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m A structurally simple absolute viscometer, the falling tube viscometer, 
with a large measurement range for viscosity from 0.5 to 10 9 cP (5 × 10 -4  

to 10 6 N s/m2), has been extensively investigated. The flow field, shear 
rate, and pressure distribution in the viscometer have been obtained 
numerically to determine the entrance and exit effects. The viscometer was 
characterized by two variables, the geometry number Ge and the end 
correction factor. The former is exclusively determined by the dimension- 
less tube diameters and length and reflects the ratio of tube driving force to 
resistance. The latter is defined as the ratio of the actual to ideal geometry 
numbers. The results presented allow the prediction of end effects and 
geometry number without resorting to empirical corrections or instrument 
calibration. The agreement between the analytical and experimental results 
on the geometry number, the measured viscosity of standard fluids, re- 
peatability, and accuracy is well within 1% in all cases. A correlation 
equation from which the geometry number can be calculated is presented 
that can be used to design viscometers for particular applications. Both the 
theoretical analysis and the experimental data indicate that falling tube 
viscometers based on the correlated equation are absolute viscometers with 
an accuracy within + 1.0%. 
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I N T R O D U C T I O N  

The falling tube viscometer (FTV) was developed from the 
falling cylinder viscometer (FCV) [1,2], an asymptotic case 
of  the F1W with a zero tube internal diameter. Figure 1 
shows a schematic of  the F / W  consisting of  a tube with 
fiat ends and a cylindrical container, called the system, 
with the fluid to be measured. The tube falls vertically in 
the fluid along the axis of  the system. With an appropriate 
instrument theory, the fluid viscosity can be measured 
from the terminal velocity of  the falling tube if fluid and 
tube densities, gravitational acceleration, and tube and 
system geometries are known. The FFV has advantages 
over the FCV. The FTV has two shear surfaces and two 
flow channels inside and outside the tube providing flexi- 
bility to measure various ranges of  viscosities, often low 
viscosities. In the case of  moderate tube diameters, the 
two surfaces of  the tube result in a large shear resistance 
that allows the FTV to be operated at the required low 
Reynolds number, including low-viscosity fluids. Within a 
certain viscosity range, the inside and outside diameters of  
the tube can be optimized to minimize any systematic 
errors due to tube construction and dimension measure- 
ment errors, thereby making the FTV more accurate than 
the FCV. 

Previous applications of  the instrument suffered from 
the disadvantage that the exact effect of  the flow around 

the tube ends was unknown. Thus, the end shear and 
pressure forces could not be evaluated. With the emer- 
gence of  computational methods, the flow field around the 
tube ends can now be clarified with the result that the 
FTV becomes an absolute instrument. 

While the FCV [3-20] and its modification, the falling 
needle viscometer [21-26], have been frequently investi- 
gated, little was previously known about the FTV, espe- 
cially its end effects. In 1971 Irving and Barlow [27], 
assuming a one-dimensional flow and neglecting the end 
effects, derived the relationship between the viscosity and 
the tube falling velocity as a function of  three diameters 
instead of two dimensionless diameters. They predicted an 
error of  13%. Not knowing it was an FTV, McLachlan [28] 
used an "FCV"  as a calibrated viscometer to measure the 
viscosity of  polyphenol ether. The error he expected was 
5%. 

In this study, the FTV performance was investigated 
through an operational variable, the geometry number Ge, 
defined to characterize the F/W. It was first analyzed in 
the ideal case (an infinitely long tube) for a variety of  
combinations of  tube diameters. Then computational re- 
sults were obtained for the velocity, shear rate, and pres- 
sure distributions around the tubes for actual cases. The 
geometry numbers were thereafter evaluated numerically. 
An  end correction factor (ECF), defined as the ratio of  the 
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Figure 1. Schemetic of falling tube viscometer and coordi- 
nate system. 

actual to the ideal geometry numbers and dominating the 
accuracy of the FTV, was examined extensively. A corre- 
lated equation for the ECF was extracted from a set of 
numerically computed and experimentally verified geome- 
try numbers for the design and evaluation of viscometers. 
Experiments were conducted to determine the feasibility, 
reproducibility, and accuracy of the FTV. The agreement 
between the theoretical and experimental results indicates 
that a properly designed FTV can be an absolute instru- 
ment with an accuracy of _+ 1.0%. 

The Ideal Model 

ANALYSIS 

The ideal model is essentially an infinitely long tube with 
no end effects. The advantage of the ideal model is that 
the flow is one-dimensional and an analytical solution can 
be obtained. This solution can serve as a reference for the 
actual model. Using the coordinate system illustrated in 
Fig. 1, the dimensionless momentum equation for the flow 
around the tube is 

1 d 

r + dr + 

_ _ _ _ ( r  +dU+ ] ReRs dP+ 

dr + } 2 dx + 

fReR~ 

2 ' 

0 < r + <  k 1 and k 2 _< r+_< 1.0, 

with boundary conditions 

U+(k l )  = - 1 . 0 ,  

U+(k2 ) = - 1 . 0 ,  

(1) 

3U + 
Or + (0) = 0, 

U+(1.0) = 0. 

