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SUMMARY

The di�erences in existing porous medium ¯ow models and their e�ect on ¯ow and heat transfer are
discussed. A ¯uid-saturated porous medium subjected to constant heat ¯ux has been considered. The
Galerkin ®nite element method coupled with the velocity correction procedure is used to solve a set of
generalized porous medium equations. Results are presented for a wide range of Darcy and Rayleigh
numbers. Copyright # 1999 John Wiley & Sons, Ltd.

KEY WORDS generalized porous medium model; heat ¯ux boundary condition; semi-implicit scheme; ®nite element
method

1. INTRODUCTION

Porous applications such as thermal insulation, alloy solidi®cation, etc. need an appropriate ¯ow
model along with thermal wall conditions di�erent from constant temperature. For instance, the
generalized porous medium ¯ow model combined with either uniform heat ¯ux condition on a
wall or heat transfer coe�cient and atmospheric temperature conditions is such an example. In
this study, we consider such a problem for a detailed analysis and the problem is the buoyancy
driven ¯ow in a non-Darcy porous medium subjected to constant heat ¯ux condition. This basic
study on porous ¯ow and heat transfer is intended to understand the di�erences encountered by
di�erent porous medium ¯ow models in the context of heat ¯ux boundary condition. Also, in the
present study, results are presented for a wide range of Darcy and Rayleigh numbers using the full
generalized porous medium equations. These equations are appropriately modi®ed to isolate the
e�ects of non-linear drag term and porosity. The present predictions are compared with the
existing Brinkman and Darcy results.

Only a few studies have been reported in the literature with uniform wall heat ¯ux conditions.
Prasad and Kulacki1 analysed the natural convection in a rectangular cavity and the e�ects of
aspect ratio on heat transfer and ¯ow structure. Natural convection in a vertical porous annulus
with constant heat ¯ux on the inner wall has been studied numerically by Prasad.2 These studies
are based on the Darcy ¯ow model, which is applicable only when the porosity and the Rayleigh
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number are small. Recently Satya Sai et al.3 used the Brinkman extended Darcy model with
advection terms to study this problem. Again the model is not general enough to account for the
e�ects of porosity and non-linear drag. Thus, we need further investigation of this problem to
bring out the in¯uence of these ignored parts on ¯ow and heat transfer.

Some studies have used the generalized porous medium model in the past4±8 to study either
forced convection through packed-beds or to investigate the constant wall temperature condition.
However, no detailed analysis is available for buoyancy driven ¯ow in a non-Darcian porous
medium subjected to the uniform wall heat ¯ux condition using the generalized porous medium
approach. Few recent articles3,9 use a model which ignores the porosity and/or non-linear drag
e�ects. Available studies using the generalized model (derived from ®rst principles) with iso-
thermal wall conditions indicate that the contribution from these ignored parts of the model can
be signi®cant for di�erent parameter variation.7,10,11 These two e�ects are important when the
¯ow is no longer in the Darcy ¯ow regime (i.e. for Da10ÿ4). If we consider a general application
such as alloy solidi®cation,12 ¯ow over heat exchanger tubes,13 etc., the Darcy number can vary
from zero to in®nity. In such conditions if the Rayleigh number is also high, the inclusion of
porosity and non-linear e�ects are essential to predict accurate ¯ow and heat transfer results. In
this paper, in addition to a demonstration on the e�ects of previously ignored parts, we also
present results for a wide range or Darcy and Rayleigh numbers for the ®rst time using the
generalized porous medium ¯ow model. A powerful semi-implicit type of time marching coupled
with the Galerkin ®nite element discretization is employed to solve the porous medium equations.

2. PROBLEM FORMULATION AND GOVERNING EQUATIONS

A square cavity ®lled with a ¯uid saturated porous medium having insulated horizontal walls and
one of the vertical walls subjected to constant uniform heat ¯ux and the other with an isothermal
condition is considered (Figure 1). The velocity components are assumed to be equal to zero on

Figure 1. Buoyancy driven ¯ow in porous cavity subjected to constant heat ¯ux
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all walls. The properties except the density are assumed to be constant and the density variation
is incorporated through Boussinesq approximation. The generalized set of non-dimensional
governing equations for the natural convective ¯ow and heat transfer with uniform porosity are
given as follows:
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The detailed derivation of the governing equations is discussed elsewhere.7 In the momentum
equations (2, 3), the non-linear matrix drag is incorporated through Ergun's correlation;14 u and v
are volume-averaged velocity components; e is the porosity of the medium and is assumed to be
uniform throughout the domain; Pr is the Prandtl number, Ra is the ¯uid Rayleigh number, Da is
the Darcy number, s is the ratio of heat capacities and T is the non-dimensional temperature.

