v a D Ta” - CcRPyO 2 Ta’  (a12)
dyi dyi ayi
in Qu
9 OT T,
— [ —CcPvO— =0, A.2.0
3}%‘(%3/') Y gy, ( )

0w 0 Oy | AT i) T
Cy)— = — | Ay + +— Ay —— | —
ot ay; ! 3)7] ij 0X; Y 8yj

® © ©)
_c© (Vjv‘?)aTW V<1>8T ) covy, <o>3T

ayi a)’z 8xi
aT(O)
—CPVO—, (A.2.1)

dyi
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(1) (0)
coT | T

ot Wt

9 aT?
A, | N
0y ( " ( by,

AT
8)6]'

+ 9 A 8T\'Sll)-l-
d9x; Wii dy;

ij

aT\O

315

)

© &)
_ O (yodF @R @
tdyi Wi 9y Yy
0 ©
8)6,‘ Wi 8)6,‘ a)’i Wi ayi
AT AT
C(l)V(O) W —CPQyOW A.2.2
. 0x; W ayi ( )
in Qs
9 97 91"
— (rg, — cOVO—=— =0, (A.3.0)
dyi \ 7 9y; dyi
0T 9 o1 9T 9 9T
S — x| —+ +—re— ) -
at ay; dy; 0x;j ax; 0y;
©) ©
—co(vols 0Ts ywTs 0Ts " _ (A.3.1)
ayi ayi
© ©
C<0>V<0>3T —cwyo s 0Ts
Xi 3)’z ’
©) ©
0?12 | T
ot dt
9 GV AV e 9 T o1
= —_— )\'Si/ + )h + -
0y 7\ 9y, 0x; 0x; ay; ax;
&) ©) @)
_c© (vl 7 @0l @dTs”)
dyi 5 3y 5 3y
© ©
cO (o3 | 0T W (yo?Is 975" vy 9Ts
ax; S 9x; dy; Sy
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Iy
0 = A, (ﬁ) N;, (A.4.0)
AL AT OTw
2 N; = Aw, N;, A.4.1
rs wi \ By 1 7, ( )
ATy ar¥ ATP AT
Aa: + Ni = A, N;, A.4.2
& ( ayj ij Wij 8yj + 8xj ( )
onTys:
A 0T N; = A 0T N, (A.5.0)
Sij dy; i = Awij dy; b "~
ATy 10 Ty Ty
As, + N; = Ay, [ —— N;, A5.1
Sij ( 8)7] an Wiy 8_)7] + an ( )
012 ATy ATw> AT
As, + N; = Ay, N;, A.5.2
S ( Byj 8)6]‘ Wij 3)/,‘]' + axj ( )
onlya:
7O =1, (A.6.0)
TP =1L, (A.6.1)
T2 =T, (A.6.2)
onTys:
70 =1, (A.7.0)
TV =71, (A.7.1)
T2 =T, (A.7.2)
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First boundary-value problem

As a first boundary-value problem of unkno@/f”, we consider Equations (A.2.0),
(A.3.0), the fluid incompressibility at the first ordediv, (p©v©®) = 0), Equa-
tions (A.4.0) (A.5.0) and (A.7.0), and finally Equation (A.1.0) Qp together with
Equation (A.6.0). It is possible to show that

TO =70 =70 = 7O(x) (A.8)

Second boundary-value problem

The second boundary-value problem is for the unkno®f. Integrating
Equations (A.2.1) and (A.3.1) on domaigg, (@« = W, s), respectively, adding,
member to member, the resulting equations and using the divergence theorem with
the conditions (A.5.1) and (A.4.1) yields

0 0
9T © _ —(C(O)V(O)) 9T ©
Qtls yy 2 9x;

1
(Capt0s = — ( / CwdQ + / csdsz) .
|Q| Qw Qs

We now investigatd Y successively in domair®,, and2s and next in domaig, .
For water and solid, Equation (A.2.1) or Equation (A.3.1) may be rewritten in the

form
©dT® 9 oTd 9T @ 9 oT®
Ca = oy Gl 5 o)) Tan M) T
ot ay; ay; 0x; 0x; dy;

