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Abstract-The heat transfer in the boundary layer region of a circular free jet impinging on a flat solid 
surface with non-uniform wall temperature or wall heat flux is investigated analytically. The flow is laminar, 
incompressible and steady. The analysis begins with obtaining the solution to the problem with a step 
change in wall temperature or wall heat flux. The solution to the corresponding problem with arbitrary 
wall temperature or wall heat flux is obtained by superposition. This solution is then matched with that 
for the stagnation region obtained in the first part of this study so that the Nusselt number throughout 
the stagnation region and the boundary layer region is obtained. The results indicate that the Nusselt 
number for increasing wall temperature or wall heat flux can be considerably higher than that for constant 
wall temperature or wall heat flux outside the stagnation region. For the special case of constant wall 

temperature, the result is in good agreement with the integral solution of Chaudhury. 

1. INTRODUCTION 

Tms IS the second part of an analytical investigation 
of heat transfer between an axisymmetrical free 
impinging jet and a solid flat surface with non-uniform 
wall temperature or wall heat flux. The objective is to 
examine the heat transfer in the boundary layer region 
when a circular free jet impinges normally on a flat 
surface. It should be mentioned that the heat transfer 
of a free impinging jet is not the same as that of a 
submerged impinging jet since the flow field is different 
for the two cases. 

The heat transfer between a laminar, circular 
impinging jet and a flat solid surface has been ex- 
amined by a number of investigators. Chaudhury 
[l] investigated the heat transfer in the boundary layer 
region and similarity region. His solution is based on 
the velocity distribution obtained by Watson [2]. In 
his paper, the stagnation region is ignored. An integral 
solution was obtained in the boundary layer region 
and a similarity solution to the energy equation was 
given in the similarity region. He considered two 
specific cases. In the first case the wall is thermally 
insulated for r < r, and is maintained at a constant 
temperature which is different from that of the jet at 
r > r,, where r = rs is located in the similarity region. 
In the second case the wall is maintained at a constant 
temperature throughout. Brdlik and Savin [3] solved 
the heat transfer problem of jet impingement with 
constant wall temperature by the integral method and 
also obtained experimental results. Their integral 
solution is based on the assumption that the ratio of 
thermal boundary layer thickness to viscous boundary 

layer thickness is 1/Prii3 and the local heat transfer 
coefficient was not given in their experimental work. 
Saad et al. [4] numerically examined heat transfer 
from a laminar, semi-confined axisymmetric sub- 
merged impinging jet. They used an upwind finite- 
difference representation of the momentum and 
energy equations to predict the flow and local heat 
transfer characteristics of a laminar round jet 
impinging normahy on a flat wall. Laminar jet 
impingement heat transfer including the effects of 
melting was considered by Lipsett and Gilpin [5]. The 
solution of the potential flow problem was obtained 
by the finite-element method and the boundary layer 
problem was solved by the Karman-Pohlausen 
integral method. When there is no effect of melting, 
the results show that a maximum in the heat transfer 
distribution exists near r = rO, where rO is the jet 
radius. 

Heat transfer of submerged wall jets was investi- 
gated analytically by Mitachi and Ishiguro [6]. They 
obtained similarity solutions to the energy equation 
for the boundary conditions of an isothermal wall, a 
uniform wall heat flux and an adiabatic wall. For the 
case of a step change in the wall temperature, the 
energy equation is solved numerically. 

2. FORMULATION 

In the boundary layer region (see Fig. 1 in Part 1 of 
this study), radial convection is much more important 
than the radial conduction and hence the temperature 
field is of the boundary layer type. For such a flow, 
the energy equation is 
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NOMENCLATURE 

a2, US, 08, a, I constants defined in equations 

(4) 
b constant defined in equation (14a) 
d jet diameter 
e,, ez coefficients defined in equations (14b) 

and (14~) 

J dimensionless function, equation (4a) 
k conductivity 
NU Nusselt number, Qw d/k( T,,, - T, ) 
Pr Prandtl number 

QW heat flux on the wall 
r coordinate along the wall 

r0 jet radius 
R dimensionless coordinate defined in 

equations (10) 
Re Reynolds number, CT0 d/v 

T temperature 

T, wall temperature 

T, jet temperature or temperature outside 

the thermal boundary layer 
u velocity in the r-direction 

uo jet velocity 
w velocity in the z-direction 
z coordinate normal to the wall. 

Greek symbols 
diffusivity 

: boundary layer thickness defined in 
equation (6) 

S’ boundary layer thickness defined in 
equation (7) 

? dimensionless variable defined in 
equation (5) 

B cq dimensionless temperature defined in 
equation (50) 

0 ss dimensionless temperature defined in 
equation (26) 

8 St dimensionless temperature defined in 
equation (9) 
kinematic viscosity 

; dimensionless variable defined in 
equation (10). 