In the momentum equations (2, 3), J is the viscosity ratio. This ratio and the conductivity ratio
k* in the energy equation are taken as unity in the present study for the sake of simplicity. It is
also assumed that the thermal equilibrium between the phases exists. The advection terms are
also included to entertain porosity values from 0 to 1.7 Even though the contribution of this term
is small for a porous medium ¯ow, it is included in the model to handle all possible situations
including the single phase ¯uid. Also, from Reference 4 it is clear that, for the development of the
boundary layer, it is necessary to include the advection terms.

The near wall porosity variation is not considered in the present study. This has already been
investigated by di�erent authors in the past.7,15 In applications such as thermal insulation
systems, either the solid particle size is small or it is a kind of matrix. The near wall porosity
variations in such applications are negligibly small and can be neglected. Near wall variation in
porosity signi®cantly a�ects the heat transfer only when the ratio of solid particle size to the
characteristics dimension of the cavity is high. This is true when the porous medium is made up of
regularly shaped particles such as packed beds.
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2.1. Thermal boundary condition

In the porous cavity considered (Figure 1), the left side wall is assumed to be at uniform constant
heat ¯ux and the right side wall is assumed to be at a constant temperature. Both the horizontal
walls are assumed to be insulated. The temperature scale employed is
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and the ¯uid Rayleigh number is de®ned as

Ra � gbqL4

kf�faf
�6�

where q is the applied heat ¯ux, L the characteristic dimension, kf the thermal conductivity of the
¯uid, g the acceleration due to gravity, b the coe�cient of thermal expansion, �f the ¯uid
kinematic viscosity and af the ¯uid thermal di�usivity. The average Nusselt number is calculated
from the relation
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Other non-dimensional parameters used in the study are:
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where the over-bar indicates a dimensional quantity.

3. SOLUTION PROCEDURE

In the present study, the Galerkin ®nite element method coupled with the Eulerian velocity
correction procedure is used. The semi-implicit type of time marching is adopted to accelerate
convergence.16 The split algorithm (also called velocity correction or projection method) was
originally introduced by Chorin17 in the ®nite di�erence context. Later it was extended to ®nite
elements by many authors. This algorithm, coupled with the semi-implicit type of time discret-
ization, has been used by Ramaswamy et al. 16 to study single-phase ¯uid ¯ow. The comparative
study by the authors between the explicit method and the semi-implicit method favoured the
latter due to its smaller CPU time consumption. In the present study, the generalised porous
medium equations are solved using the semi-implicit type of time marching.
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The velocity correction procedure is well established and available in many research articles.
Four essential steps in the scheme can be brie¯y stated as:

1. solving the momentum equations without pressure terms
2. calculation of pressure from the Poisson equation
3. correcting the velocities
4. calculation of the temperature ®eld from the energy equation.

The main advantage of using the velocity correction procedure is due to equal order inter-
polation for pressure and velocity which reduces the complexity and CPU time. From step 1, the
intermediate vertical velocity component is calculated as
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where `tilde' indicates the intermediate velocity component. Here, the porous medium terms are
treated implicitly in addition to the viscous terms. This is necessary as these terms impose a heavy
restriction on the time step if they are treated explicitly. The Galerkin ®nite element method is
used for the spatial discretization of the above equation. The ®nal matrix form of the discretized
equation is given as
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Integration of the above quantities for linear triangular elements is simple, and is discussed in
many textbooks.18

The time marching of the four steps is continued until the nodal velocities, pressure and
temperature approach steady state within a speci®ed di�erence in the value of the variable
between successive time-steps. The maximum tolerance (residual) value has been set as 10ÿ7 for
velocity and temperature ®elds, and 10ÿ5 for pressure.

