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Abstract 

Konolige, K., Abduction versus closure in causal theories (Research Note), Artificial 
Intelligence 53 (1992) 255-272. 

There are two distinct formalizations for reasoning from observations to explanations, as in 
diagnostic tasks. The consistency based approach treats the task as a deductive one, in 
which the explanation is deduced from a background theory and a minimal set of 
abnormalities. The abductive method, on the other hand, treats explanations as sentences 
that, when added to the background theory, derive the observations. We show that there is 
a close connection between these two formalizations in the context of simple causal theories: 
domain theories in which a set of sentences are singled out as the explanatorily relevant 
causes of observations. There are two main results, which show that (with certain caveats) 
the consistency based approach can emulate abductive reasoning by adding closure axioms 
to a causal theory; and that abductive techniques can be used in place of the consistency 
based method in the domain of logic based diagnosis. It is especially interesting that in the 
latter case, the abductive techniques generate only relevant explanations, while diagnoses 
may have irrelevant elements, 

1. Introduction 

R e a s o n i n g  to  t h e  bes t  e x p l a n a t i o n  is a c o m m o n  task  in m a n y  a r e a s  o f  

a r t i f ic ia l  i n t e l l i g e n c e .  O n e  o f  t h e  c l e a r e s t  e x a m p l e s  is d i agnos i s ,  in w h i c h  o n e  

r e a s o n s  f r o m  o b s e r v a t i o n s  such  as p a t i e n t  s y m p t o m s  to  t h e i r  u n d e r l y i n g  cause s ,  

a d i s e a s e  o r  p h y s i o l o g i c a l  m a l f u n c t i o n .  In  t h e  l i t e r a t u r e ,  t h e r e  a r e  t w o  fun-  

d a m e n t a l l y  d i f f e r e n t  f o r m a l i z a t i o n s  o f  this  t a sk  [9, 11]. In  o n e ,  t h e  p r o c e s s  o f  

f i nd ing  a c a u s e  is t r e a t e d  as a s t r a i g h t f o r w a r d  a b d u c t i v e  task .  R e p r e s e n t a t i v e  o f  
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this approach is the set-covering model of diagnosis [12], which assumes two 
disjoint sets, d a set of disorders, and m a set of manifestations. Disorders are 
assumed to "cause" manifestations, represented by a relation d x m. The 
problem of diagnosis is recast as the problem of finding a minimal cover for 
observed manifestations m' C m, that is, a minimal subset of d that causes m'. 

The competing formalization, the consistency based approach, is best repre- 
sented by Reiter 's logic based theory of diagnosis [14]. In this theory, the 
functionality of a system containing a finite number of components is character- 
ized by a set of first-order sentences, the domain theory. The special predicate 
ab(c) is used to state that the component  c is abnormal or not functioning 
correctly. The observed behavior of the system is represented by a set of 
sentences. A diagnosis of the behavior is a minimal set of abnormality 
assumptions that is consistent with the observations and the domain theory. 

These two formalizations seem fundamentally different. The abductive ap- 
proach looks for a set of causes that will imply the observations; the con- 
sistency based approach looks for a set of abnormality assumptions that are 
consistent with the observations. Nevertheless there is a connection between 
the two: Reiter  showed how to express the set-covering model within his 
framework.  Recently,  Console [2] and Poole [9] have shown that either 
formalization can be used in restricted settings to compute the same explana- 
tions for diagnostic tasks. In the abductive framework, the domain theory has 
axioms that relate causes and their effects, e.g., c i D e would be used to say 
that the effect e is a result of cause q .  A corresponding consistency based 
theory is created by adding closure axioms stating that the only way to achieve 
an effect is by the set of causes given (e ~ c~ v c 2 v • • "). The closure axioms 
are local in that they are easily derived by looking at all the implications that 
have a common head atom. The explanations computed by the two methods 
are the same, as long as the domain theory contains just Horn clause 
implications from causes to effects, and is acyclic. 

This result applies to diagnostic tasks that require explanations, that is, the 
unexpected observations must be predicted or explained from the assumed 
malfunctions. In the literature, explanatory diagnosis is usually signalled by the 
presence of fault models [4, 15]. Reiter 's  framework may also be used for a 
weaker form of diagnosis, which could be called excusing diagnosis: identify 
components  that, if malfunctioning, would cancel or excuse predicted normal 
behavior of the system that conflicts with the observations. Here we look only 
at the case of explanatory diagnosis (and causal explanation in general),  since 
excusing diagnosis has no analog in the abductive framework. 

