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The Annals of Statistics 
1980, Vol. 8, No. 1, 147-164 

ASYMPTOTICALLY EFFICIENT SELECTION 
OF THE ORDER OF THE MODEL 

FOR ESTIMATING PARAMETERS OF A LINEAR PROCESS 

BY RiTEi SHIBATA 

Tokyo Institute of Technology 
Let {x,} be a linear stationary process of the form x, + 11<j<, _ = 

e,, where {e,} is a sequence of i.i.d. normal random variables with mean 0 and 
variance a2. Given observations xl, * * *, x", least squares estimates a(k) of 
a' = (al, a2,* *), and ak2 of U2 are obtained if the kth order autoregressive 
model is assumed. By using a(k), we can also estimate coefficients of the best 
predictor based on k successive realizations. An asymptotic lower bound is 
obtained for the mean squared error of the estimated predictor when k is 
selected from the data. If k is selected so as to minim S"(k) = (n + 2k)ak2, 
then the bound is attained in the limit. The key assumption is that the order of 
the autoregression of {x,} is infinite. 

1. Introduction. Methods of estimating parameters of time series have been 
developed by Hannan (1969), Box and Jenkins (1970), Parzen (1974), Anderson 
(1977) and others. These methods are based on the assumption that the data come 
from an autoregressive or moving average or autoregressive moving average pro- 
cess of known order, but it would be rare that such assumption can be justified. A 
more reasonable assumption would be that the data belong to a linear stationary 
process as defined in Section 2, that is, an infinite order autoregressive process. The 
estimation of parameters and spectral density of these processes. has been investi- 
gated by Parzen (1974, 1975), Berk (1974), Huzii (1977), Shibata (1977) and 
Bhansali (1978). In these papers, the estimates of parameters are the least squares 
estimates obtained by fitting a kth order autoregressive model, where unestimated 
parameters are set at 0. 

In Section 2, we will show that the above estimation is also that of coefficients of 
the best predictor based on k past observations. We can then obtain a predictor by 
using the estimated coefficients if the parameters are unknown. In order to reduce 
the mean squared error, we have to select the order k of the model. 

Several selection methods have been proposed for finite autoregressive or autore- 
gressive moving average process, for example, the final prediction error (FPE) 
method proposed by Akaike (1970), Akaike's information criterion (AIC) method 
(Akaike (1973a, b, 1974)) and the criterion autoregressive transfer function (CAT) 
method proposed by Parzen (1974). Although some properties of these methods 
have been investigated by Akaike (1937a), Shibata (1976), Gersch and Sharpe 
(1973), Tong (1975) and others, the statistical optimality has not been made so 
clear. 
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148 RITEI SHIBATA 

In Section 3, we obtain, assuming an infinite order autoregressive process, an 
asymptotic lower bound for the mean squared error of prediction when the order 
of the model is selected from the data. Furthermore an asymptotically efficient 
selection is proposed in Section 4, which attains the lower bound in the limit. It is 
verified that if FPE or AIC method is applied to our process they are also 
asymptotically efficient. 

2. Estimation of parameters for prediction. Consider a Gaussian process {x,}; 
(2.1) xt + a1xt_ + = e, t = -1, 0, 1, * * , 

where a,, a2, ... are real numbers and { , e 1, eo, e , * } is a sequence of 
independent, normally distributed random variables with means 0 and variances 
a2 > O. 

Assume the associated power series 

A(z) = 1 + alz + a2z2 + * 

converges and is not zero for Izl < 1. The process {xj} is stationary and has the 
moving average representation 
(2.2) x, = et + be,-, + 
where B(z) = 1/A(z) = 1 + blz + b2z2 + . 

Let us denote the autocovariance by r1 = E(xtx,+1) and the k X k covariance 
matrix by 

R(k) = (r,j, 1 < i,j < k) 

where rj = rlijl. 

V = {a; a' = (a1, a2, ) IlalIR < a:} 
is the vector space with norm 

IlalIR =(Y1<i j<Xa ajr1j _jl) 
2 

Consider the projection 
a(h, k)' = (0, , 0, ah(h, k), * , ah+k-1(h, k), 0, ) 

of the parameter a' = (a,, a2,*** ) on the h + k - 1 dimensional subspace 

V(h, k) = {a; a' = (0, 0, ? ah ah+, ' ...ah+k-1 0' ), 

of V. Then the best predictor of Xt+h from {Xt-k+1, .. .I, xtj is given by 
Xt+h = E(Xt+hlXt-k+l , xt) 

= -Y-1<i<h+k-_ a,(h, k)xt+h-i. 

