
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS

Int. J. Numer. Meth. Fluids 28: 1391–1419 (1998)

A FRACTIONAL-STEP METHOD FOR THE
INCOMPRESSIBLE NAVIER–STOKES EQUATIONS
RELATED TO A PREDICTOR–MULTICORRECTOR

ALGORITHM

J. BLASCO, R. CODINA AND A. HUERTA*
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SUMMARY

An implicit fractional-step method for the numerical solution of the time-dependent incompressible
Navier–Stokes equations in primitive variables is studied in this paper. The method, which is first-order-
accurate in the time step, is shown to converge to an exact solution of the equations. By adequately
splitting the viscous term, it allows the enforcement of full Dirichlet boundary conditions on the velocity
in all substeps of the scheme, unlike standard projection methods. The consideration of this method was
actually motivated by the study of a well-known predictor–multicorrector algorithm, when this is applied
to the incompressible Navier–Stokes equations. A new derivation of the algorithm in a general setting is
provided, showing in what sense it can also be understood as a fractional-step method; this justifies, in
particular, why the original boundary conditions of the problem can be enforced in this algorithm. Two
different finite element interpolations are considered for the space discretization, and numerical results
obtained with them for standard benchmark cases are presented. © 1998 John Wiley & Sons, Ltd.

KEY WORDS: incompressible Navier–Stokes equations; finite elements; fractional-step methods; predictor–multicor-
rector algorithm; convergence analysis

1. INTRODUCTION

Since the origin of computational fluid dynamics in the 1960s, many numerical schemes have
been developed for the approximation of viscous, incompressible flow equations. Among them,
several fractional-step projection methods can be found. This category, originated indepen-
dently by Chorin [1] and Temam [2], comprises methods developed under different ideas:
fractional-step or splitting methods for evolution equations (see [3] for a comprehensive study
of them); methods based on a projection onto a space of solenoidal vector fields [4], and
others, such as pressure correction or velocity correction methods ([5], for instance), or
recently, even approximate matrix factorization methods [6,7].

A typical derivation of a fractional-step method from the original unsteady incompressible
Navier–Stokes equations can proceed in two different ways. On the one hand, a time
discretization can be performed first, followed by a space discretization. When this approach
is adopted, a controversy arises about what boundary conditions are to be imposed at each
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step, so that the intermediate semi-discrete problems are well-posed. In particular, in most
projection methods, only the normal component of the velocity boundary condition is imposed
in the incompressibility step [8]. This fact, together with the need to impose unphysical
boundary conditions on the pressure, can generate a numerical boundary layer [9–12]. On the
other hand, when a space discretization is performed prior to a fractional-step time discretiza-
tion of the resulting system of ordinary differential equations, boundary conditions are fixed
from the start. However, proceeding this way results in a loss of generality.

Fractional-step projection methods have been used together with different space discretiza-
tions: finite difference [1,13–16], finite element [5,17–20] and spectral methods [21]. One
important feature of each fractional-step method is the order of the overall scheme with respect
to the time discretization. Most methods are first-order-accurate, but some second-order
methods have also been developed [13,14].

An implicit fractional-step method is studied in this paper. A time-discretized form of the
equations is presented first, which is shown to be well-posed. Full velocity boundary conditions
are imposed in both phases of the scheme. A modified scheme, accounting for pressure
correction, is also introduced.

Convergence of the method to a solution of the continuous problem when the time step
tends to zero is proved. Both the intermediate and the end-of-step velocities are shown to
converge in the space H0

1(V), whereas in the original projection method of Temam, the
end-of-step velocities only converge in L2(V) (due to the wrong boundary conditions they
satisfy). The overall algorithm is first-order-accurate in time for the velocity solution. As will
be shown numerically, it is also first-order-accurate for the pressure. In Reference [22], the
authors provide some error estimates that prove this first-order accuracy of the method, both
with and without pressure correction.

The authors also present an iterative scheme for the solution of the fully discrete version of
the method, in which each iteration consists of the solution of two diagonal systems and a
system with a symmetric positive (semi-) definite matrix that is the same for all the iterations
and time steps.

Based on the method just introduced, an iterative predictor–multicorrector algorithm,
designed by Hughes and co-workers [23] and extensively used in the 1980s, especially in the
context of fluid–structure interactions [24], is redeveloped here in a semi-discrete setting,
within the context of fractional-step methods. The algorithm was suspected of having a bearing
with these kind of methods but no rigorous proof of this fact was available. The classical
derivation of the predictor–multicorrector algorithm consists of discretizing the Navier–
Strokes equations in space by a finite element interpolation, and then applying a time
advancement scheme to the resulting system of ordinary differential equations. A non-linear
system of equations needs to be solved at every time step, and this is achieved by an iterative
process. Each iteration of the scheme is classically decomposed into two phases; here it will be
shown that this decomposition is performed in a fractional-step way. One can thus reinterpret
this algorithm as a fractional iteration scheme. The possibility of imposing the original
boundary conditions in both phases is justified by the relationship established with the present
fractional-step method.

A bilinear velocity, constant pressure finite element interpolation, or Q1P0 element, is
classically used for the space variables when implementing this algorithm. This is compared
here with a biquadratic velocity, linear pressure (Q2P1) element, which turns out to be better
suited for this algorithm since it satisfies the discrete inf–sup condition.

The paper is organized as follows: Section 2 introduces the problem to be solved, the
functional setting for it and the notation used in this paper. In Section 3, the fractional-step
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method, which depends on a free parameter u\0, is studied and compared with other existing
fractional-step methods. Convergence of the method for the fully implicit case u=1 is stated
in Section 4. Two different finite element interpolations of the method are considered in
Section 5, together with some computational aspects. The formal derivation of the predictor–
multicorrector algorithm as a fractional-step iterative method is given in Section 6. Finally,
some numerical results obtained with both the present fractional-step method and the
predictor–multicorrector algorithm are shown in Section 7, which confirm their accuracy
properties and ability to solve both steady and unsteady problems.

2. PROBLEM STATEMENT AND NOTATION

The evolution of viscous, incompressible fluid flow in a bounded domain V¦Rd (d=2, 3) is
governed, in the primitive variable formulation, by the unsteady, incompressible Navier–
Stokes equations:

(u
(t

+ (u · 9)u+9p−n92u= f, (1)

div u=0, (2)

on V× (0, T), where u(x, t)�Rd is the fluid velocity at position x�V and time t� (0, T) (with
T\0 given), p(x, t)�R is the fluid kinematic pressure, n\0 is the kinematic viscosity, f(x, t)
is an external force, 9 is the gradient operator and 92 is the Laplacian operator.