Accounting for the fluid displaced by the tube forward 
end, the continuity equation can be written as 

k22 k___~l 2 

fo klU+r + dr++ f l ° u + r +  dr += (2) 
Jk2 2 

When the tube reaches its terminal velocity, the driving 
force, which is equal to the difference between the gravi- 
tational and buoyancy forces, is balanced by the pressure 
on the tube ends and the shear forces on the sides. A 
force balance on the tube yields 

( Pt -- Pf)g R2 f 2 
/.£U t 2 Re& + k2 _ k------~ 

dr+ ]kl + k 2 [  d - ~ ) k 2 } "  

(3a) 

Solving Eqs. (1) and (2) by direct integration and evaluat- 
ing the terms in Eq.(3a) yields 

( Pt - Pf)g R2 

tzu t 

= Ge i 

- 2 ( 1  + k  4 - k 2  4) 

(k 2 - k12)[(1 - k2) 2 + lnk2(1 + k 4 - k4)] ' 

(4a) 

where Ge i is called the ideal geometry number and is 
solely determined by the geometry of the viscometer, i.e., 
k 1, and k 2. The physical meaning of Ge is important, 
representing the ratio of the tube driving force to the 
resistance forces occurring in the viscometer [2]. A large 
Ge means that a large driving force is required to drive 
the tube to reach a certain velocity. Figure 2 shows 1 / G e  i 
as a function of k 1 and k 2 and can be used to approxi- 
mately choose the proper viscometer geometry for a par- 
ticular design. It can be seen from the figure that the 
falling cylinder viscometer is a special case of the FTV as 
k I = 0. For each curve in the figure, there is one point 
where the slope is zero. This means that the geometry 
number is less sensitive to k 2. For tubes with k~ = 0.48 
and k 2 = 0.67, the geometry number is less sensitive to 
both k I and k 2. This characteristic can be used to im- 
prove the accuracy of the FTV. 

The Actual  or  Correct  Model 

The actual geometry number can be derived from the 
force balance equation and written as the following if the 
flow field around the tube is known. 

Ge 1 ( k2r+(p~ + ) dr + ReR f -- Px~ 
t + ( k ( - -  k'~) t ~ k, 

" 
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Figure 2. Reciprocal of ideal geometry number. 

1.0 

This geometry number must satisfy the equation 

( Pt - Pf)g R2 
Ge (4b) 

p.u t 

Equation (4b) can be used directly either to evaluate the 
actual Ge experimentally or measure the fluid viscosity if 
the Ge value is known. 

The flow in the FTV is unsteady. However, by using a 
moving coordinate system as shown in Fig. 3, the flow is 
converted into a steady one, simplifying the problem sig- 
nificantly. In the moving coordinate system, the tube is 
stationary and the fluid approaches the tube with the 
terminal velocity u r The dimensionless momentum and 
continuity equations have the form 

O(u+u +) 1 0 ( u + v + r  +) 
+ 

Ox + r + ar + 

1 0 p  + 1 

2 ax + Re& 

x ~ + r- ¥- Or~- 4- r + Or + ]], (5) 

O(u+v +) 1 0 ( v + v + r  +) 
+ 

O X  + r + O r  + 

1 Op + 1 
- -  Jr- - -  

2 Or + Re& 

[O32U + 1 0 [ r + O V + ]  v + ] 
X [ ~ - ~ T  + r---~- Or----g- t ~ r + ]  - ~ , (6) 
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Figure 3. Coordinate system moving with the tube. 

O3U + 
m +  
Ox + r + 

with boundary conditions 

u+(0 ,  r +) = 

u + ( L + , r  +) = 

u+(x+,  1.0) = 
0u + 

Or + (x+,0)  = 0, 

u+(x~ 

v+(xl 

u+(x~ 

v+(x~ 

u+(x?~ 

v+(x2 

u+(xl 

~+(x~ 

1 O(v+r +) 
0, (7)  

Or + 

1.0, v+(0, r +) = 0, 

1.0, v+(L  +, r +) = 0, 

1.0, v+(x  +, 1.0) = 0, 

v+(x+,O) = O, 

, k  1 _< r+_<k 2) = 0, 

, k 1 < r + <  k 2) = 0, 

, k  1 < r + < k  2 ) = 0 ,  

, k  I < r + < k  2) = 0 ,  
+ + 

~ X  ~ X B , k  1) = 0 ,  

< x +  < x ~ , k O  = O, 

_<x+_<x~,k 2) = 0, 

<X+_<X~3 ,k  2) = O. 

(8) 

A Fortran program using the SIMPLE algorithm [29, 
30] was developed to solve the momentum and continuity 
equations simultaneously for the velocity and pressure 
fields. The solution was obtained progressively by iteration 
[2]. For each particular geometry and Reynolds number, 
the program ends up with three matrices: the axial veloc- 
ity, the radial velocity, and the pressure. The geometry 
number can then be calculated numerically from Eq. (3b), 
according to the shear stresses and pressure drags deter- 
mined from the solution matrices. 

To produce a final working equation for the viscometer, 
an often used term, the end correction factor (ECF), is 
introduced. It is defined as the ratio of the actual to the 
ideal geometry numbers. The ECF physically represents 
the deviation of an actual model from its corresponding 
ideal model. 

ECF = G e / G e  i. (9a) 

The alternative form of the equation, which is convenient 
for the Ge calculation, is 

Ge = ECF Ge i. (9b) 

There is a great advantage to the ECF. The value of Ge 



328 F. Gui and T. F. Irvine, Jr. 

extends over several orders of  magnitude, but the ECF is 
usually between 1.0 and 1.10. If  the ECF as a function of  
k 1, k 2, and l ÷ can be found, then the actual value of  Ge 
can be readily determined because the ideal geometry 
number can be calculated from Eq. (4a). 

C O M P U T A T I O N A L  RESULTS 

Nature  of  the End  Effect 

To illustrate the nature of  the end effect, the detailed 
solution for an actual FFV with k I = 0.47453, k 2 = 
0.52393, 1÷= 5.5929, and Re R = 0.01716 is used as an 
example. Figure 4 shows a velo~city vector diagram of this 
actual FTV. For a clear view of  the velocity field near the 
tube ends, the width of  the graph and the velocity compo- 
nents in the r ÷ direction have been enlarged by a factor 
of 2.4. Fluid flows through both the inside and outside 
passages. Similar but different diagrams are presented in 
the Appendix in Figs. A1 and A2 for two tubes with a 
smaller or larger diameter and a thicker wall. There is no 
upward flow inside the smaller tube in Fig. A1 and no 
upward flow outside the larger tube in Fig. A2. 