The vector a(h, k) is specified by the equations 

lh<j<h+k-I r1,.11aj(h, k) = r,, 

i= h,h + 1, ***,h + k-1. 
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SELECTION OF THE ORDER OF THE MODEL 149 

Given observations x,.* , x", an estimate of a(h, k) is a solution 

a(h, k)' = (0, , 0, a,h(h, k), , * ah+k-I(h, k), 0, ) 
of a set of equations 

(2.3) P2h_jla+k-1 fjl,_c(h, k) = 

i=h,h + 1, **,h + k-1, 
where n > h + k and 

r, = Y-I<t<n-1 XtXt+ll (n -1), 1 = O, 1, n - *,n1. 
From (2.3), the well-known Yule-Walker equations, a(h, k) may be also thought of 
as an estimate of the parameter 

a(X (0 ..., 0, a., .. I a,(h+k-11 ? ** 

when a finite order autoregressive model 
(2.4) Xt+h + ahXt + +ah+k-lXt-k+, = 6t+h 

was fitted to the observations xl,* , xn. Here {et} is a sequence of i.i.d. random 
variables with means 0 and finite variances. Consequently an estimate a(h, k) of 
the coefficients of the predictor based on k observations is also that of the 
parameters obtained by fitting the model (2.4). When h = 1, a(1, k) is a common 
estimate of a obtained by the kth order autoregressive model fitting, which is 
originally an estimate of the one-step ahead predictor based on k past realizations. 

The goodness of a(h, k) is evaluated by the mean squared error of prediction as 
defined below. By using a(h, k), we obtain an h-step ahead predictor 

Yt+h 21<i<h+k-1 a(h k)yt+h- 

from a realization {Yt-k+ 1,* Yt}, which is independent of {xj} but has the 
same probabilistic structure. 

The mean squared error of Y^t+h is 

(2.5) Ey(9t+h 2 

= Ilad(h, k) - aII2 + Cr2 

= IIca(h, k) - a(h, k)II2R + Ila(h, k) - a(h, OO)II2 

+ Ila(h, oo)-aII2 + Cr2 

where Ey denotes the expectation with respect to {yj}, and a(h, oo) is the 
projection of a on the subspace 

V(h, oo) = {a; a" = (O, I , Oah, ah+1 ) 

(see Akaike (1970), Shibata (1976, 1977) and Bhansali (1978)). 
If h and k are fixed, then the nonzero first k-coordinates of n 12(a(h, k) - 

a(h, k)) are asymptotically normally distributed with mean 0 and covariance 
E(k) = Cr2(h, k)R(k)-f where U2(h, k) = ro- IIa(h, k)II2R. It is seen that 2 (k) is 
identical to the Fisher information matrix of fitted model (2.4) assumed Gaussian 
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150 RITEI SHIBATA 

with parameters a = a(h, k) and Ee2 = G2(h, k). Then ac(h, k) has a high efficiency 
if the model (2.4) is a close approximation to the process (2.1), as was shown by 
Huzii (1977). 

The first term of the right-hand side of (2.5) signifies the variance normalized by 
R(k)-' of the estimate. The second term is the bias of the estimate and the 
remaining terms are the prediction errors independent of n and k. If k is fixed, the 
first term converges to zero with order of magnitude l/n, but the second term is 
independent of n and not zero unless {xj} is an autoregressive process with the 
order lower than h + k - 1. Therefore, we have to select k so as to balance the 
first and second terms for each n. 

3. Asymptotic efficiency of a selection of the order of the model. For simplicity 
we consider only the case h = 1 and denote a(l, k) as a(k)' = (al(k), 
a2(k), * * *, ak(k), O, * * * ). Clearly a = a(l, oo). Suppose that the order k is 
selected from a given range 1 < k < KI(Kn < n). Given xl,, , x", the sample 
autocovariance vector and the matrix are defined by 

r(k)'= l 0,2 * r'O) 

and 

R(k) = (rim 1 < 1, m < k), 

rim = 2Kn<t<n-1 Xt+1-iXt+1-m/N 0 < 1, m < Kn, 
where N = n - Kn. 

If the kth order model is applied, the least squares estimate 

a(k)' = (al(k), a2(k), ... a"(k)) 

of the regression parameters of the model is a solution of the equation 

R(k)a"(k) = -r"(k). 
Since al(k) is asymptotically equivalent to ad(1, k), for the convenience of evalua- 
tions, a(k) will be used as an estimate of a(k), k = 1, * * , K,, which are some- 
times regarded as Kn-dimensional or infinite dimensional random vectors with 
undefined entries 0. 

Define 

et+l,k = xt+1 + a,(k)x; + +ak(k)xt+l-k 
and 

Sk = 
K2<t<n-1 et+ l k/N. 

Then an estimate of 
min ,CE(xt+ + c1x, + +CkXt+I-k) 

is given by 

(3.1) ak = ES,,<t'n- I (xt+ I + c1(k)xt + * * * + ak(k)Xt+l _k)2/N<. 
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SELECTION OF THE ORDER OF THE MODEL 151 

The norm 

IIalA = (a'Aa)112 

is defined for any positive definite matrix A and the norm of A itself is defined by 

[JAll = supijajj<jjjAajj, 

where IIall is the Eucidean norm of the vector a. 
Assumptions. 
(A.1) {x,} is a stationary Gaussian process which satisfies the equation (2.1) and 

Y:l<jOo,lajl < oo. 
(A.2) A(z) is nonzero for IzI < 1. 
(A.3) {K,,} is a sequence of positive integers such that K,, -? 00 and K,,/n1/2 -O0 

as n -* oo. 
(A.4) {x,} is not degenerate to a finite order autoregressive process. 