Equation (1) is formally equivalent to its dimensionless form, provided n=1/Re, Re being
the fluid’s Reynolds number. Boundary conditions have to be given to complete the equation
system (1)–(2). For the sake of simplicity, only homogeneous Dirichlet-type boundary
conditions are considered here:

u(x, t)=0, (x, t)�G× (0, T),

where the boundary G=(V is assumed to be Lipschitz continuous. However, this study can
be extended to more general boundary conditions. An initial condition must also be specified
for the velocity:

u(x, 0)=u0(x), x�V,

whereas no boundary or initial conditions need be specified for the pressure. The study of the
above equations of motion requires the following Hilbert spaces (see [25]): L2(V), equipped
with the usual scalar product (u, 6) and norm �u �= (u, u)1/2; the quotient space L0

2(V)=L2(V)/
R, in the case of Dirichlet-type boundary conditions only, since the pressure term p in
Equation (1) is then determined up to an additive constant; the space H1(V), whose scalar
product and norm are denoted by (u, 6)1= (u, 6)+ (9u, 96) and 
u
1= (u, u)1

1/2 respectively.
The space H1(V) contains a closed subspace H0

1(V) made up with functions that vanish at
the boundary of V. The Poincaré–Friedrich inequality:

d0(9u, 9u)1/2] (u, u)1/2, Öu�H0
1(V), (3)

with d0\0 a constant, ensures that 
u
= (9u, 96)1/2 is a norm on H0
1(V), is equivalent to the

norm induced by H1(V). The scalar product in H0
1(V) is, then, ((u, 6))= (9u, 96). The dual

space of H0
1(V) is denoted by H−1(V); the duality pairing between these spaces is denoted by

� , �. All these definitions and results carry over to d-dimensional vector valued function
spaces.
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Due to the incompressibility condition (2), closed subspaces of solenoidal vector fields of
these Hilbert spaces are also needed. Thus, in the standard notation, one defines:

H={u� (L2(V))d/× div u=0�L2(V), n · u �G=0},

V={u� (H0
1(V))d/div u=0�L2(V)}.

3. FRACTIONAL-STEP METHOD

One way of discretizing Equations (1) and (2) in time is by fractional-step methods, in which
the time advancement is decomposed into a sequence of (generally two) steps. The following
class of 2-step methods is considered here:

3.1. First step

The first step of the method, which includes viscous and convective effects, consists of
finding, given un�V, an intermediate velocity un+1/2 such that:

un+1/2−un

Dt
−un92un+1/2− (1−u)n92un+ (un · 9)un+1/2= f( n, (4)

un+1/2�G=0, (5)

where Dt\0 is the time step, u is a parameter such that 0Bu51 and the superscript n
denotes the time level tn=nDt. The approximation of the non-linear term may take other
forms; the semi-implicit approximation adopted here is taken form [26]. As for the approxima-
tion of the force term, one defines, following [4], f( n as the time average of f in [tn, tn+1].

This first step of this method can be thought of as a linearized Burger’s problem. Equations
(4) and (5) can be written in weak form as ãu(un+1/2, 6)= l0(6), Ö6� (H0

1(V))d, where ãu(u, 6)=
(u, 6)+uDtn((u, 6))+Dtc(un, u, 6) is a bilinear, continuous form on (H0

1(V))d, which is coer-
cive with respect to the norm 
u
 (and hence to 
u
1); c(u, 6, w)= ((u · 9)6, w) is a trilinear
continuous form on (H0

1(V))d (if d54), which is skew-symmetric in 6 and w if u�V ; and
l0� (H−1(V))d is a known map. The coerciveness of ãu results from the skew-symmetric
character of the approximation of the convective term (which is a consequence of the assumed
solenoidal character of un and the vanishing of un at the boundary) and the presence of the
Laplacian term. The existence and uniqueness of un+1/2 is established by the Lax–Milgram
theorem.

3.2. Second step

As far as the second step of the scheme is concerned, most known methods use the
projection idea, which is based on a Hodge decomposition of a given vector field into a
solenoidal field with zero normal component on the boundary and the gradient of some scalar
function, or more specifically on the Ladyzenskaya theorem [27]. The incompatibility of the
projection boundary conditions with those of the continuous problem and the need to impose
unphysical boundary conditions on the pressure may result in the presence of a numerical
boundary layer of size O(nDt)1/2 (see [9,11] for further discussions on this subject).

The method proposed herein includes a diffusion term in the incompressibility step, which
allows for the imposition of the full boundary conditions for the velocity, while needing no
boundary condition at all for the pressure. That is, given un+1/2 from Equation (4), one solves:
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un+1−un+1/2

Dt
−un92(un+1−un+1/2)+9pn+1=0, (6)

div un+1=0, (7)

un+1�G=0. (8)

Similar ideas to this scheme can be found in the so called u-method of Glowinsky and others
[28]. The u-scheme is a three-step method developed from a two-step, fractional-step method.
In the latter, the first step (or generalized Stokes problem) accounts for viscous effects together
with incompressibility, but it also includes an explicit convective term and a force term; the
second step (or regularized Burger’s problem) also includes an implicit viscous term and a
non-linear implicit approximation of convection, together with a pressure gradient and a force
term, but not the incompressibility condition. The convergence of two fully discrete u-schemes
to a continuous solution was first proved by Fernández-Cara and Marı́n [29], where stability
restrictions on the time step were also provided for those methods. Moreover, the inclusion of
a viscous term in the incompressibility step of a fractional-step method can also be found in
the method of [16], developed in a discrete setting, in the first and third steps of the method
of [20], or in the example of a higher-order method in Section 7.5 of Reference [8], among
others.

The weak form of Equations (6)–(8) consists of finding un+1� (H0
1(V))d and fn+1=

Dtpn+1�L0
2(V) such that:

au(un+1, 6)+b(6, fn+1)= l1(6), Ö6� (H0
1(V))d, (9)

b(un+1, q)=0, Öq�L0
2(V), (10)

where now au(u, 6)= (u, 6)+uDtn((u, 6)) is bilinear, symmetric, continuous form on (H0
1(V))d,

which is also coercive with respect to 
u
; b is a bilinear continuous form defined on
(H0

1(V))d×L0
2(V) by b(6, q)= − (div 6, q) and l1� (H−1(V))d is known. The problem (9)–(10)

is a mixed (or Stokes-type) problem, in which au is coercive and b satisfies the inf–sup or
Ladyzenskaya–Bubuŝka–Brezzi (LBB) condition [30]:

inf
q�L 0

2(V)

�
sup

6� (H 0
1(V))d

b(6, q)

6
�q �L 0

2(V)

�
]b\0,

so that the existence and uniqueness of un+1 and pn+1 follows.