Figure 5 shows the variation of the wall shear rate along 
the tube walls. For comparison, the shear rates for the 
ideal model are also indicated in the figure by dotted 
lines. The end shear rates are large, but they quickly 
decay to the value corresponding to the ideal case. The 
significant increase in shear rate near the tube ends 
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Figure 4. Diagram of velocity vectors in the FTV. 
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Figure 5. Shear rate variation on the tube walls. 
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makes Ge increase from its ideal counterpart. The dimen- 
sionless length of  the transition region is approximately 
equal to 0.17 on both ends. These results agree well with 
the flow visualization results of  Kim et al. [22] on the 
falling needle viscometer. It was found that these end 
shear rate variations remain essentially the same for 
shorter or longer tubes. This suggests that the end effects 
of  shear stress on the geometry number are smaller for 
longer tubes. 

Computational results also revealed another important 
fact. If the pressure distribution in the radial direction is 
plotted for x ÷= x,~ where the tube forward end is lo- 
cated, a sharp step pressure increase occurs at the tube 
forward end. Similarly, there is a sharp step pressure 
decrease at the tube back end [2]. This means that the 
tube ends encounter a higher or lower pressure than their 
corresponding pressures in the ideal model. Curve B in 
Fig. 6 shows the pressure variation in the x + direction for 
r ÷=  0.48 passing through the tube wall. Curves A and C 
display the pressure distribution for r ÷= 0.31 and 1.0, 
respectively; one is inside the tube and the other is on the 
container wall. These two curves are very close to the 
ideal case (not shown in the figure). The large pressure 
increase and decrease at the tube ends can be seen clearly 
by taking pressure readings at xf~ and x~ from Fig. 6. 

The pressure increase and decrease at the tube ends 
can be significant compared with the total pressure drop 
across the tube in the ideal case. This leads to an actual 
total pressure drop across the tube 48% larger than in the 
ideal case for this k 1, k 2 pair. However, the contribution 
of  this additional pressure drop to Ge is no more than a 
few percent (3.527% in this case) for thin-walled tubes 
due to the relatively small influence of the pressure drop 
on Ge. Table 1 gives quantitatively the shear and pressure 
differences between the ideal and actual (numerically 
computed) results and their effects on the geometry num- 
ber. The difference in the geometry number values be- 
tween the numerical and ideal results is the end effect. It 
is seen from the table that the geometry number increases 
by 5.539%, up to 400.88 from 379.84. In general, the 
increase in pressure drop accounts for two-thirds of the 
total end effects on the geometry number. 
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Figure 6. Pressure increase and decrease on tube ends. 

Geomet ry  N u m b e r  and  E nd  Correc t ion  Factor  

A series of  calculations were conducted for a variety of  
FTVs to investigate the variation of  the geometry number  
and ECF with tube configuration. Tables 2 and 3 show the 
results of  the calculations, listing the Ge n and ECF, 
respectively, for various values of  k I and k 2 as l +=  10.0, 
a convenient length experimentally, and Re R --  10 -6, a 
small Reynolds number  to suppress inertial forbes. Graph- 
ical results from the tables are presented in Fig. 7, where 
the abscissa is the dimensionless central radius. Curves 
are plotted for constant wall thickness, 8 = k 2 - k 1. The 
solid lines are the Ge n, and the dashed lines represent the 
ECF. For all wall thicknesses, Ge n has the largest values 
around (k 1 + k 2 ) / 2 - - 0 . 5 5  while the ECFs have the 
smallest values in the vicinity of  (k 1 + k2 ) /2  = 0.52. 

In the calculations, the Reynolds number was taken to 
be small ( 1 0 - 6 ) ;  therefore the flow could be considered to 
be Stokesian. It is of  great operational interest to deter- 
mine the maximum Reynolds number  for which the pre- 
sent analysis is applicable. This was done by increasing the 
Reynolds number, calculating the geometry number, and 
comparing it with the geometry number  at a Reynolds 
number of 10  - 6 .  Figure 8 shows the results of  such 
calculations where the ordinate is defined as 

GeReR s 
Ge += (10) 

Ge × 10  - 6  
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Table 1. Contribution of Shear Force and Pressure a to Ge 

Ideal Numerical Effect 
Item Result Result Difference on Ge 

Inner shear force 127.25 132.58 4.19% 1.405% 
contribution to Ge 
Outer shear force 224.73 227.03 1.026% 0.607% 
contribution to Ge 
Pressure force 27.87 41.27 48.06% 3.527% 
contribution to Ge 
Total 379.84 400.88 5.54% 5.539% 
contribution to Ge 

a Tube parameters: k 1 = 0.4745, k 2 = 0.5239, I +~ 5.5925, and 
ReRs = 0.017. 

where Ge ÷ is the normalized geometry number with re- 
spect to the Ge at ReRs = 10 -6- Also presented in the 
figure are the results for FCV where the kl'S are equal to 
zero [1]. The value of  Ge + provides information on the 
inertial effect. As seen in the figure, the present model is 
applicable to a Reynolds number up to 5.0. For larger 
values of  the Reynolds number, the inertial effects are 
significant. The inertial forces come into play earlier for 
thinner wall tubes. At  ReR~ = 50, where additional resis- 
tance due to the inertial forces becomes apparent, the 
geometry numbers increase by 1.0%. The experimental 
results in Fig. 8 will be discussed later. 

E X P E R I M E N T A L  A P P A R A T U S  

Experiments were performed to investigate the stability, 
reproducibility, and accuracy of  the F I ~ .  The experimen- 
tal results were used to verify the theoretical results. 
Measurements were carried out on a number of  falling 
tubes of  different geometries and densities to investigate 
the characteristics of the FTV. The experimental appara- 
tus included a container, a series of  falling tubes, and 
peripheral facilities that either provided constant temper- 
ature in the system or measured the falling time. 