The restrictions on the domain theory for the Console/Poole  result are very 
tight; in particular, there can be no correlation information (e.g., that two 
causes are mutually exclusive, or that one effect is the negation of another) or 
uncertainty (e.g., a cause implying a disjunction of effects). In this paper we 
will examine the connection between abduction and closure in the setting of 
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explanation in general causal models, allowing correlations, uncertainty, and 
acyclicity in the causal structure. We answer the following questions: 

• Is there a notion of explanatory closure that is appropriate for the more 
general domain theory? Is there an equivalent local closure? 

• Is consistent explanatory closure of a general domain theory possible? 
• When consistent closure is possible, does minimization of causes in the 

closed theory compute the same explanations as does abduction in the 
original theory? 

There are both positive and negative results. With an appropriate notion of 
explanatory closure, given certain technical conditions, the consistency based 
approach will compute the same explanations as the abductive approach. 
However, the utility of the former method is open to question, since local 
closure will no longer suffice for explanatory closure; there seems to be no way 
to close the domain theory other than by computing all explanations. Further, 
the consistency based method is strictly stronger than the abductive one in 
explanatory diagnostic tasks, and the answers it produces may have elements 
that are not relevant to a causal explanation. 

A second area that we address is whether abductive methods may be used in 
the setting of logic based diagnosis with fault models. This area is closely 
related to the previous one, except that we assume that there is already a 
closed theory, and that the causes take on a specific form, namely normality 
and abnormality assumptions about components. Our main result here is that 
the abductive method produces kernel diagnoses, ~ but without any of the 
irrelevant causes that may be present in the latter. 

The next three sections of this note describe simple causal theories, and 
define abductive and consistency based methods in this context. Section 5 
develops the concept of explanatory closures, and Section 6 gives the main 
results on emulating abduction with the consistency based method. Section 7 
describes how abductive methods can perform logic based diagnosis. 

2. Simple causal theories 

We are interested in domains in which there is a concept of cause and effect. 
Much of our commonsense view of the world can be cast into this form. 
Typical here is reasoning about actions or events and their results, usually 
formalized in the situation calculus or some variant [7]. Other domains include 
medical diagnosis with diseases as causes, symptoms as effects; mechanical or 
electrical systems with components and inputs as causes, outputs as effects; and 
planning domains with plans as causes, actions as effects. 

i This term is from [3], and is defined in Section 7. 
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While there is a great deal of complexity and controversy in defining 
causation,  for this paper  most of these problems can be bypassed because we 
are interested in a formal representat ion of the simplest aspects of causal 
consequence,  given by the following definition. 

Definition 1. Let  5f be a first-order language. A simple causal theory is a tuple 
( C, E, Z > where 

• C, a set of atomic sentences of ~ ,  are the causes; 
• E,  a set of sentences of oT, are the effects; 
• X, a set of sentences of ~q, is the domain theory. 

The set C contains those atomic proposit ions which represent  the possible 

causative agents of the domain.  If we are looking for an answer to the question 

of "what  caused e?" ,  then an acceptable answer is the conjunction of some 
subset of C. 2 

Effects E are those aspects of the domain that we might observe,  and for 
which we want to know the cause. Note that E and C need not be disjoint; an 
observed cause may require no further explanation. 

The  domain theory 2 contains information about  the relation between causes 

and effects. For example,  in the situation calculus we might take C to be 

occurrences of actions, E to be propert ies  of the final state, and 2f to hold 
information about  the initial state and the way in which actions affect prop- 
erties of situations. 

He re  is a simple causal theory that will be used as an example in the rest of 

the paper ;  a graphical presentat ion appears  in Fig. 1. The intended meaning of 
the predicates should be obvious f rom their names. 

Causes: rain, sun, warm, sprinkler ; 
Effects: wet-lawn, wet-road ; 

Domain  theory: rain D wet-road, rain D wet-lawn, sun =-Train 
sprinkler D wet-lawn, sun/x warm D sprinkler. 

wet-lawn wet-road 

wa,rIl] Slln -'- - / - -,- rail] 

Fig. 1. A sample causal theory. 

2 Allowing only atoms simplifies the analysis, but is not restrictive, since we can include 
equivalences such as c --- ~, where ~b is a complex sentence. 
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A notational convention: a finite set of sentences will often be taken as a 
conjunction, e.g., if A and B are such sets, we write 

A v B  for ( a l A a 2 A ' ' ' ) V ( b l A b 2 A ' ' " )  , 

7 A  for -~(a I Aa  2 / x . . . ) .  

3. The abductive approach 

Given a simple causal theory, the problem of reasoning from observations to 
causes can be expressed formally using abduction. The account of logical 
abduction we give here draws on ideas already present in the literature (e.g., 
[9]). 