4. RESULTS AND DISCUSSION

In order to prove the suitability of the ®nite element mesh used, a mesh sensitivity study is carried
out ®rst. In Table I, the results of this study are presented for the highest Darcy and Rayleigh
numbers considered in this paper. The di�erence between the Nusselt number values of 51� 51
and 61� 61 meshes is less than 0.5%, and between 41� 41 and 51� 51 meshes the di�erence is
about 0.8%. In these meshes, the ®rst point from the walls is placed at a distance of 0.008, 0.005
and 0.003, respectively, for the meshes 41� 41, 51� 51 and 61� 61. The remaining part of the
domain is discretized using a structured grid by geometric progression from the walls towards the
centre of the cavity with small elements near walls. If we assume that the results from the mesh
61� 61 are equivalent to exact, then the errors in Nusselt number from 41� 41 and 51� 51
meshes are under 1%. Since the sensitivity study is carried out for the highest Rayleigh and Darcy
numbers, the error in the other results will de®nitely be less than 1%. Neglecting the minor
di�erences between the 61� 61 and 51� 51 meshes and considering the advantage of smaller
CPU time, a 51� 51 mesh is de®nitely a better choice than the 61� 61 mesh. Thus, in the present
study, a 51� 51 size mesh has been employed for all calculations.

For validation purposes, the present predictions in the Darcy ¯ow regime are compared with
the existing results for a square cavity subjected to constant wall heat ¯ux conditions, and the
comparison is shown in Figure 2. Here the general porous medium model is solved in the Darcy
¯ow regime with a small Darcy number (Da � 10ÿ6) to match the existing Darcy regime results.
Overall, the agreement with the existing results is seen to be good for all Darcy±Rayleigh num-
bers (Ra* � RaDa) considered. Small di�erences can be attributed to the di�erent models used
by the existing studies. More experimental and analytical comparisons are available for constant
wall temperature conditions in our earlier publications.7,10

Table II shows the comparison of the present average Nusselt number predictions with the
results available in the literature for the same problem. The cited paper3 uses the Brinkman
extended Darcy model with extra advection terms. In the present study, the Nusselt number is
also a function of bed porosity in addition to the usual parameters, Darcy, Rayleigh and Prandtl
numbers, and geometry. It has been proved that the porosity signi®cantly a�ects the Nusselt
number prediction at higher Darcy and Rayleigh numbers.11 The porosity e�ect has not

Table I. Grid sensitivity study, Da � 10ÿ3 Ra � 109, e � 0.6, Pr � 1.0

Sl. no. Parameters 41� 41 51� 51 61� 61

1 Nu 21.203 21.370 21.431
2 j vmax j 789.588 802.314 812.622
3 jcmax j 26.325 26.647 26.772
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been accounted for in the cited paper.13 Also, the non-linear e�ects are not considered in this
work. In the present study, the porous medium model used is capable of taking into account the
above-mentioned e�ects. Table II shows the e�ects of non-linear drag and porosity on Nusselt
number at lower Darcy±Rayleigh number ranges (up to Ra* � 1000). Here, to match the existing
results, the Prandtl number is taken equal to 0.72 and e � 1.0. The results show that the non-
linear e�ects are only small on the heat transfer in this lower Rayleigh number range. Earlier
studies suggest that the non-linear drag and porosity e�ects are high at higher Darcy and
Rayleigh numbers, which is investigated in the following paragraph.

To demonstrate the non-linear drag and porosity e�ects, more results are presented in
Tables III and IV at higher Darcy and Rayleigh numbers. Here, the average Nusselt number,
magnitudes of maximum vertical velocity component and streamfunction are compared for two
di�erent porosity values and the model with and without the non-linear matrix drag term.
A maximum di�erence of about 7% in average Nusselt number, 16% in maximum vertical

Table II. Comparison of present average Nusselt number predictions with the existing results

