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Using the concept of the Boolean derivative we study local damage spreading for one-dimensional elementary cellular automata 
and define their maximal Lyapunov exponent. A random matrix approximation describes quite well the behavior of "chaotic'" 
cellular automata and predicts a directed percolation-type phase transition. After the introduction of a small amount of noise 
elementary cellular automata reveal the same type of transition. 

1. Introduction 

The behavior o f  the distance between two config- 
urations submitted to the same dynamics (damage 
spreading) is considered to be a good tool to inves- 
tigate the ergodic properties of  the dynamics of  dis- 
crete statistical models [1 ]. Although the relation 
between these properties and "chaot ic"  behavior is 
still unclear, there is an intuitive connection between 
"'chaos" and damage spreading on one side, and be- 
tween a periodic attractor and damage collapsing on 
the other. For continuous dynamical systems a pos- 
itive maximal Lyapunov exponent (MLE)  implies 
chaotic motion. The MLE is roughly defined as the 
rate of  the exponential divergence of  the distance be- 
tween two initially close trajectories in the limit of  
long times and vanishing initial distances. In what 
follows we show how Boolean derivatives may be 
used to define the MLE of  a cellular automaton. 

A Boolean one-dimensional cellular automaton 
(CA) is a discrete dynamical system defined on a 
lattice. The state of  the system is represented by a 
configuration x =  (x~ ..... x~ .... , xL) of  Boolean vari- 
ables, where L is the size o f  the lattice. We always use 
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periodic boundary conditions ( X i + L = X , ) .  The time 
evolution of  the system is given by a Boolean func- 
tion F, 

x ( t +  l ) = F ( x ( t )  ) , (1) 

which is in turn defined locally by a uniform rule f 

x , ( t +  1 )= f (x i_ r ( t ) ,  ..., x i ( t )  . . . . . .  ~,+r(t) ) ,  (2) 

where r is the range of  the function f There are 
2 2~2r+'~ different CA of  range r. In what follows we 
restrict our study to elementary CA for which r =  1 
and use Wolfram's labeling convention [2 ]. 

In the context of  CA where time, space and dy- 
namical variables are discrete, we cannot extend di- 
rectly the definition of  Lyapunov exponents [3,4]. 
Due to the finite interaction range r and to the finite 
number  of  states of  the variables x,, the distance be- 
tween two initially close configurations can increase 
at most linearly for long times. 

Instead of  looking at the long time behavior of  the 
distance between two configurations, we can use some 
hints from the theory of  continuous dynamical sys- 
tems and study the local stability of  a single trajec- 
tory with respect to a small perturbation (a damage 
or defect in the configuration). This defect can be 
readily recovered, or it can freeze being replicated 
without change, or finally it can propagate increasing 
the distance between the configurations. 
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In section 2, we show that the distance between 
two configurations after the introduction of a defect 
is given by the Boolean Jacobian matrix of the evo- 
lution function F [ 5,6 ]. While in the actual evolu- 
tion of the automaton the defects can interact and 
annihilate themselves, we are interested in the sta- 
bility of a single trajectory, and we restrict to the case 
of non-interacting defects which is equivalent to 
considering a product of Boolean Jacobian matrices 
on a trajectory. For the elementary CA it is a Jacobi 
matrix with elements equal to zero or one on the three 
main diagonals. This in turn suggests a relation with 
the product of random matrices of the same type. The 
MLE of the product of these random matrices shows 
a transition related to that of directed percolation 
[7,8]. 

As reported in section 3, the results of simulations 
of "chaotic" CA (whose space-time patterns, start- 
ing from a random configuration, are disordered and 
aperiodic) agree quite well with the predictions of 
the random matrix approximation. Adding a small 
amount of noise to the evolution of the automaton, 
our approach reveals the existence of a transition in 
the space of CA from a "frozen phase" where dam- 
age does not spread, to a phase where damage spreads 
locally with a positive MLE close to the one given by 
the product of random matrices. 