Definition 2. Let (C,  E, ~ ) be a simple causal theory. An abductive explana- 
tion (or ABE) of a set of observations O C_ E is a finite set A _C C such that 

• A is consistent with ~ ;  
• .~ U A~-O; 
• A is subset-minimal over sets satisfying the first two conditions. 

If O has a nonzero finite number of ABE's  then the cautious explanation is 
their disjunction: Vi  Ai. 

Remarks. A must be a minimal set of members of C; by minimal is meant that 
there is no other set of causes for O consistent with the domain theory that is a 
proper subset. This is a relevancy condition, since it excludes from the 
explanation 3 elements of C that are not relevant to deriving O. Other than this 
we say nothing about preferences among multiple explanations. It is obvious 
that often such preferences will be required for reasoning, e.g., we may want 
the most specific explanation, or the most normal (where we partition causes 
into ones that normally occur and ones that do not), or the X-est, where X is 
some measure on explanations. The preference could be expressed mathemati- 
cally by a partial order on the subsets of C. Since such an order will be closely 
related to the domain of application, and we have no way of making any 
general statements about the order, we omit it from further consideration here. 

In a given problem domain, we may be interested in the best explanation, or 
the cautious explanation, or even any (satisficing) explanation. For example, if 
we want to predict the possible states of the world after a sequence of events, 
then the cautious explanation might be most appropriate, while tasks like plan 
recognition usually require the best explanation. And for some problems there 
is no ordering of solutions, and any one would be acceptable. 

3A note on terminology: we will use the simple term explanation to refer to abductive 
explanations when no ambiguity is possible, and abductive explanation or ABE when we want to 
distinguish them from explanations derived by the consistency based approach. 
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Finally, it is possible that one explanation A will imply another A' in a 
simple causal theory. For example, sun and warm implies sprinkler in the 
sample theory. More generally, let A~ v A~ v . . .  v A,, be any disjunction of 
explanations for O; A j is independent for 0 in the theory Z if Z U A ~ ~ A:  v 

A 3 V " ' "  V A n .  

Using the example causal theory of the previous section, there are three 
explanations of O --- {wet-lawn}, namely {rain}, {sprinkler}, and {sun, warm}. 
The cautious explanation is rain v sprinkler v (sun ^ warm), which simplifies 
in the domain theory to rain v sprinkler. The explanation sun/x warm is not 
independent,  since it implies sprinkler. The observation set O = {wet- 
road, wet-lawn} has the single explanation {rain}, which is also its cautious 
explanation. 

4. The consistency based approach 

The consistency based approach has been most clearly developed in the 
domain of diagnosis, especially in [3, 14]. In this section we will modify the 
terminology slightly to apply to the more general causal theories of Section 2, 
and to make comparison to the abductive approach easier. The particulars of 
the diagnostic task are discussed later, in Section 7. 

Definition 3. Let (C, E, ~ ) be a simple causal theory, and O (the observa- 
tions) a subset of E. A denial set for 0 is a subset D C C such that 

0 0 0 {-Td [ d E D} is consistent.  

When a denial set is maximal (that is, there is no other denial set that 
contains it), no more negative causes can be consistently added to it, and thus it 
is possible to deduce a set of (positive) causes from the maximal denial set, the 
domain theory, and the observations [14]: 

,~ O 0 0 { - T d ]  d ~ D } ] - C -  D .  (1) 

In this case, we call C - D a consistency based explanation for O, or CBE for 
short. CBE's  are called diagnoses in Reiter's original paper, and they were 
used mainly for producing excusing diagnoses in the domain of electronic 
circuits. However, Reiter recognized that the consistency based approach was 
also capable of producing explanatory diagnoses, as long as the domain theory 
contained implications from effects to causes. For example, in reconstructing 
the set-covering model of (explanatory) diagnosis, Reiter used axioms of the 
form: 

OBSERVED(m)  3 PRESENT(d 1) v . . .  v PRESENT(dn)  , 

where m is the observed symptom and d i are diseases that cause the symptom. 
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These axioms give necessary conditions for the observation, namely, that one 
of a set of diseases be present. Later papers refer to implications of this sort as 
fault models [4, 15]. 

The difference between the consistency based approach and abduction is 
twofold. First, the form of inference is distinct: rather than abducing causes 
that imply the observations O given the domain theory 27, the consistency 
approach tries to minimize the extent of the causation set C by denying as 
many of its elements as possible. Second, these methods encode knowledge of 
the domain differently: in the abductive framework, there are implications 
from the causes to the effects, while in the consistency based systems, if we 
want to derive explanatory rather than excusing diagnoses, the most important 
information seems to be the implication from observations to possible causes. 

Despite these differences, it is known that, under certain conditions on the 
domain theory, abductive and consistency based explanations coincide. 