A schematic of  the apparatus is shown in Fig. 9, which 
is similar to that used for previous experiments on the 
FCV [1]. The only difference is the replacement of  the 
cylinders with tubes. 

The tubes were made of  glass or  plastics with a heavy 
metal ring of  the same diameter at the bot tom to lower 
the center of  gravity. Once a tube is dropped into the 
launcher, it will fall due to gravity. At  low Reynolds 

Table 2. Numerically Obtained a Geometry Numbers (Ge n) 

(kl + k 2 ) / 2  

(k 2 - k 1) 0.3 0.4 0.5 0.6 0.7 0.8 

0.02 504.088 671.323 859.635 930.639 842.361 759.618 
0.05 222.228 299.627 390.698 424.620 378.954 338.593 
0.10 130.790 180.580 242.950 266.100 231.450 203.900 
0.15 102.925 145.892 203.192 224.537 189.784 165.532 
0.20 91.400 133.280 193.080 215.690 176.450 153.691 
0.30 86.429 134.681 214.707 246.338 185.620 175.707 

aAccording to 1 + = 10 and ReR~ = 10 -6. 
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Table 3. Numerically Obtained a End Correction Factors (ECF n) 

( k l  + k 2 ) / 2  

(k 2 - k 1) 0.3 0.4 0.5 0.6 0 .7  0.8 

0.02 1.06577 1.05251 1.03466 1.03975 1.05706 1.06227 
0.05 1.06553 1.05200 1.03681 1.04290 1.06048 1.06620 
0.10 1.06400 1.05115 1.03805 1.04570 1.06376 1.06981 
0.15 1.06235 1.05008 1.03791 1.04638 1.06535 1.07130 
0.20 1.06028 1.04799 1.03649 1.04581 1.06576 1.07081 
0.30 1.05522 1.04439 1.03351 1.04324 1.06422 1.06171 

aAccording to l+= 10 and Ren~ = 10 6. 

numbers,  the tube only requires a distance less than one 
container  d iameter  to reach its (constant)  terminal  veloc- 
ity [22, 31, 32]. A magnet  fixed at the bo t tom of the tubes 
triggers a t imer via a Hall  magnetic  sensor and then stops 
the t imer as it passes another  sensor. The terminal  veloc- 
ity can then be calculated by dividing the distance be- 
tween the successive sensors by the falling t ime recorded 
on the timer. 

To de termine  the general  characteristics of  the FTV, 
three series of a total of 16 tubes were tested. The 
specifications of the exper imental  tubes and their ideal 
geometry number  are listed in Table 4. 

The major  parts of  the tubes in series TA were made 
out of precision glass tubes from the Fisher  Scientific 
Company.  Those in series TB and TC were made out of 
s tandard plastic tubes. The tubes in series TA have the 
same d iameter  and density but  different lengths and 
therefore  were used to de termine  the length effect. To 
investigate the inertial effect, tubes TB1-TB9  have ap- 
proximately the same diameter  and length but  different 
densities. Tubes TB10-TB12 are similar to those in series 
T A  but with thicker walls. Note that there are slight 
differences of  Ge i between tubes in TB series due to 
small d iameter  differences in the stock tubes. Tube TC1 
has the smallest diameter .  The tests on those tubes with 
approximately the same length but different d iameters  
were made to investigate the primary characteristic,  the 
variation of Ge with diameter .  

o 
r, g 
..~ t t i i f t eq 

Rev.,=10 "~ 6 = 0 . 2 0  o 
, - "  -------- 6 = O. 10 o 
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2 

Figure 7. Numerically calculated geometry numbers and end 
correction factors. 

The tube diameters  were measured by either a vernier 
or a digital micrometer .  The former had a scale increment 
of 2.5 × 10 -5 m and, with careful reading, an accuracy of 
10 5 m. The latter had a resolution of 1 0  - 6  m .  

The tube densities were de termined by weighing them 
in air and distilled water. The accuracy of the density 
measurements  was est imated to be _+ 0.0001 g / c m  3 with a 
repeatabi l i ty  of 0.005% [2]. 

E X P E R I M E N T A L  RESULTS 

As long as the center  of  buoyancy for a tube is above the 
center  of  gravity and the dimensionless tube outer  diame- 
ter is less than 0.75, the falling tube is stable and remains 
in the center  in a vertical posit ion as it falls through the 
test fluid. When  k 2 is greater  than 0.75, the tubes tend to 
become unstable and drift toward the container  wall. 

Viscosities were measured between 1200 and 1400 cP 
using s tandard fluids from the Cannon Standard Instru- 
ment  Company (State College, PA) specified to be accu- 
rate within 1%. Since one of the primary purposes of the 
experiments  was to verify the calculated geometry num- 
bers, it was desirable to suppress all o ther  possible errors. 
Thus the s tandard fluid viscosities were selected to have 
slowly falling tubes in order  to have less error  in the total  
falling time. 

The experimental  geometry numbers and ECFs were 
obtained from Eqs. (4b) and (9a), respectively. These 
results can be compared  with the numerical  results to 
de termine  the accuracy of the FTV. Another  way to verify 
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Figure 8. Effect of Reynolds number on geometry number. 
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the exper imental  and numerical  results is to examine the 
normalized viscosity defined as 

~m ( Pt -- p f )gR~ Ge e 
~ + =  - -  . ( 1 1 )  

~s ~sutGen Gen 

Since both the numerical  geometry  number  and the mea- 
sured tube terminal  velocity were used in viscosity calcula- 
tions, /z + can be used to indicate the accuracy of the 
numerical  as well as the exper imental  results. Any errors 

in ei ther calculations or experiments will make the nor- 
malized viscosity deviate from unity. 

Tables 5 and 6 compare  the results of the numerical  
analysis and experiments,  showing the Reynolds numbers,  
the calculated and experimental  geometry numbers,  the 
measured viscosities, and the normalized viscosity. 