2. Boolean derivatives, defects and random matrices 

We are interested in the local stability with respect 
to a small perturbation, of the time evolution ( 1 ) of 
the configuration x. Let us denote by z t° a defect at 
site i as the configuration with elements z} = 8~j, j =  1, 
..., L, and 8~a the usual Kronecker symbol. The con- 
figuration y( t )  = x ( t ) ~ z  ~° differs from x ( t )  only at 
site i (the XOR operation ~ is performed site by 
site). Depending on F and on the configuration x, 
the defect z t~) can originate in one time step up to 
three defects in sites i -  1, i and i+  1. Then 

x ( t +  1 ) ~ y ( t +  1 ) 

=F;,i_t Azti-I)(~)F~,i AZ(i)(~F~,i+l A Z  ( i + 1 )  , 

where F ; a=0 ,  1 and the AND operation A is per- 
formed between the number F ; j  and each element 
of the defect z o). The quantities 

OxRt+ 1 ) 
F } j -  Oxj(t) 

are the elements of the Boolean Jacobian matrix F' 
of F. These are defined in terms of the Boolean de- 
rivative of the local evolution rule f o f  eq. (2); for 
instance 

Ox,( t + l ) 
dX~+l(t) 

=f(x~_ ~, x~, x~+~ )~f(x~_~, xi, x~+~ ~1  ) . 

Since f has range 1, OxRt+ 1) /dx j ( t )  vanishes if 
l i - j l  > 1, and F' is a Jacobi matrix. If the local evo- 
lution rule is expressed in terms of AND and XOR 
operations (ring sum expansion), the Boolean de- 
rivatives extract the linear part o f f  

We are interested in the limit of a small initial per- 
turbation to a given trajectory. This limit corre- 
sponds in discrete dynamics to the presence of only 
one point defect. If, during the evolution, rn defects 
appear, we consider rn replicas of the system and as- 
sign one of the defects to each one. We indicate with 
NRt)  the number of replicas carrying the defect z ") 
at time t. If  for instance, we start at time zero with 
only one defect at some site i (NR0) = 1 ), and the 
rule allows the spreading of the defects to the sites of 
the neighborhood at each time step; at t = l ,  
N~_I=N~=N~+~=I; at t=2,  Ni_2=Ni+2=l, 
Ni_l=Ni+t =2,  Ni=3, etc. 

The time evolution of the number of defects at site 
i is given by 

N~(t+ 1 ) = ~ F;. j ( t )Nj( t)  , 
J 

or, in matrix form, 

N ( t +  1 ) = F ' N ( t ) ,  (3) 

where the elements of F' are not interpreted as in- 
teger numbers. It is worth noting that N~(t) is also 
the number of paths in defect space that reach the 
site i at time t starting from any defect at time t=0.  

We define the finite-time MLE 2(T) of the map 
(3) as 

1 T 
2(T) = ~_---~ log r/(t) 
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where the local expansion rate of  defects r/is defined 
a s  

q ( t ) =  I N ( t + l ) l / I N ( t ) l ,  

and INI = )~N~. In the following 2(oo)  will be de- 
noted simply by 2. This defini t ion is meaningful  be- 
cause the number  I N ( t )  I can diverge exponential ly.  

If  2 < 0  the number  o f  defects ( the damage)  de- 
creases exponent ia l ly  to zero, while i f2  > 0 the dam-  
age spreads. Let us give some simple examples.  Rule 
0 that maps  all the configurat ions to the configura- 
t ion {0} L, has 2 =  - ~  because the Jacobian is zero. 
The "chaot ic"  rule 150 has 2 = l o g  3, because all its 
Boolean derivatives are equal to one. A marginal case 
is rule 204, for which F '  is the ident i ty  matr ix  and 
2 = 0 .  The der ivat ives  of  the 88 " m i n i m a l "  elemen- 
tary CA may be found in ref. [ 5]. 

In the spreading case, a reasonable approx imat ion  
to the dynamics  o f  defects (3)  consists in substi tut-  
ing the determinis t ic  matr ix  F '  with a r andom ma- 
trix of  the same form. We therefore consider  the 
product  o f  r andom tr idiagonal  matr ices  M ( p )  hav- 
ing a fraction p of  e lements  on the three pr incipal  
diagonals equal to one. The quant i ty  p is natural ly 
interpreted as the geometr ic  mean / t  o f  the der ivat ive  
on the CA configurat ion for large 7", i.e., 

i z T . ~ I / T  

and 

1 L ~ 
~= F~'i+k " s~(t)= 7 Z , ,  ,<=_1 

The evolut ion of  the number  of  defects in the ran- 
dom matr ix  approx imat ion  defines a di rected bond  
percolat ion problem with control  pa ramete r  p, as- 
suming that  a site at locat ion i at t ime t is "wet"  if  
N,( t )  > 0. Observe that  N~(t) gives the number  of  di- 
rected paths  that  reach site i at t ime t inside the per- 
colat ing cluster. Therefore  we expect a second-order  
phase t ransi t ion at P=Pc with order  pa ramete r  the 
densi ty o f  wet sites p ( t ) .  