Theorem 4 (Console, Poole). 4 Let (C, E, 2f) be a simple causal theory over a 
propositional language, with ,~ a set o f  nonatomic definite clauses whose directed 
graph is acyclic. Let C be a set of  atoms that do not appear in the head of  any 
clause of  2f, and E any set of  atoms. Let 17 be the Clark completion [1] of ~,. 
Then the CBEs of  ( C, E, 17 ) are exactly the ABEs of  ( C, E, 27 ). 

The simple causal theory of Fig. 1 does not satisfy the conditions, because it 
contains the equivalence sun -~ rain, and sprinkler is a cause that appears as the 
head of a clause. If we eliminate these anomalies, then the Clark completion of 
the domain theory is: 

wet-road =-- rain, 

wet-lawn - rain v sprinkler, (2) 

sprinkler-~ warm ^ sun.  

The CBEs of wet-lawn are {rain} and {sun, warm}; the ABE {sprinkler} is 
missing. 

For more complicated domain theories, Clark completion does not give the 
required closure over abductive explanations. If the theory has cycles, for 
example {a ~ b, a' ~ b, b ~ a}, then the completion will only pick out a subset 
of the abductive explanations (in this case, b ~ a). If there is disjunction in the 
head of a clause, the completion is undefined. 

In the next sections we will extend the scope of Theorem 4 by considering a 
more general notion of completion for a simple causal theory, that of explana- 
tory closures. 

4 Nei ther  of  these authors  states the theorem in this form, a l though Poole ll0] is close. It is clear 
that  the theorem follows from their results.  Poole 's  theorem as stated seems to have a broader  
application, but  personal  correspondence with him disclosed that the conditions of application are 
as given here.  
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5. Explanatory closures 

Let ( C, E, ~ ) be a simple causal theory,  and suppose g E E has a cautious 
explanation Vi  A i. Now consider the statement 

g D A I v A 2 V " " " V A .  , (3) 

where we understand each Ai to be the conjunction of its elements. This 
expression says that whenever  g is present,  it must have been caused by one of 
the A~; we call this expression the explanatory  closure of g with respect to the 
simple causal theory (C,  E, ~ ) ;  it is abbreviated T(g ) .  If the explanatory 
closures of all effects E exist, then the theory ( C, E, H )  formed by adding the 
closures to ~ is called the closure of (C,  E, ~ ). 

By forming the closure of a causal theory we can deduce the cautious 
explanation from any given effect. One immediate question is whether we 
should add something stronger or weaker to close the theory. If we add a 
stronger closure, then we have excluded some original abductive explanation 
from consideration; e.g., if the explanatory closure is g D a~ v a 2, and we use 
g D a~ instead, then a~ will be the only CBE for g. On the other  hand, suppose 
instead we add something weaker,  e.g., g D (a 1 v a 2 v 6) for some arbitrary 
sentence ~. If we try to derive CBEs by minimizing causes, then since 
~ ( a l  v a2) is consistent with the closure, we could assume it, and derive 6 as 
the "explanat ion"  for g, which is certainly not intended. 

Another  question is whether explanatory closures are always consistent with 
the original causal theory,  and if so, whether the original abductive explana- 
tions remain unchanged. Unfortunately,  the answer to both parts of this 
question is "no" .  

Example 5. Let ({a l ,  a 2, a3}, {g~, g2, g 3 } ,  ~ ) be a simple causal theory,  with 
2: equal to the conjunction of 

a~ A a 2 ~ g l ,  a~ A a 2 ~ g 2  v g 3 ,  - q a ~  v - ~ a  2 v ~ a  3 , 

a z A a 3 D g2, a 2 /x a 3 D gl v g3 , g~ v g2 v g3 , 

a 3 m a I D g 3  , a3 ^ al D gl v g2 • 

The closures of this theory are 

g l  D a I A a 2 , 

g 2  ~ a 2  A a 3 , 

g 3  ~ a 3  A a 1 . 
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It  is easy to show that  the con junc t ion  o f  these closures is inconsistent  with ~.5 
T h e  technical  condi t ions  for  inconsis tency are somewha t  compl ica ted ,  and it 

takes  some  work  to create  a causal theory  that  will have inconsistent  closures;  

e .g . ,  the example  of  Fig. 1 can be consistently closed,  but  it was not  originally 

des igned with this p roper ty  in mind.  The  necessary condit ions involve interact-  

ing effects and causes such that  in the causal theory  at least one  of  the effects is 

t rue,  and one o f  the causes false. The  following propos i t ion  states this more  
precisely.  