_co (yodl | ,wdT?) _
Ty “ Oy

(A.9)

9T O® 9T ©®
—CcOyO_—___ _cyO___  (@=w,5. (A10)
o 8)(1 o a; ayz

Then, using Equation (A.8) yields

cod? _ 2 () 8TO§1)+8T(°)
@9 Ay U ayj dx;

©
_co (yolld ,edT?\ (A11)
o % ay, “i 0x;
Moreover, Equation (A.9) may be rewritten in the form
aT© aT©@
= —(VOy—— (A.12)

ar VP g,
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with

(0)\*
(Vi) =
Hence we get
@ (0) [¢))

O (o (AT T —Cgf’)vofo)aT

8)},' Y 8y] 3.)6]' ! Byl

aT©
= OV (V)

(cOV),

(C)owras

(A.13)

o
It is possible to show that the boundary-value problemffﬁ?, o =Ww,a, s, has a
unique solution. Because of the linearity, it can be put in the form
T
TO = yoy , —2— T +To(x,t) a=W,s. (A.14)

The boundary-value problem fgi; is given above by Equations (22)—(28).
Considering now the gas (air), Equation (A.1.1) can be rewritten in the form

0_8 N 8(1)+8(0) +8 Aa(o)
B 8)/,' & ayj ij 3)6,' & Byj

1) (0)
_cO V(o>8Ta +V(1)8T C(0>V(0)8Ta _ (A.15)
a & dyi & dy; ax;
0
_C(l)V(O)ai
a =1 ‘
ayi

Using Equation (B.8) gives

D) 0) D) (0)
0= (5, (2 32 )) _co(yodla _yodla ) (a4
8yi & 8yj 8)Cj a & 8yl & Bxi

The boundary-value problem fa£® has a unique solution. Its linearity yields®
in the form

©

0T,
1
T()_Xa”l 8

+ Talx, 1). (A.17)

Consequently, we have for each component of the porous material
T(O)

0
1
T()_Xotuz 9x;

+To(x,t) o= (W,S,a). (A.18)
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Third boundary-value problem

We achieve the process by considering the third boundary-value problem of unknown
T@. Integrating Equations (A.2.2) and (A.3.2) on their respective domains of def-

inition and using successively the divergence theorem applied to (A.7.2), (A.6.2),
(A.5.2), (A.4.2) and (A.1.1), yield

§(COTW 4 cOTO) aTO 9 aT©®
Qs 4 (€@), — =— (/\* ) -

dt a 9t ax Y ax;
aTM aT® aT®
axi Bxi 8)6,'
with
1 0
A= = A (ak,-+ X”")dsz.
: [€2] Qu+Ss 3)’]‘

Now, introducing the expression @ in the convective term gives

9 (C(O)T(l))
S ((CO) ()

— i )jfkeffaT_(O)
ax,- & ij

=D
oT 9T © oT©
_ 01,0 © D @y, 0
((c v, >_a +(Ccv, )—a +(cPv5) )

aT @
Quw+Rs ) ot

(A.20)

Xi ! Xi 8)(?,'

with

Kk 1 aXII j
)‘ij eff = @ |:)\-1j (Il] + aylj) - C(o)‘/,'(O)Xll j] de.
Quw+Qs

Macroscopic models

By adding, member to member, Equation (A.8) to Equation (A.20) multiplied, by
we get

3T © [a (cOT®m)
+eé
ot

© 0
~((c© V,(0>>£ del 2 (e TN
! 8xi Bxi Y ij

aT @
Qw+Qs + ((C(O)>Qa +(C(1)> i|
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Now, using the following relation

aT©

0x; >QW+QS

(cOT®), o —(cO) TP+ <c<°> X i (A.22)

changes Equation (A.21) into

' o ((T© +e7%))

+o((CO),, + () -

+

w,s

92T @

- _ (C(O)VﬂO) ﬂ +e K ;L,effﬂ(o) —
j 8x,~ N 8xj

7Y © ©
_ (<C<0)V,(O>>3T +8(C<1>V_<0>)3T >+<C<o>vi<1>>3T ] (A.23)