Remark 1
By adding (4) and (6) one gets:

un+1−un

Dt
−un92un+1− (1−u)n92un+ (un · 9)un+1/2+9pn+1= f( n, (11)

where the implicit treatment of the viscous term in un and un+1, and not in the intermediate
velocity un+1/2, can be observed. Moreover, it is clear from (11) that at least for the linear
problem, pn+1 keeps its meaning as an end-of-step pressure. One advantage of using a split
scheme like Equations (4)–(6) rather than a coupled (u, p) method, is the decoupling of the
convective effects from incompressibility, which allows the use of suitable approximations for
each term.
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Remark 2
As in standard projection methods, a Poisson equation can be derived for the pressure to solve
(6). In fact, taking the divergence of (6) yields:

Dt92pn+1= (I−uDtn92) div(un+1/2)�H−1(V), (12)

sufficient smoothness of the functions involved being assumed. But in order that Equations
(12) and (6) imply (7), the incompressibility condition div un+1=0 must also be enforced on
the boundary [31], as in the original method of [1]. Besides, boundary conditions for pn+1

cannot be directly derived, and pn+1 is subject to integral conditions [32]. Therefore, the
original grad–div formulation (6)–(7) is adopted, which has the advantage of allowing
discontinuous pressure approximations and requires no boundary conditions for this variable.
One drawback of solving (6) and (7) is the need for the spatial approximation chosen to satisfy
the discrete LBB condition [30], and that velocity and pressure unknowns have to be dealt with
at the same time. However, it will be seen in Section 5 how they can still be decoupled.

Remark 3
A modified scheme with respect to (4) and (6) is considered next, which accounts for pressure
correction [14]. A pressure update, rather than the pressure itself, is used in the incompressibil-
ity step, so that (4) becomes

un+1/2−un

Dt
−un92un+1/2− (1−u)n92un+ (un · 9)un+1/2+9pn= f( n, (13)

whereas (6) turns into

un+1−un+1/2

Dt
−un92(un+1−un+1/2)+g9(pn+1−pn)=0, (14)

where 0Bg51 is another free parameter. The addition of (13) and (14) shows the implicit
treatment of the pressure term; this allows the use of the same approximation for this term as
for the other terms by choosing g=u, whereas (4)–(6) is necessarily a fully implicit scheme
with respect to the pressure; in particular, the authors pretend to develop an extension of the
present work to achieve second-order accuracy by taking u=g=1/2. Pressure correction can
also be found in the methods of [26], with g=1, and [14], with g=1/2. The existence and
uniqueness of solutions of (13) and (14) is established the same way as before.

4. CONVERGENCE OF THE METHOD

The fractional-step method introduced in the previous section is now shown to converge to a
solution of the continuous problem, when the parameter u is chosen equal to unity. The ideas
used here follow a similar development to the proof of convergence of the original fractional-
step method given by Temam [4]. After introducing some notation, a convergence theorem is
given for some sequences of functions obtained from the intermediate and the end-of-step
velocities of the fractional-step method. The proof of the theorem, as well as the preliminary
results needed for it, is given in Appendix A.

Given r� [1,�), T\0 and a Banach space W, the space Lr(0, T ; W) consists of functions
defined on (0, T) into W that are strongly r-integrable, i.e. such that
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u
L r(0,T;W)=
�& T

0


u(t)
W
r dt

�1/r

B�.

It is also a Banach space with respect to the norm 
u
L r(0,T;W). The space of essentially
bounded functions on (0, T) into W is denoted by L�(0, T ; W). When W is a Hilbert space
with scalar product ( . , . )W, the space L2(0, T ; W) is likewise with respect to:

(u, 6)=
& T

0

(u(t), 6(t))W dt.

Let T=NDt and k=Dt, and consider the scheme consisting of (4) and (6) with u=1. For
this case, some approximating functions will be defined that will be piecewise equal to un+1/2,
un+1 or un. A linear interpolation between un+1 and un is also introduced:

uk
1: [0, T ]� (L2(V))d/uk

1(t)=un+1/2, nk5 tB (n+1)k,

uk
2: [0, T ]� (L2(V))d/uk

2(t)=un+1, nk5 tB (n+1)k,

uk
3: [0, T ]� (L2(V))d/uk

3(t)=un, nk5 tB (n+1)k.

uk : [0, T ]� (L2(V))d/uk is continuous, linear on t on each interval [nk, (n+1)k ] and uk(nk)=
un, for n=0, . . . , N.

The main result of this section is summarized in the following theorem:

Theorem 1
Let d54, f�L2 (0, T ; H) and u0�V. Then, there exists a subsequence k % of k and a solution
u of (1) such that:

1. uk%
i and uk% converge to u in L2(V× (0, T)) strongly, i=1, 2, 3.

2. uk%
i and uk% converge to u in L�(0, T ; (L2(V))d) weak-star, i=1, 2, 3.

3. uk%
i and uk% converge to u in L2(0, T ; (H0

1(V))d) weakly, i=1, 2, 3.

For any other subsequence k %% such that these convergence results hold, u must be a solution
of (1).

One also has:

Corollary 1
Let d=2, f�L2(0, T ; H) and u0�V. Then, the convergence given in Theorem 1 is of the
sequence as a whole.