Proposi t ion  6. Let  {'y(gi) I 0 < i ~ n)  be a set o f  closures f o r  ( C, E,  2f >. For 

each i <~ n, let Pi be either gi or -7 A i, where A ~ is any abduct ive  explanation f o r  
g~. Each  sentence 

Pl v P 2  V " ' "  v p n  

mus t  be a theorem o f  ,~ f o r  these closures to be inconsistent with ,Y. 

Proof. For  the closures to be inconsistent ,  V i ~ ( 7 ( g ~ ) )  must  be a t heo rem of  
~.  We have:  

V, V,(g, ^ 

=- V i ( g i  A 7A~ ^ -TA~...) 

where Eg i is the caut ious explanat ion for  gi, and the A is are all abduct ive  

explanat ions  for  it. The  propos i t ion  follows by tautological  consequence .  [] 

We now turn to the quest ion o f  how adding closures can modify  abduct ive  
explanat ions .  

Example  7. Let  ( {a l ,  a3, a4} , {gl ,  g2, g3}, ~ > be a simple causal theory ,  with 
equal  to the con junc t ion  o f  

a I 3 gl , 7 a  1 v - l a  3 , 

al D g2 , aa D gl v g 2 ,  

aa ~ g3 , 

a4 ~ g3 • 

The  closures of  this theory  are 

5 It was suggested by a reviewer that the sentence gl D (a 1 ̂  a2) V (a 2 ̂  a 3 ̂  "lg3) V (al ^ a 3 A 
"7g2) and similar ones for the other effects be used; these closures are consistent with the domain 
theory. However, as noted above, this would generate an anomalous explanation: by asserting 
-7a~, we derive a2 ^ a 3 A--Ig3, which, although it derives g~ in the domain theory, is not an 
abductive explanation for g~. 
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g l ~ a l  , 

g2 Da~ , 

g3 ~ a3 v a 4 . 

If  the first two closures are added to ~,, a I becomes true, a 3 becomes false, and 

the only explanation for g3 is a 4. 

This example  shows that some causes may become true or false, thus 

modifying the available abductive explanations. However ,  no truly "new"  
explanations are created by the addition of closures, since every explanation 

must  be the subset of one of the original ones. 

Proposition 8. Let (C,  E, X )  be a simple causal theory, and {y(gi)} a set o f  
explanatory closures with respect to it. Suppose I1 = ~ U { y(gi )  } is a consistent 
set. For an arbitrary effect g, every abductive explanation o f  g w.r.t. 11 is a 
subset o f  some abductive explanation of  g w.r.t. ~. 

Proof.  Assume A is an explanation for g w.r.t. H, but there is no A'  _D A such 

that  A'  is an explanation for g w.r.t. Y~. Using a technique similar to that of 

Proposi t ion 6, the following must be theorems of ~, where each p~ is either gi 
or -1 A~ for any explanation A~ of g~: 

Pl v p 2 v  " ' "  vp , ,  v - a A v g .  

Choosing each p~ to be -nA~, this is a sentence which contradicts the original 

assumption.  [] 

5.1. Augmented domain theories 

Rather  than trying to determine if a causal theory has a consistent closure, 
we might find it useful to modify the theory so that it does. The simplest way to 

do this is to add an escape cause for each effect: a new cause r~ is included in C 
for each gi, and the sentence r~ Dgi  is added to y,.6 The new causes are 

sufficiently isolated from the original domain theory so that inconsistency 

cannot  result. In effect, the closure conditions no longer force one of the 

original abductive explanations for g~ to be true, since ri is an alternative. 
Further ,  augmented  theories do not change their original abductive explana- 
tions at all when closures are added. 

Proposition 9. Let (C' ,  E, ~ ' )  be a simple causal theory formed f rom 
( C , E , ~  ) by adding r i to C and q D g~ to X for  each g ~  E; call this an 
augmented  causal theory. Suppose that { y(gi )  } is a set o f  explanatory closures 

Escape causes are the same idea as the unknown faults of [4, 15]. 
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with respect to the augmented theory, and let H = ~ ' U  (T(gi)}. Then 171 is 
consistent, and for  an arbitrary effect g, a subset A C D is an abductive 
explanation o f  g w.r.t.  H if  and only if it is an abductive explanation o f  g w. r. t. 
2f. 

Proof. By Proposition 6, if the closure of ,~' is to be inconsistent, the following 
must be theorems of ,~ ', where each Pi is either gi or 7 ri: 

p l v p E v ' " v p , .  

Because the only expressions containing r~ are of the form r~ D gi, the above 
sentences are theorems of ~ '  only if there are corresponding theorems of 
with each 7r~ replaced by -Tg~. This is impossible, since such a set is 
unsatisfiable. 