D I S C U S S I O N  O F  E X P E R I M E N T A L  RESULTS 

As seen from Tables 5 and 6, the agreement  between the 
calculated and measured geometry numbers is bet ter  than 

Table 4. Specifications of the Experimental Falling Tubes a 

d i d o l Pt 
Tube (ram) (mm) (mm) k I k 2 l + Gei (kg / m 3) 

TA1 9.040 9.981 53.27 0.4745 0.5239 5.593 379.87 2594.2 
TA2 9.040 9.981 96.11 0.4745 0.5239 10.09 379.87 2548.2 
TA3 9.040 9.981 175.8 0.4745 0.5239 18.46 379.87 2583.2 
TB1 9.62 12.71 99.98 0.5050 0.6672 10.50 212.35 1236.6 
TB2 9.58 12.70 100.6 0.5029 0.6667 10.56 212.05 1285.2 
TB3 9.62 12.70 100.0 0.5050 0.6667 10.50 212.51 1336.6 
TB4 9.62 12.69 100.0 0.5050 0.6661 10.50 212.67 1434.6 
TB5 9.61 12.70 100.1 0.5045 0.6667 10.51 212.39 1585.5 
TB6 9.59 12.70 100.2 0.5034 0.6667 10.52 212.16 1837.1 
TB7 9.61 12.69 100.4 0.5045 0.6661 10.54 212.55 2083.4 
TB8 9.65 12.68 101.1 0.5066 0.6656 10.61 212.22 2603.3 
TB9 9.64 12.70 100.2 0.5060 0.6667 10.52 212.75 3083.5 
TB10 9.61 12.70 40.28 0.5045 0.6667 4.229 212.39 1435.3 
T B l l  9.62 12.69 100.0 0.5050 0.6661 10.50 212.67 1434.3 
TB12 9.61 12.70 200.7 0.5045 0.6667 21.07 212.39 1454.8 
TC1 8.60 10.52 95.40 0.4514 0.5522 10.02 233.99 1431.4 

a System diameter = 19.05 mm. 
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Tab le  5. Compar i son  of  Exper imenta l  and  Numer ica l  Resul ts  a T A  and  T C  Series 

df At ixm 
Tube  (ram) (s) Re&  G e  e G e ,  ( G e n / G e  e) - 1 (cP) ix+ 

TA1 100 36.15 .017 403.13 400.88 - 0.56% 1367.1 1.0056 
TA1 100 36.01 .017 401.57 400.88 - 0.17% 1361.8 1.0017 
TA1 100 36.01 .017 401.57 400.88 - 0.17% 1361.8 1.0017 
TA1 100 35.91 .017 400.46 400.88 + 0.11% 1358.1 0.9989 
TA1 100 36.04 .017 401.91 400.88 - 0.26% 1363.0 1.0026 
TA1 100 35.89 .017 400.23 400.88 + 0.16% 1357.3 0.9984 
Avg. 100 36.00 .017 401.48 400.88 - 0.15% 1361.5 1.0015 
TA2  100 36.34 .017 394.32 393.79 - 0.13% 1361.3 1.0013 
TA2  100 36.18 .017 392.58 393.79 + 0.31% 1355.3 0.9969 
TA2  100 36.11 .017 391.82 393.79 + 0.50% 1352.7 0.9950 
TA2  100 36.08 .017 391.49 393.79 + 0.59% 1351.6 0.9942 
TA2  100 36.14 .017 392.15 393.79 + 0.42% 1353.8 0.9958 
TA2  100 36.25 .017 393.34 393.79 + 0.11% 1357.9 0.9989 
Avg. 100 36.18 .017 392.62 393.79 + 0.30% 1355.5 0.9970 
TA3 90 31.42 .018 386.80 386.95 + 0.04% 1359.0 0.9996 
TA3 90 31.36 .018 386.07 386.95 + 0.23% 1356.4 0.9977 
TA3 90 31.45 .018 387.17 386.95 - 0.06 % 1360.3 1.0006 
TA3 90 31.44 .018 387.05 386.95 - 0.03% 1359.9 1.0003 
TA3 90 31.36 .018 386.07 386.95 + 0.23% 1356.4 0.9977 
TA3 90 31.44 .018 387.05 386.95 - 0.03% 1359.9 1.0003 
Avg. 90 31.41 .018 386.70 386.95 + 0.06% 1358.6 0.9994 
TC1 100 71.89 .008 241.43 242.68 + 0.52% 1418.7 0.9949 
TC1 100 72.17 .008 242.37 242.68 + 0.13% 1424.2 0.9987 
TC1 100 71.97 .008 241.70 242.68 + 0.40% 1420.3 0.9960 
T C  1 100 71.94 .008 241.60 242.68 + 0.45 % 1419.7 0.9956 
TC1 100 71.66 .008 240.66 242.68 + 0.84% 1414.1 0.9917 
TC1 100 71.75 .008 240.96 242.68 + 0.71% 1415.9 0.9929 
Avg. 100 71.90 .008 241.46 242.68 + 0.51% 1418.8 0.9950 

a For TA series, 0f = 889.47 kg /m  3 and /zs = 1359.5 cP. For TC series, pf = 892.90 kg /m 3 and ~ = 1426.0 cP. The local acceleration of 
gravity is 9.8024 m / s  2. 