In summary, both the intermediate un+1/2 and the end-of-step velocities un+1 are shown to
converge weakly to u(tn+1) in (H0

1(V))d, through the functions uk
1 and uk

2 respectively. This is
an improvement with respect to [4], where un+1 only converges in (L2(V))d. The introduction
of pressure correction into the present method (as in (13) and (14)), which is the method that
is actually implemented here) does not affect convergence. In [22], the authors prove this
convergence to be of first-order in the time step for both the method with and without pressure
correction, under stronger regularity assumptions on the data, the continuous solution and the
domain.
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5. SPACE DISCRETIZATION AND COMPUTATIONAL ASPECTS

Now consider space discretizations of the fractional-step, pressure correction method (13) and
(14) with parameters u=1 and g=1. Given two finite-dimensional spaces Vh¦ (H0

1(V))d and
Qh¦L0

2(V), the discrete equivalent to the weak form of problems (13) and (14) consists of
finding uh

n+1/2�Vh, such that given uh
n�Vh and ph

n�Qh,

1
Dt

(uh
n+1/2−uh

n, 6h)+n((uh
n+1/2, 6h))+c(uh

n, uh
n+1/2, 6h)+b(6h, ph

n)= (f( n, 6h), Ö6h�Vh

(15)

and uh
n+1�Vh and ph

n+1�Qh, such that

1
Dt

(uh
n+1−uh

n+1/2, 6h)+n((uh
n+1−uh

n+1/2, 6h))+b(ph
n+1−ph

n, 6h)=0, Ö6h�Vh, (16)

b(uh
n+1, qh)=0, Öqh�Qh

respectively. The authors are mainly interested in the case when Vh and Qh are defined through
a discretization of V into finite elements. In particular, they consider two kinds of quadrilateral
elements (in two dimensions): the bilinear velocity, constant pressure element (Q1P0), which
does not satisfy the discrete LBB condition, and the biquadratic velocity, linear pressure
element (Q2P1), which is di6-stable.

The matrix form of Equations (15) and (16) is the following:

M
Un+1/2−Un

Dt
+KUn+1/2+A(Un)Un+1/2+GPn=F( n, (17)

M
Un+1−Un+1/2

Dt
+K(Un+1−Un+1/2)+G(Pn+1−Pn)=0, (18)

GTUn+1=0, (19)

where, here and in what follows, the following standard notation is used: U and P represent
nodal velocity and elemental pressure vectors respectively, M is the mass matrix, K is the
viscous-stiffness matrix, A(U) is the advection matrix, G represents the discrete gradient
operator, GT being the discrete divergence, and F( n is a forcing term due to the term f( n and to
non-homogeneous Dirichlet boundary conditions (see [24] for precise definitions of these
matrices).

The numerical solution of these equations presents some problems. On the one hand, the
system matrix for the intermediate velocity equation (17) has to be computed and factorized
once every time step, due to the implicit approximation of the convective term; moreover, this
matrix is not symmetric since the convective term is skew-symmetric. On the other hand, the
coupled system (18)–(19) has the structure of a mixed problem. Equation (18) can be rewritten
as:

B(Un+1−Un+1/2)+DtG(Pn+1−Pn)=0, (20)

where B=M+DtK. One can then isolate Un+1 from (20) (the matrix B being positive definite,
and thus invertible) and substitute it into (19), thus segregating the computation of the
pressure from that of the velocity; this yields:

(GTB−1G)(Pn+1−Pn)=
1
Dt

GTUn+1/2. (21)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1391–1419 (1998)
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But the computation of the system matrix for this pressure equation requires the inversion
of a full matrix B, which is prohibitive in most cases. The authors present an alternative way
to solve (17)–(19), which bypasses the problem of inverting the matrix B at the cost of
introducing a few iterations per time step.

Following similar ideas of the predictor–multicorrector algorithm to be studied in the next
section, the authors consider an iterative solution of the discrete Equations (17)–(19). Each
iteration consists of the solution of two diagonal systems and another system with a
symmetric, positive (semi-) definite matrix. The latter matrix needs to be computed and
factorized only once at the beginning of the calculation; the computational cost of each
iteration is then only due to the formation of three residual vectors, the solution of two
diagonal systems and a backward and forward substitution. Since only a few iterations of the
proposed scheme are needed for convergence in each time step (see the numerical examples of
Section 7), this iterative procedure is more efficient than solving the original Equations
(17)–(19). Recall that these equations require the computation and factorization of a non-sym-
metric matrix for the intermediate velocity system and the solution of a Stokes-like problem in
each time step.

Given the nth step values Un and Pn of velocities and pressures respectively, the iterative
procedure starts with the initializations U0

n+1/2=Un, U0
n+1=Un and P0

n+1=Pn for the
values at time tn+1. Then, if Ui

n+1/2 and Ui
n+1 are the ith iteration approximations to Un+1/2

and Un+1 respectively, consider the scheme:

M
Ui+1

n+1/2−Un

Dt
+KUi

n+1/2+A(Un)Ui
n+1/2+GPn=Fn, (22)

M
Ui+1

n+1/2−Ui+1
n+1/2

Dt
+K(Ui

n+1−Ui
n+1/2)+G(Pi+1

n+1−Pn)=0, (23)

GTUi+1
n+1=0. (24)

At convergence, i.e. when Ui+1
n+1/2=Ui

n+1/2, Ui+1
n+1+Ui

n+1 and Pi+1
n+1=Pi

n+1, these values
satisfy (17)–(19). The implemented stopping criterion is:

max
��Ui+1

n+1−Ui
n+1�2

�Ui+1
n+1�2

,
�Ui+1

n+1/2−Ui
n+1/2�2

�Ui+1
n+1/2�2

,
�Pi+1

n+1−Pi
n+1�2

�Pi+1
n+1�2

�
5e,

where �X �2 is the Euclidean norm of a vector X.
Ui+1

n+1 can also be isolated from (23) and substituted into (24), so as to segregate the
computation of the pressure from that of the velocity. By doing this, one obtains

(GTM−1G)(Pi+1
n+1−Pn)=

1
Dt

GT(Ui+1
n+1/2−DtM−1K(Ui

n+1−Ui
n+1/2)). (25)

To make the scheme computationally efficient, matrix M is approximated by its lumped
diagonal ML everywhere except for the evaluation of the residuals. The computation of the
system matrix for (25) then becomes feasible, since the inversion it involves is then trivial.

The actual implementation of the scheme, however, is somewhat different. It is given in
terms of nodal accelerations A and time derivatives of elemental pressures, P: . Calling
Ai+1

n+1/2= (Ui+1
n+1/2−Un)/Dt, Ai+1

n+1= (Ui+1
n+1−Un+1

n+1/2)/Dt and P: i+1
n+1= (Pi+1

n+1−Pn)/Dt, Equa-
tions (22), (25) and (23) can be written, with the approximation of M by ML, as

MLAi+1
n+1/2=R1,

(Dt)2(GT(ML)−1G)P: i+1
n+1=Rp,
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MLAi+1
n+1=R2,

where:

R1=Fn−KUi
n+1/2−A(Un)Ui

n+1/2−GPn,

Ui+1
n+1/2=Un+DtAi+1

n+1,

Rp=GT(Ui+1
n+1/2−Dt2(ML)−1KAi

n+1),

R2= −Dt(GP: i+1
n+1+KAi

n+1).