Assume A C_ C is an abductive explanation for g w.r.t. F/, but not w.r.t. ~. 
By reasoning similar to that in the proof of Proposition 8, the following must 
be theorems of ~ ' ,  where each p~ is either g~ or -Tg~: 

Pl VPz v . . .  vpn v-TA v g .  

By tautological consequence, these sentences imply A D g, contradicting the 
initial assumption. [] 

5.2. Local closure 

Cautious explanations for a proposition g are defined by reference to the 
entire contents of the causal theory ,~. Is there a way of deriving these 
explanations in a local manner, that is, by looking only at the sentences of ,~ in 
which g occurs? From Theorem 4, Clark completion works for a restricted 
language. But if arbitrary correlations are allowed in ,~, then adding cautious 
explanations by a local closure operation is not possible. The simplest example 
showing this contains loops in the implication structure; e.g., let ~ be 

aDg,  a'Db,  b D g ,  

g D c ,  c D b .  (4) 

Let a and a' be the causes. Adding the local closure g D a v b is insufficient, 
because it is subsumed by g D c D b, so that a as a cause of g will never be 
inferred. Any local closure for g cannot find the connection between c and b, 
and thus has the chance of being incorrect. 

Loops in the implication structure also cause problems for other global 
closure methods such as circumscription, which is equivalent to Clark comple- 
tion for the restricted language [13]. In the case of the above example, 
minimizing g while holding the causes fixed yields g 3 b, which is again 
stronger than the explanatory closure. 
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6. Closure + minimization implies abduction 

The closure of a causal theory contains the explanatory closure 

g D A  1 vA, v ' " v A , ,  

of each effect g. Suppose the closed theory is consistent, and we observe g. 
Then A 1 v A 2 v • • • v A,, is true in all models of g and the closed theory. If we 

now try to minimize causes, that is, to assert -~A i for as many abductive 

explanations as possible, we will eliminate possible explanations from the 
disjunction, until we are left with a single one. Thus we can per form abductive 

reasoning in the consistency based approach.  

There  is one caveat to this reasoning: 7 if an abductive explanation A1 is not 

independent ,  then it will not be found by closure and minimization. Suppose 
there is another  A 2 that is implied by A~ and the domain theory; then A~ will 

be shadowed f rom the minimization by A2: we cannot assert  -qA 2 without 
concluding ~ A ~ .  Thus using closure and minimization will only produce the 
independent  abductive explanations. 

This discussion is made more precise with the following theorem. 

Theorem 10. Let (C, E, ,~ ) be a simple causal theory, and suppose that 
( C, E, 1I) ,  its closure, is consistent and does not entail an effect g. Let A be an 
A B E  for g in ~, and suppose that A is consistent with 11 and independent in I1. 
Then A is a subset (not necessarily proper) of some CBE for g in II. 

Conversely, every CBE for g in 11 is a superset (not necessarily proper) of 
some A B E  for g in Z. 

Proof.  Suppose A is an A B E  of g (in X) ,  and let X be the disjunction of the 

rest of the ABEs  of g: A 2 v A 3 v • • • v A n. -nX is consistent with H, or else 
H ~ X and so H ~ g, contradicting the assumptions. Also, by assumption,  
H U  A is consistent, and since A is independent  in H, / / U  A U - n X  is 
consistent,  and hence so is H U {g} U-nX.  Let  m be a model of H U {g} U 

~ X ,  and let D = {a2, a 3 . . . . .  a ,}  be a set of elements,  one from each A B E  of 
X, that are false in m. Let - - D  = (-ha2, -ha 3 . . . . .  -nan). Now H U {g} U - D  is 
consistent,  and because of the presence of the closure of g, A is a consequence 
of it. D can be extended to some maximal set D '  that is a denial set for g, and 
its complement  w.r.t.  C contains A. 

For the converse part ,  let H U {g} U ~ D  be consistent for some maximal 
denial set D C_ C. Suppose the associated CBE H is not a superset of any A B E  
of g in Z. Then for any A B E  A i of g, ~ A i  is consistent with H U {g} U - D ,  
and so D by maximali ty must contain some element  of each of A i. Thus 

7 I am indebted to Eunok Paek for pointing out this problem. 
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D D -7 Eg, where Eg is the cautious explanation for g. This is a contradiction, 
since g 3 Eg is a sentence of H. [] 

Remarks. This theorem shows the general correspondence between abductive 
and consistency methods. If an inverse causal theory is formed by closing a 
causal theory, then, with several restrictions, consistency based and abductive 
explanations are isomorphic to one another. The restrictions have to do with 
the problems encountered in adding closures to a causal theory; given the 
results of the last section, it may not be possible to do so consistently, as 
abductive explanations may change, and so forth. 