Under assumptions (A.1) and (A.2), the spectral density of {x,} is bounded and 
bounded away from zero and the norms of the covariance matrices are 

0 < ro = IIR(l)II < IIR(2)11 * * * < IiRII < oo, 

where R = (rli-jl, 1 < i,j < 00) is the infinite dimensional covariance matrix with 
the norm 

IgR] =SUplalul(li<(2_j<j,rijaj) 

By Wiener's theorem (Zygmund (1959, page 245)), the coefficients b,, b2,* . . of 
the moving average (2.2) are absolutely convergent. Then we have 

:o j<ooArj1 < oo. 

We need the following lemmas for obtaining the asymptotic behaviour of 

a(k) - a(k) = (k) 1( tn-1 X(k)e+k/N), 

where 

Xt(k)' = (Xt, Xt+l-k). 

LEMMA 3.1. If {x,} is a Gaussian stationary process, then for any 1 S k S K, 

NE 1XK<t n- 1 Xt(k)(e+l,+k - e,+,)/Nll2 

S klla - a(k) 112l lRll(T - ,<1<<,orjl + 11R ii) 

where r_1 = rj (j = 1, 2, * * * ). 

PROOF. Putting 0m = am(k) - am, we have 

(3.2) EIIlK<t,n-,1 Xt(k)(et+1,k- e,++)112 

= E1l1k- Kn<t1,t2<n-1{( 1mm<o rm8m)2 

+rtit2X1<mi,m2<0o M1rt1-M1,t2- m2 Sm+ (71<Moo rt1i,t2_m6m) 
)2 
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152 RTI SHIBATA 

Since a(k) is the projection on a, the first summand of the right-hand side of (3.2) 
vanishes. We obtain the desired result from the evaluations; 

Izl mi,tf2< oo wmartl -mla fV2m?221 < I jR j 118112 

and 

Y1K,<t1<n-I(lW<M<0rt-Z1Jt2-mm) II 1| l1211 12- 

LEMMA 3.2. Assume (A. 1) and (A.2). Then 

E(N1JJ 1z ._Xf(k)e(+l/N 112(k - ka2)2 - 21w4 + O(l/N)k2. 

PROOF. First we evaluate 

( 3.X3) it 1, " ' I t t E(,+, Xl+ I 4et l + 
.. 

e4 +1 ) 

From the Gaussian property, each summand of (3.3) is the sum of the products of 
moments of the pairs. Let p and T be permutations on (1, 2, 3, 4). We evaluate (3.3) 
by dividing into the following cases. 

(1*) 2 1,"4 * tE(x,, + I - l1etP0)+ 1) .. E * (E I -4 ep 14)+' 

Since t + I-i < tp(i) + 1 for some i, all terms of (i) are zero. 

(i) 2I t1 .. I* t4E(x, + l -,t,2+ 1 _ )E(e,l) + et,(P)+ )(t, + :3e PM+0 

E(X4+14-eq4)+ 1). If (p(l), p(2)) = (1, 2) or (2, 1), all terms of (ii) are zero. 
Otherwise, as the same evaluations follow, we may consider the p such that 
p(l) = 1, p(2) = 3, p(3) = 4 and p(4) = 2. For such p, (ii) is rewritten 

(fI r 
a 

r, X5 - 1|| t2 -1 2 klt33- t 3-1-4 t4 44- 4-t2 

where 8,,,, is Kronecker's delta, b0 = 1 and b, = 0 for i < 0. By simple 
evaluation, the above is bounded by 

Ne EOA+<G Ib;|( i<00 I 0 bi21t 
(ii) The same evaluation holds even when t1, . , t4 are arbitrarily permutated 

in summands of (ii). 

(iii) t4E(x& ^l+ 1 1 ))E(xP(3 
P3x4+ I 

-p(3)(4)+ 1- 
)(e tE(e 2)e 4() 

where p(l) < p(2), p(3) < p(4), T(l) < T(2) and T(3) < T(4). 
If p(i) -(i), i = 1, . * * 4, then (iii) reduces to N 2u4, r13IZ where 

p(l) < p(2) and p(3) < p(4). It is bounded by Nu42 ,<i<X, otherwise. 

Next, for R(k)- 1 = (rim, 1 < 1, m < k), the following identity holds 

r im =-- 1 k a1(P - I)ap.(P-1 p1 
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SELECTION OF THE ORDER OF THE MODEL 153 

where U6 = r0, ao(p) = 1 and ai(p) = 0 for p > 0 and i < 0. As was shown in 
Lemma 4 of Berk (1974), 

T l1lk1al(P)I, k = 1, 2,. 

are bounded uniformly in p. Then there exists C > 0 such that 

T-1<1,m<k|r |j < Ck. 