6. THE PREDICTOR–MULTICORRECTOR ALGORITHM

The predictor–multicorrector algorithm of [23] can be understood in the context of fractional-
step methods. To see this, the incompressible Navier–Stokes equations (1) will be first
approximated by an implicit method of the form:

un+1−un

Dt
−aan+1− (1−a)an=0, (26)

div(un+1)=0, (27)

un+1�G=0, (28)

where am= f m−9pm− (um · 9)um+n92um, f m= f(mDt) and 0Ba51. An iterative scheme is
introduced for the solution of the non-linear, coupled problems (26)–(28). It begins with some
predictions u0

n+1 and p0
n+1 for un+1 and pn+1 respectively. Then, each iteration is split into

two steps. The first one accounts for the momentum equation but not for the incompressibility
condition, which is dealt with in the second step, in a similar way to the scheme of Section 3.
The convective term is made explicit for simplicity, and pressure correction is used (see
Remark 3); this way, given the ith iteration approximations ui

n+1 and pi
n+1 to un+1 and pn+1,

the first step consists of finding an intermediate iteration velocity ui+1/2
n+1 such that:

ui+1/2
n+1 −un

Dt
−an92ui+1/2

n+1 =af n+1+ (1−a)an−a(ui
n+1 · 9)ui

n+1−a9pi
n+1, (29)

ui+1/2
n+1 �G=0. (30)

(The notation ui+1/2
n+1 has been chosen deliberately to emphasise that the solution of (29) is

an intermediate iteration approximation of the velocity at time tn+1.) In the second step of
each iteration, a pressure increment is used to enforce incompressibility, in a similar way to the
pressure correction method of Remark 3 in Section 3. Thus, one looks for an end-of-iteration
velocity ui+1

n+1 and pressure pi+1
n+1 such that:

ui+1
n+1−ui+1/2

n+1

Dt
−an92(ui+1

n+1−ui+1/2
n+1 )+a9(pi+1

n+1−pi
n+1)=0, (31)

div ui+1
n+1=0, (32)

ui+1
n+1�G=0. (33)

The iterative scheme (29)–(31)–(32) is a generalized version of the predictor–multicorrector
algorithm of [23]. In the fully implicit case, a=1, the scheme (13)–(14) of Section 3, with
u=g=1, is also equivalent to this algorithm if only one iteration per time step is performed,
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since then u0
n+1=un and p0

n+1=pn [33]; however, this algorithm employs an explicit treatment
of the convective term in that case. The correspondence between the different variables is then:
u1/2

n+1=un+1/2, u1
n+1=un+1 and p1

n+1=pn+1.
The semi-discrete scheme of (29)–(31)–(32) is further discretized in space by a Galerkin

finite element interpolation of mixed type. The same two element pair combinations are
considered again, i.e. the bilinear velocity, constant pressure element (Q1P0) and the bi-
quadratic velocity, linear pressure element (Q2P1). The finite element approximation of (29),
(31) and (32) yields the following systems of linear equations:

B(Ui+1/2
n+1 )=F1, (34)

B(Ui+1
n+1)+aG(Pi+1

n+1)=F2, (35)

GT(Ui+1
n+1)=0, (36)

where now B=M+aDtK, F1=MUn+Dt(Fn+1+ (1−a)MAn−aA(Ui
n+1)Ui

n+1−aGPi
n+1)

and F2=BUi+1/2
n+1 +aGPi

n+1. By isolating Ui+1
n+1 from (35) and substituting it into (36), one

gets:

(GTB−1G)(Pi+1
n+1)=F3, (37)

where

F3=
1

Dta
GTU1+1/2

n+1 + (GTB−1G)Pi
n+1

and the equation system (37) and (35) is equivalent to (35) and (36). Upon implementation of
the predictor–multicorrector algorithm, matrix B is usually approximated by M in all its
appearances, the difference between the two being of order Dt. Moreover, the matrix M is
further simplified by a lumping process, resulting in a diagonal matrix ML. These simplifica-
tions have a double theoretical implication: on the one hand, the approximation of B by M in
(34) leads to an explicit treatment of diffusion in each iteration (although not in each time step,
if the algorithm is iterated at least twice per step); on the other hand, the approximation of B
by M in (35) and (37) implies that the algorithm actually used admits an interpretation within
the context of fractional-step methods relative to the standard projection method, i.e. without
a viscous term in the incompressibility phase. A single iteration of this simplified predictor–
multicorrector algorithm is actually equivalent to the standard projection method. Then a
classical question arises: which boundary conditions are to be imposed in the incompressibility
phase: the full Dirichlet condition or only the normal component of it?

If two or more iterations of this scheme are performed, given the implicit character of the
approximation of the viscous and convective terms, no Dt limitations are expected for the
stability of the algorithm in a wide range of Reynolds number. However, the iterative nature
of the scheme and the simplifications introduced in it (such as the explicit treatment of the
convective term) impose restrictions on Dt for the stability (and convergence) of the iterative
process.

7. NUMERICAL RESULTS

The authors present the results obtained with the fractional-step pressure correction method
with parameters u=g=1 on three test problems. The first one is a test case introduced by van
Kan [14], intended to study numerically the order of approximation of the scheme in the time
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step; the authors also solved this case with the predictor–multicorrector algorithm; the second
one is the classical problem of steady flow over a backward facing step, and the third one is
the problem of flow around a cylinder.