This not to say that the two approaches are equivalent, however. The 
consistency based method in general entails more than the abductive one, as a 
consequence of adding the closures. 

Corollary 11. Assume the same conditions as in Theorem 10 above. For some 
maximal denial set D, every consequence o f  2f and A is a consequence o f  H and 

D. On the other hand, some consequence o f  D and 1I may not be a consequence 

o f  ~ and A .  

In Example 7, --7a 3 is a consequence of H, but not of any abductive 
explanation for g3. 

6.1. Representational issues 

The designer of a domain theory who wishes to employ the consistency 
based approach can use the results of the previous sections to help determine 
how to formalize the domain. If the closure conditions are given directly as 
part of the available knowledge of the domain, then the consistency based 
approach may be used to generate explanations. For example, in the system of 
Morgenstern on temporal projection [8], the axiomatization gives a closed 
causal theory, since it specifies exactly what events must occur given a 
sequence of states, and vice versa. 

On the other hand, often the designer only has information about causal 
effects, together with some noncausal correlations (e.g., forbidden states). In 
order to employ the consistency based approach, the explanatory closures must 
be generated and added. Here the form of the causation axioms can be 
exploited. If they are Horn, definite and acyclic, then local closure (Clark 
completion) can be used. For more complicated theories, a technique such as 
circumscription may be appropriate. A good example from the domain of 
temporal projection is the work of Lifschitz [6]; in effect, this theory is similar 
to that of Morgenstern above, with the following differences. First, the 
sequence of actions is fully specified by the result function, but exceptions to 
the actions are allowed, in the form of miracles: these are the assumable 
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atoms. Second, there is a theory of causation for action types, which is used to 
generate the closure conditions by circumscription. That is, the causation 
axioms state what must follow if the preconditions of an action hold and the 
action takes place; circumscription then generates the closure axioms. Minimi- 
zation over miracles gives the desired explanations. 

Another good example of the derivation of closure axioms by circumscriptive 
techniques is Kautz's theory of plan recognition [5]. The domain theory is a 
hierarchical set of actions; the causes are the goals at the highest level of the 
hierarchy, the so-called E N D  events. Relations between actions at different 
levels in the hierarchy are given by a first-order domain theory. Circumscrip- 
tion is used to close off the axioms, producing the explanatory closure axioms. 
Given a set of observed actions, minimizing over the E N D  event produces an 
explanation of the observations. ~ 

The motivation behind the multiple circumscription in systems such as [5, 6] 
has often been obscure. Given the results of this paper, it should be clear that 
the circumscriptions are performing abduction by using closure and minimiza- 
tion. Whether the circumscription corresponds to an appropriate closure can be 
tested by checking whether it produces the explanatory closure axioms, and 
whether adding these axioms changes the set of abductive explanations. The 
examples and propositions of Section 5 should be helpful in this regard; for 
example, by adding escape causes it is always possible to retain the original 
causal structure. In general, if there are cycles in the implication structure of 
the causal domain theory, then neither circumscription nor local closure will 
work correctly in generating explanatory closures. 

7. Logic based diagnosis 

In the previous sections we considered how it was possible to derive 
explanations in a causal theory using consistency based methods. Here we 
consider the converse question in a more particular setting: can abductive 
methods be used to perform logic based diagnosis? In logic based diagnosis, 
the domain theory takes on a restricted form, with a distinguished set of 
abnormality predicates ab  i used to describe the expected behavior of a system. 
For example, consider the double inverter of Fig. 2. The proposition in  i means 

Fig. 2. A double inverter. 

The  accounts of these systems are of necessity somewhat  simplified, but  the basic structure is 
correct. 
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that the input of device i is a logical 1, and ~ i n  i that it is a 0 (similarly for out i 
and output).  The domain axioms are 

-lab i D (in i =- - - ] o u t i )  , 

ab i D (in i =- out i ) ,  (5) 

out a =- in b 

for i = a, b. Each inverter can either have normal behavior, or have a short 
circuit so that input and output are the same. In this example, both normal and 
abnormal behaviors of the system are fully specified, that is, there is an 
exhaustive fault model. It has been recognized that exhaustive fault models are 
required for explanatory diagnosis; in our terms, the domain theory contains 
the explanatory closures for all possible input/output  behaviors. 

In the most recent formulation of logic based diagnosis [3], the presence of 
exhaustive fault models has made it necessary to modify Reiter 's original 
definition of diagnoses. Let {C, E, 2 )  be a simple causal theory, with C 
containing a set of abnormality predicates and their negations. 9 In the example 

above, C = {ab a, abb, ~ab  a, -labb}. 
A partial diagnosis G for an observation set O C_ E is a subset of C that is 

consistent with ,~ and O, such that every noncontradictory way of extending G 
with elements of C is also consistent with 2~ and O. For example, for 
O = { i n a ,  OUtb}, there are two partial diagnoses, {-qaba,-qabb} and 
{aba, abb}. Only the first of these would be considered as a diagnosis in the 
original theory. 