Combining this result and evaluations (i) (iii), we obtain 
E || .Z;,<n-1X,(k)e,+ 1114R)- 

= N aPT14 < .1,... , r4<k r r 1p(21)!rlp(3)1(4) 
+ O(N)k2 

= N2a4(k2 + 2k) + O(N)k2, 
where the summation Yp extends over all permutations such that p(l) < p(2) and 
p(3) < p(4). Noting 

EIIlE ̂g<, 1 Xt(k)e,+ 1IR(k)-1 = NkU2, 

we have 

E(IIE -F<;<n1 X,(k)et+II k)- 1 -2Nka2)2 = 2N2ka4 + O(N)k2. 

The proof is complete. 

LEMMA 3.3. Under assumptions (A. 1) (A.3), it holds that 

p-limnoo(maxl1k<KIIAR(k) - R(k)jj) = 0 

and 

p-limnoo(maxlak<K.11cR(k) 1 - R(k) 111) = 0, 

where p-lim means the limit in probability. 

PROOF. It is easy to verify that 

maxl4~~I4AI(k) - R (k)1 ij - maxl<k<Kn1 R(k)R ()l <1<i,j<Kn rij-i 

and 

r: J)2 < const K,2/N. 

The first assertion of the lemma follows from Assumption (A.3), and the last 
assertion is proved in the same way as in the proof of Lemma 3 of Berk (1974). 

PROPOsITIoN 3.1. Let {kn} be a sequence of integers such that 1 < kn < Kn and 

3.4) limn--ookn = 00? 

Assume (A.1) - (A.3). Then 

p-limn,(N/kNn)jj|a(kkn) - a(kn) 112 = U2v 
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154 RITEI SHIBATA 

PROOF. (3.4) implies that 

lim"+,11a - a(kn)II = 0. 

Applying Lemmas 3.1 3.3 and Chebyshev's inequality, we have the desired 
result. 

As was seen in (2.5), the relation 

jlaj(k) - a112 = jla-(k) - a(k)I12 + lja(k) - a112 

holds, which implies the following corollary, where 

Ln(k) = k02/N + lja(k) - aI2. 

COROLLARY 3. 1. 

p-lim"_+O( 11 a(k) -a112 a/Ln(kn)) = 1. 

Corollary 3.1 shows that the behaviour of IJj(kn) - aj12 is asymptotically equal 
to that of Ln(kn). The first term of L"(k) corresponds to the variance of al(k) and 
the second term to the bias. 

DEFINITION 3.1. {kn*} is a sequence of positive integers which attain the 
minimum of L"(k) for each n; 

Ln(k = min Ln(k). 

Here, if Kn o0 and KI/N -.* 0 as n -* oo, then Ln(Kn) converges to zero. Thus 
Ln(k"*) also converges to zero and kn* diverges to infinity as n -- oo. 

THEOREM 3.1. Assume (A. 1) (A.4). Then for any sequence { kn} such that 
1 kn < Kn, and for any e > O, 

lim,,,P(Ila(kn) - aII2 /Ln(kn*) > 1- = 1. 

PROOF. We can choose a divergent sequence of integers {kn**}, 1 < kn** < Kn 
such that Ln(k,)/L,(kn*) 0-* oo as n -0oo for any kn < kn**. If kn < kn**, then 

IIa(kn) - aII2 /Ln(kn*) diverges in probability, for IIa(kn) - a112I/Ln(kn) is bounded 
in probability. Otherwise the result is clear from Corollary 3.1. 

Corollary 3.1 shows that the sequence {kn*) asymptotically minimizes la(k) - 
a1I2. However, as {k"*} is a function of the parameters a2 and a, kn* must be 
estimated from observations. In the remainder of this section, we extend Theorem 
3.1 to the case where kn is a random variable depending on the observations 
x1, * . * , Xn 

LEMMA 3.4 (A strong version of Lemma 3.2). Assume (A.1) - (A.2). Then 

E(NII1X,,1 Xt(k)et+ I/NI12I(k)- -ka2) = (48k + 12k2)a8 + 0(1/N)k4. 

PROOF. As in the proof of Lemma 3.2, we have 

EIIE <gtn,1 Xt(k)e,+l lI(k)-' = N4V:g(k4 + 12k3 + 44k2 + 48k) + O(N3)k4 

This content downloaded from 195.221.104.202 on Thu, 09 Apr 2015 12:18:37 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


SELECTION OF THE ORDER OF THE MODEL 155 

and 
E IIEd l X~(k)et+ lIl6,(k)-' = N3a6(k3 + 6k2 + 8k) + O(N2)k3. 

The lemma follows from the evaluations that 

E llEII:<,,1" l X,(k)e,+ 1114(k)- = N2a4(k2 + 2k) + O(N)k2 
and 

EIIz<t,n 1 Xt(k)et+ RII(k)-' = Na2k. 

PROPOSITION 3.2. Assume (A.1) - (A.4). Then 

p-limnoo(maxl k< I Ilad(k) - a12I/L,n(k) - 11) = 0. 