7.1. Numerical accuracy study

As a numerical check for the accuracy properties of the method, a test case introduced by
van Kan [14] is considered. It consists of the Navier–Stokes flow on a unit square cavity in
which an inflow velocity profile is prescribed at the top wall defined by u((x, 1), t)=
(0, −sin(p(x3−3x2+3x)) exp(1−1/t)) for 05x51 and t\0, the bottom and left walls are
solid walls and natural boundary conditions are enforced on the right, outlet wall. As in [14],
a Reynolds number of 10 was selected, and the fluid was at rest at the start. A uniform mesh
consisting of 6×6 elements was used for the Q1P0 case; in order to compare the results from

Table I. Van Kan’s flow, fractional-step method, Q1P0 element

k2(Dt) kp(Dt)Dt k1(Dt)

3.52.1 2.31/60
2.0 3.4 2.41/64

2.23.02.01/80
2.12.91/85 2.0

Table II. Van Kan’s flow, fractional-step method, Q2P0 element

kp(Dt)k1(Dt)Dt k2(Dt)

2.52.21/75 3.5
3.31/80 2.52.1

2.11/85 3.1 2.4

Table III. Van Kan’s flow, predictor–multicorrector algorithm, Q1P0 element,
a=1, one iteration per step (classical projection method)

k1(Dt)Dt k2(Dt) kp(Dt)

2.031/16 2.022.04
2.022.011/32 2.02

2.01 2.011/64 2.01
1.991/128 2.001.99

Table IV. Van Kan’s flow, predictor–multicorrector algorithm, Q1P0 element,
a=1/2, iterating to convergence

k2(Dt)k1(Dt)Dt

4.081/7 4.06
4.04 4.041/8

1/10 4.03 4.01
3.751/12 3.99
4.00 3.791/14
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Table V. Van Kan’s flow, predictor–multicorrector algorithm, Q2P1 element,
a=1, one iteration per step (classical projection method)

kp(Dt)Dt k2(Dt)k1(Dt)

2.042.271/16 2.24
2.021.992.011/32

2.00 1.99 2.011/64
1.97 1.99 2.011/128

Table VI. Van Kan’s flow, predictor–multicorrector algorithm, Q2P1 element,
a=1/2, iterating to convergence

Dt k1(Dt) k2(Dt)

3.831/16 4.15
1/20 3.96 4.04
1/24 3.86 3.92

both interpolations, the same mesh points were used to define a 3×3 mesh for the Q2P1

element.
Let ki(Dt) denote the quotient:

ki(Dt)=
�Ui(Dt)−Ui(

1
2 Dt)�2

�Ui(
1
2 Dt)−Ui(

1
4 Dt)�2

,

where Ui (i=1, 2) contains the ith component of the nodal velocities obtained at t=1 with the
indicated time step. Similarly, kp(Dt) denotes the same quotient for the elemental pressure (and
eventually, pressure spatial derivative) values.

Tables I and II show the most accurate results obtained with the fractional-step, pressure
correction method with parameters u=g=1 for the two different space interpolations. The
value of the tolerance was fixed to e=10−4; convergence of the iterative scheme was reached
in 10 or 11 iterations, for the largest time steps, to 3 or 4 for the smallest. It can be observed
that the scheme is, at least asymptotically, first-order-accurate in the time step both in
velocities and in pressures.

In Tables III–VI, the results obtained for this problem with the predictor–multicorrector
algorithm for the two different finite element interpolations are shown. In the backward Euler
case (a=1), first-order accuracy is achieved with only one correction per time step, for both
4-noded and 9-noded elements. This confirms that the approximation of the matrix B by ML

introduces an error that is of first-order in the time step. It can be seen that in all cases, the
pressure approximation is also first-order-accurate. First-order accuracy was also reached in
other cases: performing two iterations every time step and iterating to convergence in each time
step (which took an average of ten iterations per time step to reduce the initial residuals by
seven orders of magnitude).

The Crank–Nicholson case (a=1/2) is a second-order method. Nevertheless, iterating to
convergence is compulsory in this case to maintain the second-order accuracy of the scheme.
If a fixed number of two iterations per time step is chosen, second-order accuracy is lost.
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7.2. Backward-facing step

The well-known problem of the flow over a backward facing step is presented next. This
problem was extensively studied by Armaly et al. [34], both experimentally and numerically;
other numerical results can be found in [15,35,36]. Here a geometry similar to that of [34] is
considered, i.e. an inflow channel of length 2 and height 1, an expansion ratio of 1:1.90 and
a total channel length of 40. A Poiseuille parabolic profile is prescribed at the inflow, with a
maximum velocity of 1; the top and bottom sides are solid walls, and natural boundary
conditions are enforced at the outlet. The mesh used for this problem, which is finer near the
step, can be seen in Figure 1, where the y-axis has been magnified three times; it consists of
1305 mesh points, which were used to define both the Q1P0 and the Q2P1 elements. There are
1220 and 305 of such elements respectively.

Figure 1. Backward-facing step, mesh.
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Figure 2. Backward-facing step, Q1P0 element, streamlines: (a) Re=60; (b) Re=200; (c) Re=400.
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Figure 2 (Continued)

This problem is solved with the present fractional-step method for three different values of
the Reynolds number: 40, 200 and 400. The Reynolds number is characterized by the average
inflow velocity (which is 4/3 for the data considered here), and the inflow channel height. For
this range of Reynolds numbers, the flow is virtually two-dimensional (see the experimental
results in [34]), so that planar numerical models are meaningful. The results are obtained with
a time step Dt=0.01 and following the scheme (22)–(24) up to convergence (with a tolerance
of e=10−3) at each time step (only three or four iterations are needed during the initial steps
decreasing to only one in the last steps). Steady state is considered when the accelerations are
in the order of 10−5.

Figures 2 and 3 present the results obtained for the different Reynolds numbers for the Q1P0

element and for the Q2P1 respectively, in the form of steady streamlines, where the x-axis is
limited to the range [0, 10]. It can be clearly observed in these figures how the reattachment
length of the main vortex increases with increasing Reynolds numbers, a characteristic of the
flow that is well-known for this problem, since the work is within the laminar Reynolds
number range [34]. Moreover, the appearance of a secondary separation bubble on the no-step
wall at Re=400 can also be observed, which is in good agreement with the experimental
results of [34].

7.3. Flow past a circular cylinder

Finally, the challenging problem of the flow past a circular cylinder is considered. It has
attracted the attention of several authors, [23,37–42] for instance. This has become a
compulsory benchmark test for transient algorithms for Navier–Stokes equations.
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Figure 3. Backward-facing step, Q2P1 element, streamlines: (a) Re=60; (b) Re=200; (c) Re=400.
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Figure 3 (Continued)

It is well-known that for low values of the Reynolds number, the solution is steady and
symmetric about a line parallel to the free-stream flow through a cylinder diameter; a pair of
symmetrical eddies develops downstream of the cylinder. But beyond a critical value of Re
(which is \40), the steady solution becomes unstable and a periodic solution develops, so that
vortex shedding sets in; vortices begin to generate periodically and alternately from each side
of the cylinder, and are ‘transported’ by the flow away from it. This scenario is known in the
literature as a von Karman vortex street.