Table  6. Compar i son  of  Exper imen ta l  and  Numer ica l  Resul ts  a T B  Series 

d f  At  IJ, m 
Tube  ( m m )  (s) ReRs G e  e G e  n ( G e n / G e  e) - 1 (cP) ix + 

TB 1 100 93.11 0.007 220.04 221.29 + 0.57% 1282.7 0.9943 
100 93.91 0.007 221.93 221.29 - 0 .29% 1293.7 1.0029 

TB2 100 81.75 0.008 220.58 220.97 + 0.18% 1287.7 0.9982 
100 81.95 0.008 221.12 220.97 - 0.07% 1290.9 1.0007 

TB3 100 72.08 0.009 220.03 221.45 + 0.64% 1281.7 0.9936 
100 72.48 0.009 221.25 221.45 + 0.09% 1288.9 0.9991 

TB4 100 59.47 0.011 221.72 221.62 - 0.04% 1290.6 1.0004 
100 59.48 0.011 221.75 221.62 - 0.06% 1290.8 1.0006 

TB5 100 46.33 0.014 220.93 221.33 + 0.18% 1287.6 0.9982 
100 46.15 0.014 220.07 221.33 + 0.57% 1282.6 0.9943 

TB6 100 34.14 0.019 222.02 221.09 - 0.42% 1295.4 1.0042 
100 34.11 0.019 221.82 221.09 - 0.33% 1294.3 1.0033 

TB7 100 27.03 0.024 221.68 221.49 - 0 . 0 8 %  1291.1 1.0008 
100 27.06 0.024 221.92 221.49 - 0.19% 1292.5 1.0019 

TB8 100 18.73 0.035 220.74 222.20 + 0.66% 1281.5 0.9934 
100 18.88 0.035 222.51 222.20 - 0 .14% 1291.8 1.0014 

TB9 100 14.61 0.045 220.55 221.71 + 0.53% 1283.3 0.9948 
100 14.58 0.045 220.10 221.71 + 0.73% 1280.6 0.9927 

TB10 150 103.0 0.009 232.28 232.17 - 0 .05% 1426.7 1.0005 
T B l l  200 131.3 0.009 221.66 221.46 - 0 . 0 9 %  1427.3 1.0009 
TB12 100 61.50 0.010 215.52 216.58 + 0 . 4 9 %  1419.0 0.9951 

a For tubes TB1-TB9, Pt = 893.81 kg//m 3 and /x s = 1290.0 cP. For tubes TB10-TB12, pf = 892.90 kg /m 3 and ~s = 1426.0 cP. The local 
acceleration of gravity is 9.8024 m / s  2. 
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+ 1.0% and usually better than +0.5%. This is essentially 
the same as the agreement between the measured and 
standard viscosities. 

Reproducibility of  the viscosity measurements was in- 
vestigated with the tubes in series TA. Six runs were made 
for each tube. The normalized viscosities in Table 5 are 
presented graphically in Fig. 10. It is seen that the repro- 
ducibility for all runs is +0.5%. 

The geometry number is mainly determined by k 1 and 
k 2 rather than 1 ÷. However, the deviation of  the geometry 
number from its corresponding ideal geometry number, 
i.e., the ECF, is very sensitive to 1 ÷. Figure 11 illustrates 
the effect of  tube length on the ECF with tubes 
TB10-TB12. These tubes have dimensionless lengths of  
4.229, 10.50, and 21.07, respectively, but nearly the same 
kl, k2, and Gel, (Table 4). As l ÷ increases, the viscometer 
approaches the ideal model, Ge approaches Gei, and 
therefore ECF converges to unity. The value of  (ECF-1) 
for a particular pair of  k 1 and k 2 is approximately in- 
versely proportional to the tube length. Considering this 
factor and other factors such as inconvenience, it is rec- 
ommended that 1+= 10 is a suitable value for the falling 
tubes. 

The data of tubes TB1-TB9  show that the effect of  the 
Reynolds number  on the geometry number  is small. No 
apparent variation was observed as the Reynolds number  
increased from 0.0071 to 0.0452. These experimental data 
are shown in Fig. 8 as circles along with calculated values 
from the numerical analysis. 

E R R O R  ANALYSIS 

A detailed error analysis of  the experiments was con- 
ducted on the geometry number  [2]. Possible errors were 
considered in the falling time and distance, tube and fluid 
densities, container and tube diameters, container inclina- 
tion, falling stability, tube eccentricity, and temperature 
variations. It was predicted that the overall experimental 
errors were 0.5-1.5%. These are somewhat larger than 
the results of  the experiments on the standard fluids, 
which were well within 1.0%. 

C O R R E L A T I O N  E Q U A T I O N S  

One of  the problems with numerical solutions is that the 
result is a plethora of  numbers that many times are not 
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Figure 11. Effect of tube length on ECF (TB10-TB12). 

continuous over sufficiently small increments of  the field. 
This is true for the present solution, where it is difficult to 
determine, from a group of  limited numerical results, the 
geometry number or the ECF for arbitrary values of  the 
parameters k l, k 2, and 1 +. From a design point of  view, 
a correlated equation in terms of  the three parameters 
kl, k2, and I + would be convenient and sufficient. The 
Reynolds number was not included because of  its negligi- 
ble effect at small values but may be regressed indepen- 
dently with good approximation if large Reynolds numbers 
are unavoidable. 

Taking advantage of  its small variation, the ECF was 
chosen to be correlated. The correlated equation of  the 
ECF for the special case of  the FTV, the FCV, was 
previously reported in [1]. For general FTVs, the following 
correlation form was found to be appropriate. 

ECF = 1 + a(kl,k2)/3(l+), (12) 

where a is the contribution of  the tube diameters and /3 
the contribution of the tube lengths. Using the data in 
Tables 3-6,  a matrix equation for ot can be written as 

a = D ' A ' T ,  (13) 
where D is the tube diameter vector, A the coefficient 
matrix, and T the tube wall thickness vector. 