PROOF. From Lemma 3.4 and Definition 3.1, there exists C > 0, 

-lk<rAE{(II(K<t Xn(k)e-1l/NIIR(k)-' - ka2/N)/Ln(k)} 

(3.5) < a8Y {<k<Knf (48k + 12k2 + Ck4/N)/ (NLn(k))4) 

< 12or8 I kK n{ (4k + k2)/ (NLn(k))4) + CK,/N 

6 60/kn* + 602A;:<k<K(1/k2) + CKn/N. 

Then the left-hand side of (3.5) converges to zero as n -* oo, for kn* diverges and 
Kn = o(N2). Furthermore Lemma 3.1 implies that 

El%k<K KE[ { E K t<-1 Xt(k)et+1, k/N1R(k)il 

(3.6) - iii),<t<n-lXt(k)et+,/NIIR(k)-'}/L,(k) ]2 

< const K,2/n. 
Then the left-hand side of (3.6) converges to zero as n - oo. Accordingly from 
Lemma 3.3 and the definition of a(k), we have 

p-limn, o{omaxl1k<K(I Ilad(k) - a(k)II - kC2/NI/LLn(k))) = 0. 

The desired result follows from the identity 

Ill(k) - a(k)I12 - ka2/N = 116(k) - ai12 - Ln(k). 

THEOREM 3.2 (An extension of Theorem 3.1). Assume (A.1) -(A.4). Then for 
any random variable k possibly depending on x,* . , x", and for any e > 0, 

lim,, P(JId(k) - aII/Ln (kn*) > 1- = 1. 

PROOF. Applying Proposition 3.2, we have 

p-lim,oo(jjda(k)-a 11 I/L,n(k)) = 1, 

and the theorem is clear from Definition 3.1. 
The above theorem shows that the loss Ila(k) - alIR of the estimate ai(k) is 

asymptotically never below Ln(kn*) in probability for any order selection k. We call 
an order selection k asymptotically efficient if 
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156 RITEI SHIBATA 

4. Asymptotically efficient selection of the order of the model. We propose an 
order selection k which is asymptotically efficient. Let 6F' be the sum of residuals 
given by (3.1). Then k is defined as the k which minimizes 

Sn(k) = (N + 2k)k2, I 6 k < Kn. 

This order selection is a version of the final prediction error (FPE) method 
proposed by Akaike (1970) (see Example 4.2), and has a close relation to CP 
method proposed by Mallows (1973). As will be seen later, small changes in Sn(k) 
do not change the asymptotic efficiency. 

The statistic Sn(k) can be rewritten as 

(4.1) Sn(k) = NLn(k) + 2k(k2 - a2) + (ka2 - NIid(k) - a(k)12RI(k)) 

+Na2 + - 2). 

LEMMA 4.1. Assume (A. 1) - (A.4). Then 

P-limn-)oomaxI1 <k < K(kIak21 /NLn(k)) = 0. 

PROOF. By the definition of ik, 
(4.2)~~ 1k-21 < I ek2 S21 + I Sk2 a21 + I Uk2- 21 (4.2) 1 eq2k a k _a 

= |a-(k) - a(k)112I(k) + jsk2 - rk2| + ||a(k) - a112R 

Proposition 3.2 and Lemma 3.3 imply that 

max1 %kswK, { kIIt (k) - a(k) II (k)/NLn(k) } 

converges to zero in probability as n oo. We have also 

21 k<j~4E(Sk2 - ak2)2 < const KnIN. 
T'hen 

maxl k<Kn kIsk2 - k2I/NLn(k) 

converges to zero in probability as n -* oo. The desired result follows from 
Assumption (A.3) and 

ila(k) - a|2 /L"(k) < 1. 

Lemma 4.1 and Proposition 3.2 show that compared with the first term NLn(k), 
the second and third terms on the right-hand side of (4.1) are negligible uniformly 
in I < k < K". Although the last two terms are not negligible, it is sufficient to 
show that 

N {(sk2- _k2) 
- (Sk2 -(f q4)} k = 1, * ,Kn 

are uniformly negligible, as the behaviour of k is determined only by the dif- 
ferences of Sn(k). 
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LEMMA 4.2. Assume (A. 1) (A.2). Then there exist constants C1, C2, , C5 
> 0 depending only on the autocorrelations ro, rl, and such that for any real 
vectors 6' = (8o 3* * *, 8 ) and I, = (710, * l, 

E(Y-O<i,j<K dirij- j)4 

(4.3) < (C1jl 1I3I IIn1I [nJ3 + C21181141ql4)/IN2 

+ (C3111141iqii4 + C4jja j4jjqIj2jqj2 + C5116 I21812l4)/IN3 

where I8f = V o| i| and Jq| = 01oImI. 

PROOF. ij is an unbiased estimate of rij and the cross moment is 

E(Aljlr = rA2rj) + J2(1, 2)/N , 

where 
42(a, fi) = Kt < t., tf < n-1 (rt.-i., to _i,,r,,-ip ta -j. 