Xi 3xi axi

Finally, we obtain for the temperature field up to the second attier 7@ +s7®)

((C) +&(C) )3T+ (Cxn 1) o1
Qu+Qs T € Qa a1 & X||IQW+QsataXi

=L (x;*;eﬂ£> - <<cv,~>g ﬂ) +0(?)
ox;

8x,~ axj i

(A.24)

with

1 Ixn j 0
R —— rii (1 Iy _coyOo, 4o,
7] |Q| Qw,s|: J ( ) + 8)’1 i XN

The first term in the right-hand member of Equation (A-24) stands for the divergence
ofthe macroscopic flux. This one appears as the volume averaging of the local flux. On
an other hand, the macroscopic gradient of temperature of comp@1&Rt/ax;) is

also the volume averaging of the local gradigd® @ /dx;) + (3TY /dy;). Therefore

the effective conductivitp**¢ stands for the ratio between the volume-averaging
heat flux and the volume-averaging temperature gradient.

References

Auriault, J.-L.: 19914a, Heterogeneous medium. Is an equivalent macroscopic description possible?,
Int. J. Engng. Sci2Y(7), 785—795.

Auriault, J.-L.: 1991b, Dynamic behaviour of porous media, in: J. Bear and P. Y. Corapcioglu (eds),
Transport Processes in Porous Mediédluwer Acad. Publ., Dordrecht, pp. 471-519.

Auriault, J.-L. and Boutin, C.: 1992, Deformable porous media with double porosity. Quasi-statics:
| Coupling effectsTransport in Porous Medid, 63-82.



HEAT TRANSFER IN NONSATURATED POROUS MEDIA 321

Auriault, J.-L. and Lewandowska, J.: 1995, Non-gaussian diffusion modeling in composite porous
media by homogenization: tail effedansport in Porous Medi21, 47-70.

Auriault, J.-L. and Lewandowska, J.: 1996, Diffusion/adsorption/advection in porous media:
homogenization analysigur. J. Mec. A/Solid45(4), 681—-704.

Back, E. L.: 1988, Steam boxes in press sections-possibilities and limitafippga41(3), 217—
223.

Bensoussan, A., Lions, J. L. and Papanicolaou, G.: 1#&mptotic Analysis for Periodic
Structures North-Holland, Amsterdam.

Bloch, J.-F.: 1995, Transferts de masse et de chaleur dans les milieux p@feumables non
satues: application au pressage du papie&déhde Doctorat INP-G.

Campbell, W. B.: 1947, The physics of water remokallp and Paper Mag. Canadts(3), 103—109.

Carlsson, G., Lindstrom, T. and Norman, B.: 1983, Some basics aspects on wet pressing of paper,
JPPS9(4), 101.

Fekete, E.: 1975, Water removal on a grooved second press, Parti,. iWater Removal Symp.
London Mar., p. 117.

Kataja, M., Hiltunen, K. and Timonen, J.: 1992, Flow of water and air in a compressible porous
medium. A model of wet pressing of papérPhys. D: Appl. Phy25, 1053-1063.

Kaviany, M.: 1991 Principles of Heat Transfer in Porous Medillechanical Engineering Series,
Springler-Verlag, New York.

Nilsson, P. and Larsson, K. O.: 1968, Paper web performance in a prefulpmnd Paper Mag.
Canada69(24), 66—73.

Roux, J.-C.: 1986, Maglisation et optimisation du fonctionnement d’'une section de presse(s) de
machinea papier, Tese de Doctorat de I'lNP-Grenoble.

Wabhlstrom, P. B.: 1960, A long term study of water removal and moisture distribution on a newsprint
press section parts | and Pulp and Paper Mag. Canad&l(8), 379—-40161(9), 418-451.

Wrist, P. E.: 1964, The present state of our knowledge of the fundamentals of wet pr&sdmg,
and Paper Mag. Canadé5(7), 284.