D = I1, k 1 + k 2, (k 1 + k2 )2, (k 1 + k2 )3, (k 1 W k2)41, 

= -0 .5762  3.6889 -20 .0268 29.0440 I 
2.9353 - 15.4479 83.2855 - 120.494 I 

A -4 .7164  22.7371 - 123.105 176.454 I' 
3.1158 -13 .9315 75.9630 107.009 

-0 .7246  3.0570 -16 .7378  22.9341 

and 

k21gk l  

T = (k 2 _ kl)2 

(k  2 - k l )  3 

for k t + k 2 < 1.6 and 
k 2 - k I < 0.3. 
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Table 7. Comparison of Correlated and Experimental ECFs 

Tube k I k 2 l + ECF~ ECF~ (ECF r - ECFe /ECF e) 

TA1 0.4745 0.5239 5.593 1.05688 1.06382 + 0.66% 
TA2 0.4745 0.5239 10.09 1.03355 1.03736 + 0.37% 
TA3 0.4745 0.5239 18.46 1.01798 1.02006 + 0.20% 
TB1 0.5050 0.6672 10.50 1.04066 1.04178 + 0.11% 
TB2 0.5029 0.6667 10.56 1.04153 1.04137 - 0.02% 
TB3 0.5050 0.6667 10.50 1.03827 1.04175 + 0.33% 
TB4 0.5050 0.6661 10.50 1.04263 1.04171 - 0.09% 
TB5 0.5045 0.6667 10.51 1.03817 1.04168 + 0.34% 
TB6 0.5034 0.6667 10.52 1.04600 1.04155 - 0.43% 
TB7 0.5045 0.6661 10.54 1.04352 1.04153 - 0.19% 
TB8 0.5066 0.6656 10.61 1.03939 1.04141 + 0.19% 
TB9 0.5060 0.6667 10.52 1.03558 1.04176 + 0.60% 
TB10 0.5045 0.6667 4.229 1.09364 1.09594 + 0.21% 
TB11 0.5050 0.6661 10.50 1.04229 1.04171 - 0.06% 
TB12 0.5045 0.6667 21.07 1.01471 1.01897 + 0.42% 
TC1 0.4514 0.5522 10.02 1.03191 1.03885 + 0.67% 

a Average values were used for ECF~ except for tubes TB10-TB12. 

An  alternative algebraic equation for c~ is also given in 
the Appendix  as Eq. (A1). The corre la ted equation for 
as a function of l ÷ is 

10 
77-[1 + 0.00963(• + -  10) - 8.015 x 10-4(l + -  10) 2 

- 6 . 7 3 7  X 10-5( l  + -  10) 3] for l + <  20, 

10.052 
0.0293 for 20 < l + <  50. 

l + 
(14) 

The error  introduced by the correlat ion is small (less 
than 0.25%), but  the convenience is great. To verify the 
accuracy of the corre la ted equation directly with the ex- 
per imental  results, the correlat ion equation,  Eq. (12), was 
applied to the tested tubes listed in Table 4. The results 
are shown in Table 7. The agreement  is good, and all of 
the differences are well within + 1.0%. 

S E L E C T I O N  O F  SYSTEM G E O M E T R Y  

A small geometry number  will result in a large Reynolds 
number  if the density difference between the tube and 
fluid is large enough. In order  to have a modera te  falling 
time and no apparent  inertial  effect, a appropr ia te  geome- 
try number  must be selected. There  exists a range of 
geometry numbers  that satisfy both constraints. 

It is known from Fig. 8 that  if the Reynolds number  is 
less than 5.0, there  are no appreciable  inertial effects. The 
maximum allowed Re R is approximately 10 if a 0.25% 
deviation of Ge is perl~issible. Therefore,  from Eq. (4b) 
and the definition of the system Reynolds number,  the 
minimum value of Ge to avoid significant inertial effects is 

/Of( Pt -- Pf)gR3s 
Gemi n > (15) 

-- 10,~2 

F rom a manufacturing point  of view, the system radius 
R s may be chosen to be around 1.0 cm and the length of 
the container  around 40R s. Special at tent ion should be 

given to the value selected for the tube density. Although 
it is natural  to think that the tube density could be chosen 
just slightly higher than the fluid density to allow the tube 
to fall slowly, this can lead to errors because the tube and 
fluid densities enter  into the equation as a density differ- 
ence. This important  characterist ic should be kept  in mind 
in choosing a tube density. It is r ecommended  that the 
tube density be at least 0.05 g / c m  3 larger than the fluid 
density. In this way, the error  in the measured viscosity 
due to the error  in density difference will be less than 
0.4% if the densities have an accuracy of  0.0001 g / c m  3. 

The geometry numbers are largely de te rmined  by the 
tube cross-sectional dimensions. By referring to Fig. 2, 
many pairs of k t and k 2 can be selected for a given value 
of Ge. The values of k 1 and k 2 should be chosen in such a 
way that  the ECF,  O G e / O k l ,  and a G e / O k  2 are all small. 
In this way, an error  in d iameter  measurement  will not 
result in a large error  in the geometry number.  However,  
these values generally will not become small together.  

P R A C T I C A L  S I G N I F I C A N C E  

The absolute falling tube viscometer  that has been de- 
scribed can measure the dynamic viscosity of Newtonian 
fluids with an accuracy of  + 1.0%. It is structurally simple 
and cost-effective. Both the theoret ical  analysis and the 
experimental  verification of the analysis are presented.  
Correla t ion equations are given to aid in the design of 
such viscometers for a variety of applications. 

S U M M A R Y  

1. An  investigation was carried out on the falling tube 
viscometer,  which has several advantages over the 
falling cylinder viscometer,  the lat ter  being a special 
case of the former.  These advantages include an addi- 
tional shear surface that is useful in lowering the 
Reynolds number  to avoid inertial  effects and the 
maintenance of  the dimensional  integrity compared  to 
a hollow cylinder when operat ing at high pressures. 
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Figure A1. Diagram of velocity vectors in the FTV (smaller 
diameter tube, k~ = 0.25, k 2 = 0.35). 

2. A dimensionless operational variable, the geometry 
number (Ge), was defined that represents the ratio of  
the tube driving force to resistant forces. 

3. The falling tube viscometer was analyzed by obtaining a 
numerical solution of the flow field around the falling 
tube and the corresponding geometry number. With 
this information, an end correction factor was deter- 
mined so that the simple solution for the infinitely long 
tube could be used to determine the geometry number 
and fluid viscosities. 