A cylinder of unit diameter and a computational domain consisting of the rectangle
[0, 21]× [0, 9] are considered, the center of the cylinder being situated at the point (4.5, 4.5).
These data, however, may not be sufficient to prevent any effect of the introduction of
artificial boundaries on the computed solution, as was recently studied in [37], which discussed
the influence of the location of the lateral boundaries on the computed flow field; it can still
be seen how this may affect the computations. A unit free-stream horizontal velocity was
prescribed on the left boundary, a vertical zero velocity on the upper and lower boundaries
and natural conditions are enforced everywhere else. The mesh used in this case can be seen
in Figure 4, which consists of 3000 nodes and 2880 of the Q1P0 elements.

First, the problem for Re=40 is solved. The scheme (22)–(24) was iterated to convergence
in each time step with a tolerance of e=10−2, which took an average of two iterations. After
1000 steps of size Dt=0.005, the steady, symmetric solution is reached, with accelerations in
the order of 10−4. This steady situation can be seen in Figures 5–7, where the streamlines, the
stationary streamlines and the nodal pressure contours obtained from the elemental pressures
after a least-squares interpolation process are shown respectively. Symmetry is very accurately
achieved.
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Figure 4. Flow past a cylinder, mesh.

Figure 5. Flow past a cylinder, Re=40, streamlines.
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Figure 6. Flow past a cylinder, Re=40, stationary streamlines.

Figure 7. Flow past a cylinder, Re=40, nodal pressure contours.
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Figure 8. Flow past a cylinder, Re=100, nodal velocity history.

Then the value of the Reynolds number was raised to 100, which is the one commonly used
for this problem. The computation was started from the steady solution obtained for Re=40,
and performed 19000 steps of size Dt=0.025; in each of them, one or two iterations were
enough to reach convergence at the same value of the tolerance as before. It was found that
the solution started oscillating freely at a time near t=110; the final periodicity of the solution
was reached by t=170. Figure 8 shows the history of the horizontal velocity at a node situated
at the point (9.0, 5.25), i.e. downstream of the cylinder and slightly higher. The qualitative
change in the solution regime can be clearly observed. In this case, no artificial trick was
needed to start up the periodic solution.

The streamlines obtained at the end of the computation (t=475) are shown in Figure 9.
Figure 10 plots the stationary streamlines; the wakes behind the cylinder can be clearly seen
there. Finally, the pressure contours are shown in Figure 11. All these results compare very
well with other published solutions [23,38,40,42].
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Figure 9. Flow past a cylinder, Re=100, streamlines.

Figure 10. Flow past a cylinder, Re=100, stationary streamlines.
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Figure 11. Flow past a cylinder, Re=100, nodal pressure contours.

Some flow features are generally used to compare quantitatively the solutions obtained for
this problem. The Strouhal number or adimensional frequency of the solution is one of the
most studied quantities; it is defined as St=D/u0t, where D is the cylinder diameter, u0 is the
free-stream velocity (in this case, both equal to 1) and t is the shedding period of the solution.
A Fourier analysis of the nodal velocity signal was performed within the time range [175, 475]
(i.e. for most of the developed periodic solution) in order to find the dominant frequency of
the solution. In Figure 12, the Fourier spectrum obtained is shown, from which a Strouhal
number of St=0.18667 was found (smaller peaks can also be seen at twice and three times
that frequency), or equivalently, a period of 5.3571. This period is somewhat smaller than the
one generally admitted for this value of Reynolds number, which is 6, i.e. a Strouhal number
of St=0.16667 [23]. This discrepancy is attributed to the fact that a standard Galerkin finite
element interpolation was used, which is less dissipative than stabilized formulations of the
SUPG or GLS type usually employed for this problem. However, discrepancies in the value of
the Strouhal number depending on the formulation employed were also found by other
authors [40,42]. Moreover, the location of the lateral boundaries in the current computational
domain may not be far enough from the cylinder to avoid any influence on the solution of the
artificial boundary conditions introduced by the formulation; in fact, it was obtained in [37]
that at least 12 cylinder diameters on each side of the cylinder are needed to avoid that
influence, otherwise larger Strouhal numbers were obtained. This may be another cause of the
increase of the computed Strouhal number.
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8. CONCLUSIONS

In this paper a fractional step method for the approximation of the incompressible Navier–
Stokes equations in primitive variables has been studied, which depends on a free parameter
u� (0, 1]. For u=1, both the intermediate and the end-of-step velocities have been shown to
converge to an exact solution in the space (H0

1(V))d. By introducing a viscous term in the
second step of the scheme, full boundary conditions are imposed on the velocity in all steps.
Thus, this method does not introduce the numerical boundary layer present in some other
fractional-step methods. One drawback of this formulation is the need for the space interpola-
tions of velocity and pressure to satisfy the compatibility conditions met when solving the
Stokes problem in primitive variables.

Moreover, this method has been related to an existing predictor–multicorrector algorithm.
A new derivation of the algorithm, in a more general context than the classical one, has been
given, showing in what sense it can be considered as a fractional-step iterative method. Two

Figure 12. Flow past a cylinder, Re=100, Fourier spectrum of the nodal velocity solution.
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finite element implementations of the fractional-step method and the algorithm, using the Q1P0

and the Q2P1 element respectively, have been considered. The latter is particularly well-suited
for these methods since it satisfies the discrete LBB condition.

Numerical results confirm the theoretical properties of these methods. First, a numerical
convergence study is provided, which shows that first-order accuracy for the velocity can be
obtained for the backward Euler case of the algorithm with only one correction per time step,
which attains first-order accuracy for the pressure too. Also, a second-order method is found
by setting the parameter of the algorithm to 1/2 and iterating to convergence in each time step.
The performance of the present scheme on standard benchmark tests for Navier–Stokes
solvers, both for steady state and unsteady cases, has also been studied.