We have first localized the percolat ion threshold 
at pc=0.441 (1)  (where the number  in parenthesis  
is the error  on the last significant digi t )  by looking 
at the asymptot ic  behavior  o f  the order  parameter .  

Then, start ing with an initial  condi t ion  where all the 
sites are wet, we have verif ied that  p ( t )  ~ t - ~/~, at Pc, 
with fl/u, = 0.15 5 (3 )  the usual exponents  of  directed 
percolat ion.  

The results of  the random matr ix  approx imat ion  
are repor ted  in fig. 1, where the curve shows the de- 
pendence of  the MLE 2 for the product  of  r andom 
matr ices  M ( p )  as a function of  p. For  P<Pc 2 =  
- ~ .  At &, for sufficiently large 7", 

2 ( T ) = 2 + a T  -x 

with 2 ,=0.237(2 ), Z=0 .68  (4)  and a >  0. This shows 
that at the critical point  the number  of  walks on the 
percolat ion cluster grows exponent ia l ly  with time, 
with an effective coordina t ion  exp(2) .  The exponent  
Z, which is not usually defined in percolat ion,  might 
be related to the critical exponents  for di rected walks 
[9] .  The data  at the percolat ion threshold were ob- 
ta ined by letting a 104X 104 random tr idiagonal  ma- 
trix evolve during 4000 t ime steps for 30 realizations. 

We obtain a mean field approx imat ion  replacing 
M with a constant  t r idiagonal  matr ix  with elements 
equal to p. The corresponding MLE is 2 = log 3p which 
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Fig. 1. The curve shows the MLE 2 of a random tridiagonal ma- 
trix as a function ofp. The diamonds show the asymptotic value 
of 2 for "chaotic" CA. Results for the CA were obtained with 
T= 5000, L = 512 and O~o = 0.5. 
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is positive for p >1 ~. Our  numerical  simulations agree 
well with this mean field approach for p>lpc, with a 
m a x i m u m  deviat ion of  18% at P=Pc. 

In the numerical  calculation of  the Lyapunov ex- 
ponent  ;t one needs to renormalize N(t)  [ 10]. This 
is impossible i f N  is defined over  the integers. How- 
ever, since the Lyapunov exponents are independent  
of  the choice of  the initial vector  and of  the norm in 
the ergodic case [ 11 ], we let F '  (or  M )  act on some 
abstract " tangent"  space in ~L, using the usual Eu- 
clidean norm. Applying standard methods one ob- 
tains the Lyapunov exponents related to the expo- 
nential divergence of  the norm of  the product  o f  F ' .  

3. Elementary cellular automata 

We computed  the mean number  of  ones / z (T)  in 
the Jacobian matrix and the finite-time MLE 2 (T)  
for all the 88 "min ima l "  elementary CA for L = 2 5 6  
and L = 512 and 5000 ~< T~< 15000 starting f rom ran- 
dom initial configurations with fixed fraction Oto of  
live sites, Oto = L - 1 ~. Xi ( 0 ). The quanti t ies/ t  (T)  and 
2 ( T )  are generally already asymptot ic  for T ~  5000; 
moreover  they show a very weak dependence on Oto 
for 0.2~<ao~<0.8 (only rules 6, 25, 38, 73, 134 and 
154 vary between 10% and 20%). 

We note that 
( i )  CA with constant F '  independent  of  the con- 

figuration (rules 0, 15, 51, 60, 90, 105, 150, 170 and 
204) have 2 = l o g 3 / t  w i t h / t = 0 ,  ], ] or 1. 

(ii) CA for which all configurations are mapped  
to a homogeneous state (rules 0, 8, 32, 40, 128, 136, 
160 and 168 ) have 2 = - oo. The control parameter  
/t is zero. These are class 1 CA in Wolfram's  classi- 
fication [ 3 ]. 

(i i i)  "Chaot ic"  class 3 CA with nonconstant  F '  
(rules 18, 22, 30, 41, 45, 54, 106, 110, 122, 126 and 
146) have/~>Pc,  2 > 0  and the damage spreads. 

The values of  the MLE for the "chaot ic"  CA of  
cases (i)  and (iii) agree well with the r andom ma-  
trix approximation,  as shown in fig. 1. This is also 
trivially true for the au tomata  of  case (ii).  