4. Experiments were performed to confirm the validity of  
the numerical solution with the result that measured 
fluid viscosities were within an accuracy of  + 1.0%. 

5. A generalized solution, a correlation equation of the 
ECF, was presented for the end correction factor to aid 
in the design of  falling tube viscometers under a variety 
of  operating conditions with an accuracy better than 
+ 1.0%. 

6. The dimensionless radii k 1 and k 2 c a n  be optimized to 
minimize the systematic errors. 

7. An absolute FTV can therefore be designed with Ge 
obtained from Gei and the correlation equation. 

8. Finally, a number of  practical suggestions are pre- 
sented regarding the fluid container, tube lengths, di- 
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Figure A2. Diagram of velocity vectors in the FTV (larger 
diameter tube, k 1 = 0.65, k 2 = 0.75). 

ameters, operational Reynolds numbers, and materials 
for the most accurate system. 

A P P E N D I X  

Figures A1 and A2 show the diagrams of  the velocity 
vectors of  the FTV with smaller and larger tube diame- 
ters, respectively. A major difference between these two 
figures and Fig. 4 is that the fluid either inside or outside 
the tube, depending on the tube size, does not flow 
upward because of the relatively narrow passage. The 
parameters of the FTV in Fig. A1 were k 1 = 0.25, k2 = 
0.35, l+=  10.0, and ReR~ = 10 -6, and the parameters in 
Fig. A2 were k I = 0.65, k 2 = 0.75, l += 10.0, and ReR~ = 
1 0  - 6 "  

For convenience, an alternative algebraic equation for 
the variable a in Eq. (12) is 

ot = C 1 -t- c 2 ( k  I -t- k 2 )  -F c 3 ( k  ] + k 2  )2 

+ c 4 ( k  I + k 2  )3 + c 5 ( k  I + k 2  )4 ,  ( A 1 )  

where 

c I = -0 .5762  + 3.6889(k 2 - k 1) - 20.0268(k 2 - kl )2 

+ 29.0440(k 2 - kl )3, 
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c 2 = 2.9353 - 15.4479(k 2 - k 1) + 83.2855(k 2 - kl  )2 

- 120.494(k 2 - kl  )3, 

c 3 = - 4 . 7 1 6 4  + 22.7371(k z - k 1 )  - 123.105(k 2 - kl  )2 

+ 176.454(k 2 - kl  )3, 

c 4 = 3.1158 - 13.9315(k 2 - k 1 )  + 75.9630(k 2 - k l )  2 

- 107.009(k 2 - kl  )3, 

c 5 = - 0 . 7 2 4 6  + 3.05700(k 2 - k x) - 16.7378(k 2 - k l )  2 

+ 22.9341(k 2 - k l )  3. 

For  instance,  a should be equal  to 0.038978 a s  k 1 = 0.45 
and  k 2 = 0.55. 

NOMENCLATURE 

d tube  diameter ,  m 
d e tube  fall ing distance,  m 

E C F  end  correc t ion  factor ( G e / G e i ) ,  d imens ionless  
f Darcy fr ict ion factor, (dp+/dx+) ,  dimensionless  

F s shear  force (see Fig. 1), N 
g gravity accelerat ion,  m / s  2 

Ge geometry  n u m b e r  [ =  (p t  - -  Pf)gR2s/l~Ut], 
dimensionless  

Ge  ÷ normal ized  geomet ry  number ,  see Eq. (10), 
d imens ionless  

k I tube  inside d imens ionless  radius  ( =  r i / R s )  , 
dimensionless  

k 2 tube  outs ide d imens ionless  radius  ( =  ro /Rs) ,  
dimensionless  

l tube  length,  m 
l + tube  length  ( =  l / R s ) ,  dimens ionless  
L length of  calculat ion d o m a i n  ( =  l + 4Rs; see Fig. 

3), m 
L ÷ length  of  calculat ion d o m a i n  ( =  l ÷ + 4), 

d imens ionless  
P pressure,  N / m  2 
p pressure  causing fluid mo t ion  ( =  P + pfg) ,  N / m  2 

p +  pressure  [ =  p / ( 1 / 2 p f u 2 t  )], d imens ionless  
R s system (conta iner )  radius, m 

r radial  coordina te ,  m 
r ÷ radial  coord ina te  ( =  r / R s ) ,  dimensionless  

ReRs Reynolds  n u m b e r  based on  system radius  
( =  pf u f R s /  tZ ) , dimensionless  

At tube  falling time, s 
U velocity c o m p o n e n t  in x di rect ion in a s ta t ionary 

coord ina te  system, m / s  
U ÷ velocity c o m p o n e n t  in x d i rec t ion in a s ta t ionary 

coord ina te  system ( =  U / u t ) ,  dimensionless  
u velocity c o m p o n e n t  in x di rect ion in a moving  

coord ina te  system ( =  U + ut),  m / s  
u + velocity ( =  u / u t )  , dimensionless  

u t tube  t e rmina l  velocity ( =  d f / A t ) ,  m / s  

V tube  volume,  m 3 

v velocity c o m p o n e n t  in r d i rect ion in a moving  
coord ina te  system, m / s  

v + velocity ( =  v / u t ) ,  dimensionless  
x x coordinate ,  m 

x ÷ x coordina te  ( =  x / R ~ ) ,  dimensionless  

Greek  Symbols  
tube  wall thickness ( =  k 2 - kl) ,  d imensionless  

/x viscosity, cP or N s / m  2 
/x + normal ized  viscosity, see Eq. (11), d imensionless  

p density, k g / m  3 

Subscr ip ts  
A tube  forward (bot tom)  end  
B tube  back (top) end  
e exper imenta l  
f fluid or falling 
i ideal or  inside 

m measu red  
n numerica l ly  computed  
o outs ide 
r regressed (correla ted)  
s system (conta iner )  or s tandard  viscosity 
t tube  
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