+ rta - ia, t, t- irta -j. t, -y) 

for any 1 < a, ,B < 4 (see Berk (1974)). The higher moments of Fi have been 
calculated by Leonov and Shiryaev (1959). The third cross moment is 

Er^ilj, 

... 
ri,33) 

= riJ 
. . . 

r3.J3 + Ep rP0,jP(,, 2(p(2), p(3))/2N2 + ,301, 2, 3)/N3, 

where Ep extends over all permutations on (1, 2, 3), and 

= 4 t s t -(,2p rtp()<-np(a),t tn)-ipG6)rtd()-ip(7)' tp(a) Jp(a) 

X rtp(y)jp (,), P1 )-jp (lo) 
+ rt - ia, to j, rt,- ift, ty -j-y rtY-jY, ta -ja 

+ rta-a t-j-,rt,- if, ta -ja rtY- , to-jo) 

1 < a, (3, y < 4. 
Define 

44 = K.<tj,-. * , t4< n- I {(YP rtp(l) -ip(l), tp(2) - i,2)rtp(3) -ip(3), tp(4) -ip(4)) 

X (p rp (l)-jp(lp, tp(2) -jp(2) rp(3) -jp(3), tp(4) -jp(4) )/16 

+ Zp, T(rp(l) - ip(,), tp(2) - ip(2)rtp(3)- ip(3), t(3) -j(3) 

X rtp(4)- ip(4), t,(4) -j,(4)r4(1) -j4(1), 4(2)-j(2)) 

+ z p , tp(4) -40)rt2-i2l tp(2)-j,<2)r,3- 61 tp(3)- 

X r,4 _j4, tp(4) -jp(4,) } 
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where Y:* T extends over all permutations p and r on (1, 2, 3, 4) such that p(l) < 
p(2), p(3) < p(4), p(3) # Tr(3) and p(4) # T(4), and p** extends over all permuta- 
tions such that p(i) # i (i = 1,* , 4). Then the fourth cross moment is 

E(r, *... rij) 

=r *.. ri44 + p ,p "A2(P(3), p(4))/4N2 ***r.. +2 r,Q9(,)r~~~~~3 
+211<14 r1jjE(llm=#; im<4 rjm)/N3 + {4/N4. 

Accordingly we have 

E(111<1<4 Q ri,-r,,)) 

(4.4)= 4(II1l<4 r,)/N3 

+ (2YP ri(l)j(,)J3(p(2), p(3), p(4)))(1/N3- 1)/6N3 

+(41N4 + (priP(WP(,)riP(2)1p(2)42(p(3), p(4)))12N 5. 

Here, 
0i) In 1 <1<4(1:0<i1, j,<K 8.,ri,,J < (1 8 11 11X l111 1R 11)4, 

(ii) i '2' 53,jl,j2,j3<4J,(I<l1<38i,"jl)63(l, 2, 3)1 < const N11 6 112181II3. 
To see this, we first have 

.,ili2i3.jl.j2 j3 Et 6t25t3(',1<38i,j)rt - 1 t2-i2rt3 -i3 t I Jrt3 j3 t2 

= I2j,,i2,j3(l1<1<3j,)Xt?, t2 t3rtl1 jl t3-i3(2il rtl -Ilt2-J2fi) 

x (2i 2, i3 6i2rt2 - i2, t3 - i33)l 

< Ni jj811218j1 113(2 _ r2) [R 11. 
Next, 

ill i2l i3 jl j2 j3 2t11 t2l t3 (H <1 <38iil0rtl -'I, t2-j2rt2- 21 t3-j3rt3- i3l tl -ill 

= l2jlij2,j(l<1<l3qjl)2 t2, t3(yi2 i2rt2 -i2, t3-3) 

x It (Y' j 8ilrh +ill tl+j2) (Y-i38i3rt3 -i3l tl-, 

1, 1132 t2, t3l .Y8iArh i2, t3 -i31 1181121 1R 112 

N 18 11 2181 17,13 (2_ m<i<oOlril)llR 112. 

For the other terms in 43(1, 2, 3), the same evaluations hold. Therefore (ii) 
follows from Assumptions (A. 1) and (A.2). 
For the rest of the terms in (4.4), we also have 

(iii) I2o.<'?,.. ,4,jl,,. .,j4<K,(lHl<1<48i,7j,)(41 6 Nll6ll21[q4(C2Nll8ll2 + C51812) for 
some constants C2 > 0 and C5 > 0. 

(iv) 12o<4, i2,j,,j2<K(HI <1<26i,?,?i)2(l, 2)1 < N 1 8 16 2 Iq12jR 11(11 R Il + 2- -<<IrjI). 

The conclusion then follows from the above evaluations (i) (iv). 
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LEMMA 4.3. Assume (A.1) - (A.2). If kn* diverges to infinity, then 

p-l1mnoo{maX1<k<I4I(a(k*) - a(k)) (r(K) - r(Kn))/Ln(k)I) = 0, 

where a(kn*) - a(k) is considered as Kn-dimensional vector with undefined entries 0. 

PROOF. In Lemma 4.2, taking 80 = 0, mo = 1, mi = 0 and 6, = ai(k*) - a,(k) for 
i = 1, 2, *- , KK and noting 

1812 < max(k, k)11 112, 

we find that the right-hand side of (4.3) is dominated by some constant times 

(max(k, kn*))"212 61114N -2. 