A kernel diagnosis is a subset-minimal partial diagnosis. For O = {inb, O U t  b }, 
there are three partial diagnoses, {abb}, {abb, aba}, and {abb, 7abe};  the first 
of these is subset-minimal, and so is a kernel diagnosis. Note that kernel 
diagnoses eliminate some of the irrelevancy present in partial diagnosis, since 
the state of inverter a is not relevant to the observed behavior. 

We would like to know if we can produce the same kernel diagnoses with the 
abductive approach. The following theorem shows that this is possible, except 
(as in the case of Theorem 10) that the ABEs are, in general, more compact 
than kernel diagnoses. 

Theorem 12. Let (C,  E, 2 }  be a simple causal theory, with C a set o f  
abnormality predicates and their negations, and ~ closed and consistent. Let A 
be an independent A B E  for g in ~. Then A is a subset (not necessarily proper) 
o f  some kernel diagnosis for g. 

Conversely, every kernel diagnosis for g is a superset (not necessarily proper) 

o f  some A B E  for g. 

9 We could also change the vocabulary and add ok i =- ~ab i as a new set of causes. But we are 
trying to stay as close as possible to the logic based diagnosis terminology. 
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,' 1 

Fig. 3. An unconnected circuit. 

Proof. Let A be an independent  AB E for g. Using an argument similar to the 
first part of the proof  of Theorem 10, construct the set D, such that ~ U { g} U 

D ~- A. Now - -D  U A is a subset of some partial diagnosis, and therefore A 
must be a subset of some kernel diagnosis, since X U - D U -7 A is inconsistent. 

For  the converse part, let K be a kernel diagnosis for g. Assume no A BE A i 
is contained in K. Then K can be consistently extended by adding one negated 
element  from each A i, thus contradicting g D Eg, which must be in X. [] 

In general, although kernel diagnoses get rid of some irrelevancies with 
respect to their corresponding ABEs,  they still assume more than is really 
needed for an explanation: hence the necessity of subset/superset  relations in 
the correspondence theorem. As an example, consider the three unconnected 
inverters of Fig. 3. Suppose the basic axioms governing the inverters are the 
same as before;  there are no connections between the inverters, and the faults 
are coupled by the axiom ab~ D (ab b v abc). If we observe {in,, out,}, there 
are two kernel diagnoses, {aba, abb} and {abe, abe}. There  is only one ABE,  
namely {aba}. The kernel diagnoses must reflect the constraint that one of b or 
c is abnormal,  which is not a relevant factor in explaining the observations. The 
abductive explanation is just the set of causes that account for the observed 
behavior.  The abductive approach distinguishes between direct causes of the 
observations and irrelevant causes while the consistency based approach does 
not. On the other  hand, the information that either b or c is abnormal is still 
derivable in the abductive system, as a consequence of the domain theory and 
the ABE;  but it is not a part of the explanation itself, 

8. Conclusion 

We have shown how to extend the correspondence between abductive and 
consistency based methods to the case of causal theories that have arbitrary 
first-order relations between causes and effects. The correspondence requires 
that a domain theory expressing how causes produce effects be closed, that is, 
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contain statements that the only causes are the known ones. The appropriate 
closure axioms are identified in this paper as explanatory closures. The main 
result of the paper is that minimization of causes in the closed theory produces 
almost the same explanations as abduction in the original causal theory. The 
caveat is that the abductive explanations are generally weaker than their 
consistency based counterparts. There are two reasons for this: adding closures 
may change the available abductive explanations; and the consistency based 
method can conclude causes that are intuitively irrelevant to the observed 
behavior. 

If one is interested in the representation of domain knowledge, then the 
abductive approach offers several advantages. It does not require the assump- 
tion of complete knowledge of causation, and it is not necessary to assert the 
explanatory closures. Adding the closures can lead to inconsistency and change 
the available abductive explanations (although it will not add new ones). The 
computational aspect of adding closures is also discouraging, since there is no 
general local method that accomplishes the addition. Stronger global methods 
such as circumscription will work only in special circumstances. 

In logic based diagnosis, using an abductive method may be appropriate if it 
is important to distinguish causes relevant to producing the observations from 
those that are mere side-effects. But one must be careful here in giving too 
much weight to the term "causally relevant", since the simple causal theories 
we have introduced give only a very narrow interpretation of the complex 
concept of causation. 
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