APPENDIX A

Given f�L2(0, T ; (H−1(V))d), the weak form of Equations (1) and (2) consists of finding
u�L2(0, T ; (H0

1(V))d), and p�L2(0, T ; L0
2(V)) such that:

d
dt

(u(t), 6)+ ((u · 9)u, 6)+n((u, 6))− (div 6, p)=�f(t), 6�, Ö6� (H0
1(V))d, (38)

(div u, q)=0, Öq�L0
2(V). (39)

A solution of (38)–(39) exists, which is unique for n being sufficiently large [4]. In the
two-dimensional case, the solution is always unique. These solutions are characterized by
satisfying [4] u�L2(0, T ; V) and

d
dt

(u(t), 6)+ ((u(t) · 9)u(t), 6)+n((u(t), 6))=�f(t), 6�, Ö6�V. (40)

Assume f�L2(0, T ; (L2(V))d), call k=Dt and consider the scheme (4) and (6) with u=1. It
can be written in variational form as

(I) Find un+1/2� (H0
1(V))d such that�un+1/2−un

k
, 6
�

+n((un+1/2, 6))+c(un, un+1/2, 6)= (f( n, 6), Ö6� (H0
1(V))d. (41)

(II) Find un+1� (H0
1(V))d and pn+1� (L0

2(V))d such that�un+1−un+1/2

k
, 6
�

+n((un+1−un+1/2, 6))+b(6, pn+1)=0, Ö6� (H0
1(V))d, (42)

b(un+1, q)=0, Öq�L0
2(V). (43)

Then, one has:

Lemma 1
A priori estimate

�uN�2+ %
N−1

n=0

(�un+1−un+1/2�2+ �un+1/2−un�2)+kn %
N−1

n=0


un+1
2+kn %
N−1

n=0


un+1

−un+1/2
25d2, (44)
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where d2= �u0�2+ (d0
2/n) 	0

T �f(s)�2 ds and d0 was introduced in (3).

Proof
The proof is similar to that of Lemma 7.1.2 in [4]. 


Notice the last term appearing in the left-hand-side of (44), which is not present in [4].

Lemma 2
For every m=0, . . . , N−1:

1. �um+ i/2�25d2, i=1, 2.
2. k
um+1/2
25d2/n.
3. �n=0

N−1 �un+1−un+1/2�25d2.
4. �n=0

N−1 �un+1/2−un�25d2.
5. k �n=0

N−1 
un+1−un+1/2
25d2/n.
6. k �n=0

N−1 
un+1
25d2/n.

Proof
The proof, again, is similar to that of [4]. 


Notice that the bound 5 was not obtained in [4]. The approximating functions uk
i and uk

defined in Section 4 satisfy, for decreasing k :

Lemma 3

1. uk
i and uk are bounded in L�(0, T ; (L2(V))d), i=1, 2, 3.

2. uk
i and uk are bounded in L2(0, T ; (H0

1(V))d), i=1, 2, 3.
3. (uk

2−uk
1) and (uk

2−uk
3) are bounded in L2(0, T ; (H0

1(V))d).

Proof
These results are a consequence of Lemma 2 and the definitions of the functions. 


The main novelty with respect to [4] is now the boundedness of uk
2 and uk in

L2(0, T ; (H0
1(V))d), together with that of the differences (uk

2−uk
1) and (uk

2−uk
3). Moreover

Lemma 4

1. 
uk
2−uk

1
L 2(0, T; (L 2(V))d)5
kd2.
2. 
uk

2−uk
3
L 2(0, T; (L 2(V))d)5
4kd2.

3. 
uk−uk
2
L 2(0, T; (L 2(V))d) 5
4kd2/3.

Proof
Part 1 follows from Lemma 2, part 3; 2 results from Lemma 2, parts 3 and 4 and the triangle
inequality. Finally, 3 is a consequence of the definition of uk and Lemma 2, parts 3 and 4.


Lemma 5

d
dt

(uk(t), 6)= −n((uk
2(t), 6))−c(uk

3(t), uk
1(t), 6)+ (fk(t), 6)
�gk(t), 6�,

Ö6�V, Öt� (0, T), (45)

with gk bounded in L2(0, T ; V %). (For the definition of fk, see [4].) In particular, uk is a.e. equal
to a continuous function from [0, T ] into V.
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Proof
By adding (41) and (42), one gets:�un+1−un

k
, 6
�

+n((un+1, 6))+c(un, un+1/2, 6)= (f( n, 6), Ö6� (H0
1(V))d,

so that (45) follows from the above definitions. Besides


gk(t)
V%5n
uk
2(t)
+C
uk

3(t)

uk
1(t)
+ �fk(t)�,

where C\0 is a constant related to the continuity of the trilinear form c ; the remaining
statements are a consequent of Lemma 3 and Lemma III.1.1 of [4]. 


Proof of the theorem
Since uk

i (i=1, 2, 3) and uk% are bounded in L�(0, T ; (L2(V))d) there exists a subsequence k %
(which can be taken the same for all four sequences) and ui (i=1, 2, 3), u*�L�(0, T ; (L2(V))d)
such that:

uk%
i �ui in L�(0, T ; (L2(V))d) weak-star (i=1, 2, 3)

uk%�u* in L�(0, T ; (L2(V))d) weak-star.

Since uk%
i (i=1, 2, 3) and uk% are bounded in L2(0, T ; (H0

1(V))d), there exists a subsequence of
k % (which is also denoted by k %) such that:

uk%
i �ui in L2(0, T ; (H0

1(V))d) weakly (i=1, 2, 3)

uk%�u* in L2(0, T ; (H0
1(V))d) weakly.

This convergence also holds in L2(0, T ; (L2(V))d). Since, by Lemma 4

(uk%
2 −uk%

3 ), (uk%
2 −uk%

1 ), (uk%
2 −uk%)�0 in L2(0, T ; (L2(V))d) strongly,

it must be u1=u2=u3=u*.
Since uk%

2 �L�(0, T ; H)SL2(0, T ; V), one has that u*(t)�V a.e. in (0, T), and
u*�L�(0, T ; H)SL2(0, T ; V).

The proof of strong convergence in L2(V× (0, T)) is the same as in [4], and is therefore
omitted. It only remains to show that u* is a solution of (1). The same argument as in [4] is
used, so that the convergence results already proved imply, by taking (45) to the limit when k %
tends to 0, that:

d
dt

(u*, 6)+n((u*, 6))+c(u*, u*, 6)= (f, 6), Ö6�V,

in distribution sense in (0, T), i.e. u* satisfies (40). This, in turn, implies [4] that du*/
dt�L1(0, T ; V1), u*(0)=u0 weakly in V and u* is a.e. equal to a continuous function from
(0, T) into V. These results ensure that u* is a weak solution of (1), and the theorem is thus
proved. 


The proof of the corollary is a consequence of the uniqueness of the solution u in the
two-dimensional case.
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