As the norm of R(Kf)-' is bounded away from zero, it is sufficient to show that 

(4.5) X1<k<4(mc ( kn*)) 12118114 4nk 

converges to zero as n - oo. Here 

> k<(kn* 1/211811 l4N - 2Ln (k) -4) 

'< Xlk<A(kn*l'2N-2Ln(k)-2) < kn*3/2N-2Ln(kn*)y2 

< k*-1/2a-4 

and 

2 k:<k<K;,(k112jjjj l4N -2Ln(k) -4) 

< F, ;:<k < K(k 112N -Ln (k) 2) < (2k<k<Kv k-3/2 
4 

Then, (4.5) converges to zero as n - oo, and the proof is complete. 

LEMMA 4.4. Assume (A. 1) - (A.2). If kn* diverges to infinity, then 

p-limn pOOmax1 k<Kj(a(kn*) - a(k))'(R(Kn) - R(Kn))(a(kn*) + a(k))/Ln(k)I = 0. 

PROOF. Put 71o = 0 and q, = ai(kn*) + a,(k) for i = 1, 2,* * *, K". As in the 
proof of Lemma 3.2, 1qj and 11j1j are bounded. Applying Lemma 4.2 for this q and 
8 defined in Lemma 4.3, we have the desired result by the same way as in Lemma 
4.3. 

PROPOSITION 4.1. Assume (A.1) - (A.2). If kn* diverges to infinity, then 

P-limn-,o0max1 k<Kn{ (sA *- - (sk - ck2)1/Ln(k)} = 0. 

PROOF. Using the identity 

(Sk,,*-a42*) (k 2) (s~ - -(Sk - U 

= 2(a(k*) -a(k))'((K) - r(Kn)) 

+ (a(kn*) - a(k))'(R(Kn) - R(K))(a(kn*) + a(k)) 

and applying Lemmas 4.3 and 4.4, we obtain the result. 
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THEOREM 4.1. (Asymptotic efficiency of k). Assume (A. 1) - (A.4). Then 

p-lim a, {IId(k) -a2 I/Ln(k)} = 1. 

That is, k is an asymptotically efficient selection of the order of the model. 

PROOF. Lemma 4.1 and Proposition 4.1 yield that for any e > 0, 

limnO P(Ln(k)/Ln(kn*) < 1 + = 1, 

because Sn(k) < Sn(kn*). On the other hand, from the definition of kn*, 

Ln(k)lLn(kn*) > 1. 

Then 

P-1imn oo(Ln(k)/Ln(k*)) = 1. 

Applying Proposition 3.2, we complete the proof. 
Put, for any e> 0, 

kn*() = min{k; Ln(k)/Ln(kn*) < 1 + e, 1 < k < K"} 
and 

n* (e) = max{ k; Ln(k)/Ln(kn*) < 1 + e, 1 < k < Kn}. 
Clearly 

kn*(E) < kn* < k*e n n 

In the following corollary, the behaviour of k itself is obtained. 
COROLLARY 4.1. For any e > 0, 

limn P(k,*(e) < k <k*E)=1 

EXAMPLE 4.1. As is well known (Box and Jenkins (1970)), if {xj} is a finite 
order moving average process, its parameters a1, a2, * * *, are exponentially de- 
creasing. In such case, IIa(k) - a12I also decreases exponentially. Therefore k* 
log n. Applying Corollary 4.1 we have, for any e > 0, 

limn-oo P(k > kn* 
and 

p-limnoo(k/k,*) = 1 
We now try to change Sn(k) into 

Sno(k) = (N + A"(k) + 2k)6k2, 
where A"(k) is a real-valued random or nourandom function of k, 1 < k < Kn. 
Then another selection ko is obtained, which minmizes Sno(k). The following 
theorem gives a sufficient condition for ko to be asymptotically efficient. 

THEOREM 4.2. Assume (A. 1) (A.4). If 

(4.6) p-limnoomaxl<k<KjIn(k)I/N = 0 
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and 

(4.7) p-11mnoomaxl1k<KCj(8n(k) - n(kn*))/NLn(k)j = 0, 

then the selection k? is also asymptotically efficient. 

PROOF. By simple calculation we have 

Sno(k) = Sn(k) + 3n(k)2(l - 2k/N) 

(4.8) +Sn(k){Ln(k) + (k 2- I(k) - a(k)112)/N) 
+ 3n(k)(sk2 - ck2). 

The third and fourth terms on the right-hand side of (4.8) are negligible uniformly 
in k, compared with NLn(k), from (4.6) and the proof of Lemma 4.1. Then the 
condition (4.7) assures that 

maxl<k<^4I(Sn0(k) - Sno(kn*)) - (Sn(k) -Sn(kn*))/NLn(k) 

converges to zero in probability. Therefore 

Sno(k?) < Sno(k*), 

implies that for any e > 0, 

limnoo P(Ln(k)/Ln(I?) > 1- = 1. 