For the CA with 0 </z <Pc, ;t depends on the initial 
condition; this is revealed by choosing a special ini- 
tial condition N ( 0 )  having only one nonzero com- 
ponent  in the map  (3).  For those automata  whose 
evolution leads to a nonhomogeneous  periodic space 

pattern (class 2 CA),  the MLE is the logarithm of  
the largest eigenvalue of  the product  o f  the Jacobian 
matrices over  the periodic state. The measured value 
of  ;t is always nonnegative. This suggests that  the 
asymptot ic  state is unstable ( 2 > 0 )  or marginally 
stable ( 2 = 0 ) .  One can think that the "freezing" of  
the evolution occurs because there are no "close" 
configurations which can be used as an intermediate 
state towards a more  stable state. Therefore, we 
"heated"  the evolution by exchanging the states of  
a small number  s of  pairs of  randomly chosen sites 
at each t ime step. In fig. 2, we show the values of  # 
and ;t for all the minimal  CA for which 2 >/0 starting 
with Cto= 0.5 in the presence of  a small amount  of  
noise. 

After the introduction of  noise the CA can be di- 
vided roughly in three groups. In the first group with 
/l = - o o ,  we find all class 1 CA and some class 2 CA 
(rules 1, 3, 5, 7, 11, 13, 14, 19, 23, 43, 50, 72, 77, 
104, 142, 178, 200 and 232). Rules 50, 77 and 178 
show very long transients of  the order of  15000 t ime 
steps. The CA in this group have a small/1 in the ab- 
sence of  noise (/t < 0.373 ). Rule 232, a majori ty rule, 
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Fig. 2. The curve is the same as the one shown in fig. 1. The dia- 
monds show the values of/t and 2 for all the minimal CA with 
2 >/0 in the presence of a small amount of noise s = 2 and T= 5000, 
L=512, Cto=0.5. 
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illustrates well a typical behavior.  Configurations {0} L 
and { 1 }L are fixed points  for this CA. A single defect 

in these configurat ions is recovered in one t ime step. 
On the other  hand,  an arbi t rary  initial  configurat ion 
will relax in a few t ime steps to a pat tern of  strips. 
By adding a noise as descr ibed above, the borders  of  
the strips perform a sort of  r andom motion,  thus al- 
lowing their  merging. Finally,  one of  the two fixed 
points  is reached, according to the initial  densi ty  of  
the configuration,  

The second group of  CA has a posi t ive MLE. It 
contains the class 3 CA and rules 6, 9, 25, 26, 28, 33, 
37, 38, 57, 62, 73, 94, 134, 154 and 156 which are 
not class 3 but  show local damage spreading. The 
values of/~ and 2 are slightly affected by the noise. 
The CA in this group have/Z>pc and 2 close to the 
curve of  the random matr ix  approximat ion .  

CA in the th i rd  group have 2 ~ 0, a value which is 
never found in the product  of  r andom matrices.  The 
CA in this group have an in termedia te  value of/~ 
(0.281 < # < 0 . 5 4  without  noise and 1 < / z < p c  in the 
presence of  noise) .  Cont rary  to the predic t ion  of  the 
random matr ix  approx imat ion  N does not vanish for 
long times. The CA in this group are rules 2, 4, 10, 
12, 15, 24, 27, 29, 34, 35, 36, 42, 44, 51, 56, 58, 74~ 
76, 78, 108, 130, 132, 138, 140, 152, 162, 164, 170, 
172, 184 and 204. Moreover ,  rules 4, 10, 12, 15, 34, 
42, 51, 76, 138, 140, 170 and 204 have conserved 
addi t ive  quanti t ies  [ 12 ]. 

In this Let ter  we have shown how the MLE can be 
defined for CA using the Boolean derivative.  A pos- 
i t ive Lyapunov exponent  is associated to local dam-  
age spreading and on the other  hand reflects the ex- 
ponent ia l  growth of  paths  on directed percolat ion 
clusters. For  CA with 0 </z <Pc which do not spread 
damage but  have a posi t ive Lyapunov exponent  the 
in t roduct ion of  a small noise produces  a collapse to 
2 = 0 or 2 = - ~ .  A random matr ix  model  is directly 
suggested by the CA dynamics  and displays a di- 
rected percolat ion phase t ransi t ion.  The same phase 
t ransi t ion is observed in the CA rule space in the 

presence of  a small amount  of  noise. The extension 
of  our  defini t ion of  Lyapunov exponent  to other dis- 
crete systems, and possibly to probabi l is t ic  dynamics  
will be the subject of  future investigations. 
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