Sl. no. Da Ra Ref. 3 Darcy1 Present
e � 1, Pr � 0.72

with non-linear drag

Present
e � 1, Pr � 0.72

without non-linear drag

1 10ÿ6 108 2.100 2.250 2.109 2.111
2 10ÿ5 107 2.100 2.250 2.086 2.091
3 10ÿ4 106 2.050 2.250 2.004 2.018
4 10ÿ3 105 1.900 2.250 1.819 1.843
5 10ÿ6 109 5.400 6.000 5.380 5.400
6 10ÿ5 108 5.200 6.000 5.222 5.262
7 10ÿ4 107 4.850 6.000 4.743 4.848
8 10ÿ3 106 4.000 6.000 3.931 4.069

Figure 2. Comparison of present predictions with the available theoretical results
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velocity component and 14% in streamfunction is observed between the results with and without
the non-linear drag. The e�ects of increase in porosity from 0.6 and 0.9 can be clearly seen from
the increase in Nusselt number, vertical velocity and streamfunction as shown in Tables III and
IV. A maximum increase of about 9% in Nusselt number, 15% in vertical velocity and about
9.5% in streamfunction are observed. This has proved that the e�ects of porosity and non-linear
drag term are signi®cant at higher Darcy and Rayleigh numbers. Therefore it is essential to
include these e�ects when modelling the porous medium ¯ow in the non-Darcy regime with
higher Rayleigh numbers.

Figure 3 shows the ¯ow and isothermal patterns at di�erent Rayleigh andDarcy numbers. Flow
and isothermal patterns at Da � 10ÿ7 are similar to the patterns observed using Darcy ¯ow
models.1 However, the ¯ow and isotherms at a Darcy number 10ÿ3 show an entirely di�erent
structure. Unlike in theDarcy ¯ow regime, the results presented forDa � 10ÿ3 are very strongly in
the boundary layer ¯ow regimewith strong convective channelling near the hot and cold walls at a
Rayleigh number of 109. This is expected because the medium considered at Da � 10ÿ3 is highly
permeable and thus has strong convective motion. Both in the Darcy and non-Darcy ¯ow regimes,
the heat transfer is observed to be away from the di�usion mode at higher Rayleigh numbers.
However, heavy convective channelling e�ects are not observed in the Darcy ¯ow regime with
small Darcy numbers as the medium is less permeable in nature. More discussion on the ¯ow and
isothermal patterns is given in the following paragraph along with Nusselt number distribution.

Figure 4 shows the average Nusselt number variation with Rayleigh number for di�erent
Darcy numbers. It is observed that the convective mode of heat transfer is delayed as the Darcy
number decreases. At higher Darcy numbers, the well established conduction, asymptotic and
boundary layer heat transfer regimes1 are observed for the Rayleigh number range considered.

Table III. Comparison of average Nusselt number predictions with and without non-linear drag at higher
Rayleigh numbers, Da � 10ÿ3

Sl. no. Ra e With non-linear drag Without non-linear drag

1 107 0.6 7.049 7.551
2 108 0.6 12.657 13.570
3 109 0.6 21.370 22.933
4 107 0.9 7.705 8.076
5 108 0.9 13.906 14.749
6 109 0.9 23.457 23.017

Table IV. Comparison of velocity and streamfunction values with and without non-linear drag at higher
Rayleigh numbers, Da � 10ÿ3

Sl. no. Ra e j vmax j
with non-linear

drag

j vmax j
without non-
linear drag

jcmax j
with non-linear

drag

jcmax j
without non-
linear drag

1 107 0.6 123.981 144.145 10.169 11.028
2 108 0.6 358.696 379.440 18.040 18.902
3 109 0.6 809.314 962.560 26.647 30.881
4 107 0.9 156.880 168.138 11.225 11.769
5 108 0.9 392.773 435.052 18.444 20.227
6 109 0.9 970.417 1101.340 29.389 33.288
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Figure 3. Flow and isothermal patterns for a porous cavity subjected to constant heat ¯ux: (a) Da � 10ÿ7, Ra � 109,
cmax � 2.541, cmin � 0.0, Tmax � 0.666; (b) Da � 10ÿ3, Ra � 108, cmax � 18.04, cmin � ÿ0�144, Tmax � 0.134;