The desired result follows from the definition of kn* and Proposition 3.2. 

EXAMPLE 4.2. Sno(k) = (n + 2k)k2 satisfies (4.5) and (4.6), so that the corre- 
sponding ko is also asymptotically efficient. Another application of Theorem 4.2 to 
Sno(k) = {n(n + k)/(n - k)}6k or Sno(k) = n exp(2k/n)k2, gives the asymptotic 
efficiency of the FPE or AIC method. 

As was shown by the present author (1976) in connection with the FPE method, 
applied to an autoregressive process with finite order ko, the asymptotic distribu- 
tion of k is biased to higher order than ko. This means that the method is apt to 
overestimate the order ko. The defect can be overcome by changing the term 2k in 
Sn(k) to akNO for some a > 2, /8 > 0, or k log N (Akaike (1970), Parzen (1974), 
Schwarz (1978) and Bhansali and Downham (1977)) only at the cost of the 
properties (4.6) and (4.7). But by such modification the method loses asymptotic 
efficiency. We will exemplify the point. 

Let k^() be an order selection which attains the minimum of 

S(a)(k) = (N + ak)6k, 1 k < Kn 
for a > 0. Putting 

L(a)(k) = (a - l)ko2/N + ia - a(k)ii, 

by the same way as in Theorem 4.2 we can show that 

p-lim 04L(a)(k*(a))IL(a)(k(a)) = 1, 
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where k"*(a) is an integer so as to minimize L,")(k). Thus we find 

(4.9) p-limn - II a(kI'))- a R/Ln(kn) 

= p-li-n O(NLn(kn*(a))-(a - 2)(k(a) -k*(a))a2)1NLn(kn*). 

Here we may assume a > 1. Otherwise k*(a) = Kn and at least in the following 
cases k(a) is not asymptotically efficient unless 

limn_-oo Ln(Kn)/Ln(k*) = 1. 

Note that k(1) is asymptotically equivalent to the CAT method proposed by Parzen 
(1974). This can be shown by the same arguments as in Theorem 4.2. 

CASE I. Parameters are decreasing as k to some power. Put simply 

Ila - a(k)j12R = Ck -i 

for some constants C, ,3 > 0. Then kn*(a) = mn or mn + 1, where 

mn = [(C3N/ ((a - )02))I/(#+ ) 

and [xl denotes the integral part of x. Thus, for any y > 0, 
lim _OL(na)Q kn*(a)-y] )1L(a)(kn*(a)) 

=(y- + y,#)/ (1 + A). 

This implies that 

p-limn_0(l(a)/k0(a)) - 1 

as in Corollary 4.1. Noting kn*(a) = O(NLn(kn*)) and (4.9), we have 

p-lim"_,I a(k(a))-a - 2 I/Ln(k"*) 
= limn,oo Ln(k*(a))Ln(k,*) 

= (a-1)P/(AP+1)(1 
+ 

// 
(a 

- 
))/ (1 + ,B). 

This is equal to 1, that is, k(a) attains the lower bound in the limit if and only if 
a = 2. 

CASE II. Parameters are exponentially decreasing (Example 4.1). If 

Ia - a(k)II2 = Ce-k 

for some constants C, /8 > 0, then kn*(a) = mn or mn + 1, where 

mn = [ (/ 1,8)log(CI3N/ ((a- )a2))1. 

Hence kn*(a) = O(NLn(kn*)) and p-lim(k(a)/kn*(a)) - 1. Accordingly we have 

p-limn 11 a(k(a)) - 1a2I/Ln(kn*) 

=limn_-ooLn(k*(c))1Ln(k*) 

- 1. 
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That is, ki(a) always attains the lower bound in the limit as n -* oo. 
The above discussion shows that the situation is different whether parameters are 

decreasing as some power or exponentially. But the order of decreasing is usually 
unknown a priori, so that the choice a = 2 is essential to our purpose. In other 
words, S"(k) is an appropriate estimate of NL"(k) + Na2, which can be rewritten 
as N,k2 + k&2. If qk2 and a2 are simply replaced by 6k2, the use of S,(1)(k) might be 
suggested. Still, taking account of the bias we must add k6F2 to S,('1(k) in compensa- 
tion for it. This compensation has played an important role in our analysis. 

5. Remarks and generalizations. The reader might have an objection as to 
assumption (A.4). We can replace it by the assumption that the order of the process 
{x,} is finite and bounded away from a constant C, which goes to infinity as n. 
Under this assumption kn* also diverges to infinity and we can show the asymptotic 
efficiency of k. 

For h-step ahead prediction, the same results will be obtained if 

Sn h(k) = (N + 2k)ah k 

is used instead of Sn(k), where 

ah,k = K,,+h-I<t<n-1 (xt+1 + a1(h, k)xt + * +ah+k_1(h, k)xt-1h-k+2) /N 

and N = n - Kn- h + 1. 

The assumption of normality of {et} is posed only for the convenience of 
evaluation of higher order moments. Thus the same results will hold true if the 
moments of {xtj are close to that of a Gaussian process up to the sixteenth order. 
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