(c) Da � 10ÿ3, Ra � 109, cmax � 26.647, cmin� ÿ 0�0114; Tmax� 0�0832
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The conduction regime is the range where the di�usion dominates and slopes of the Nusselt
number curves are nearly equal to zero (Nu is almost constant). This regime occurs at a lower
Rayleigh number range where heat transfer is mainly by direct di�usion from hot wall to cold
wall. In the asymptotic regime, which follows the conduction regime, the mode is changed from
pure conduction and heat is transferred across the vertical walls of the cavity by both convection
and di�usion. For example, consider Figure 3(a), where the temperature gradient exists even in
the middle of the cavity to transfer the heat by di�usion in the horizontal direction and convec-
tive motion of the ¯uid with a thick boundary layer aids the di�usion in transferring more energy.
Thus in this mode the rate of heat transfer is higher than that of other two regimes. In the third
regime, Figure 3(c), the convective motion of the ¯uid with thin boundary layers is the major
source of energy transfer. Here, the temperature gradient at the centre of the cavity, in the hori-
zontal direction, is nearly zero. Thus the changeover from the asymptotic regime to the boundary
layer regime leads to a decrease in the rate of energy transfer. All these regimes are visible in the
Nusselt number curves presented in Figure 4. The conduction regime is seen to have almost zero
slope followed by an asymptotic regime with a steep increase and the boundary layer regime (only
at higher Darcy numbers) with a decreasing slope. Another physical phenomenon inferred from
the Nusselt number distribution at higher Darcy and Rayleigh numbers is that the problem
approaches a single phase ¯ow case as the Darcy number approaches higher values. This is
especially clear from Nusselt number distribution at higher Darcy numbers where the Nu values
approach each other as Da increases. This is more clearly seen at higher Rayleigh numbers due to
the logarithmic scale used in this Figure. In the Darcy ¯ow regime (Da5 10ÿ5�, the boundary
layer type of ¯ow has not been observed for the Rayleigh number range considered. Here, at
lower Darcy numbers, a longer conduction regime followed by an asymptotic ¯ow are observed.
This is due to the more packed nature of the medium at lower Darcy numbers.

Figure 4. Average Nusselt number variation with Rayleigh number for di�erent Darcy numbers
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5. CONCLUSIONS

Natural convective ¯ow and heat transfer through a porous medium subjected to constant heat
¯ux have been studied using the ®nite element method. The non-Darcian e�ects, the non-linear
drag and porosity, on heat transfer and ¯ow, are demonstrated and their in¯uences at higher
Darcy and Rayleigh numbers are determined quantitatively. The di�erences between the Darcy
and non-Darcy ¯ow regimes are brought out through a parametric study using the complete
generalized ¯ow model. Di�erent heat transfer modes are observed in the Darcy and Rayleigh
number ranges considered. While the non-Darcy regime at higher Darcy numbers is dominated
by all three heat transfer regimes at di�erent Rayleigh number ranges, the Darcy regime con-
sidered has had only conduction and asymptotic regimes. Further investigation at higher
Rayleigh numbers in the Darcy regime can give more information on the heat transfer
characteristics. With increasing Darcy numbers the ¯ow approaches a single phase system where
the di�erence in Nusselt number values between di�erent Darcy numbers is small. Although the
present study has given a clear basic understanding of the generalized porous ¯ow in a square
cavity, further study is needed to understand a wide spectrum of problems. For example,
axisymmetric geometries, geometries with higher aspect ratios and application of the approach to
practical problems such as thermal insulation, solidi®cation, etc. are subjects for future research.

APPENDIX. NOMENCLATURE

cp speci®c heat
Da Darcy number
g acceleration due to gravity
J viscosity ratio (me�/mf)
k average thermal conductivity (ekf � (1ÿ e)ks)
k* conductivity ratio
L characteristic dimension
l local length
N shape functions
Nu average Nusselt number
p pressure
Pr Prandtl number
q heat ¯ux
Ra Rayleigh number
Ra* Darcy±Rayleigh number (RaDa)
T temperature
t time
j �V j magnitude of velocity vector (

���������������
u2 � v2
p

)
u, v velocity components
x, y co-ordinate axes

Subscripts

c cold
f ¯uid
e� e�ective
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h hot
s solid
w wall

Greek Symbols

a thermal di�usivity
b coe�cient of thermal expansion
e porosity
k permeability
� kinematic viscosity
s ratio of heat capacities, (e(r cp)f � (1ÿ e(r cp)s)/(r cp)f)
r density
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