I 

(1) 
conditions in the stagnation region on the flow in the 
boundary layer region. In Part 1 of this study, it was 

and the boundary conditions are 

T=T,(r) or Q=Q,,,(r) atz=O (2a) 

T= T, atz= co (2b) 

where T, is the jet temperature, T,,,(r) the wall tem- 
perature, and QJr) the wall heat flux. The velocity 
components u and w are obtained from the solution 
to the flow field [2] 

u = Uof’(?) (3a) 

where f is defined by a third-order ordinary differential 
equation and can be expanded in the following form : 

f= a,~~+u,~5+u,~8+u,,~“+ (44 

u2 = 0.23480, us = -0.18377x lo-’ (4b) 

a, = 0.28252 x 10-4, a,, = -0.45686 x 10-6. (4c) 

The primes in equations (3) denote differentiation 
with respect to q which is defined as 

rf= zz. J( > (5) 

As was pointed out in ref. [2], the above solution is Because of the linearity of energy equation (l), it is 

based on the assumption of r >> r. so that the con- possible to obtain the solution by the superposition 

ditions in the stagnation region do not affect the flow method. We seek a solution for the general case of 

in the boundary layer region. To investigate the spatial arbitrary wall temperature or arbitrary wall heat flux. 

range in which the above solution is applicable, we As shown in Fig. 1, an arbitrary wall temperature 

use the integral solution to examine the effect of the distribution T,(r) or wall heat flux distribution QJr) 

shown that the boundary layer thickness outside the 
stagnation region is given by 

(6) 

where 

c = 0.8ltri. 
0 

The term c/r’ represents the influence of the stag- 
nation region on the boundary layer thickness in the 
boundary layer region. If this effect is neglected, the 
boundary layer thickness becomes 

(7) 

Comparison between equations (6) and (7) shows that 
for r > 2r,, the influence of the stagnation region on 
the boundary layer thickness in the boundary layer 
region is smaller than 0.5%. It follows that solution 
(3) is valid for r >, 2ro with negligible error. 

3. SOLUTIONS 
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FIG. 1. Division of arbitrary wall temperature or wall heat flux. 
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may be divided into two parts. In the first part, the 
wall temperature or wall heat flux is 

T,, = T,(r)-T&i) 

or 

Qw, = Qdr>-Q&J 

for r > r, and is zero for r < r,. In the second part, 
the wall temperature or wall heat flux is Tw, = Tw(r) 

or QW, = Qw(r) for r < r, and is Tw, = T,(r,) or 

QW, = Qdr,) for r > rl. It follows that the tem- 
perature distribution in the boundary layer region for 
r > r, can also be divided into two parts. We will 
proceed by 6rst obtaining the solution to the problem 
with a step change in wall temperature or wall heat 
flux. Then we obtain the solutions to the problem 
with T, = T,, or Q,,, = Qw, and T, = Tw, or 
Q,,. = Qw, as shown in the figure. Finally, the solution 
to the problem with arbitrary wall temperature or wall 
heat flux is obtained by superposition. 

3.1. Solution for a step change in wall temperature 
In this section, we consider the case where part of 

the wall, r < r*, is assumed to be thermally insulated 
and the rest maintained at a constant temperature T,. 
The end point, r = r*, of the thermally insulated part 
is located in the boundary layer region. Therefore, for 
r < r* the wall temperature is uniform and equal to 
the fluid temperature which is assumed to be zero for 
convenience. Consequently, the boundary conditions 
are 

T(r*,z) = 0, T(r, co) = 0, T(r > r*,O) = T,. 

(8) 

To write the energy equation and boundary condi- 
tions in dimensionless form, we introduce the follow- 
ing dimensionless temperature and coordinates : 

es, = $ (9) 
I 

and 

R=l-;, <=b& (10) 

where r~ is detined in equation (5) and b is a constant 
to be determined later. The dimensionless forms of 

energy equation (1) and boundary conditions (8), 
therefore, become 

a% 2Prl-R Pr F+ 1 ae,, _- tjb2 RI/’ {f’+ TR”3f ag 

-$R~/~(I-R)~‘%=~ (ii) 

and 

&(R,O) = 1, B,,(R, 00) = 0. (12) 

Transformation (10) has two advantages. 

(1) R is always less than unity. This is very impor- 
tant for obtaining a series solution in powers of R. 

(2) The boundary conditions at r = r* and at z = co 
are merged into one, therefore the number of bound- 
ary conditions is reduced to two. Since R is bounded 
between 0 and 1, the dependent variable BSt can be 
expanded in a Taylor series as follows : 

kt = F0(5)+F1(5)R+Fz(r)R2+F,(r)R3+. . . 
(13) 

Upon substituting equations (4), (10) and (13) into 
equation (1 l), comparing the coefficients of like power 
of R and introducing the following definitions : 

b = (4a2)“3 Pr’13 - 0 32644Pr”’ 
3 -. (14a) 

1OPr a, 
e, = 6 = - 1 6875Pr-’ 

96 ’ WW 

16Pra, 
e2 =T = l.l933Pr-’ (14c) 

PI = PII SelFI w4 

FZ = elF2, +e2F22+F23 (1W 

the governing ordinary differential equations and the 
boundary conditions for the universal functions 

Po(0, P,,(0, P12(0, P~i(0, P22(0 and PZ3(0, are 
obtained as follows : 

F6’+3r2F6 = 0 (15a) 

P,(O) = 1, P,(co) = 0 (15b) 

F;‘,+36’F;,-9rFl, = - ?fc*F;, (16a) 

F,,(O) = F,,(m) = 0 (16b) 
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F;;+3~2F;Z-9<F,z = -l’Fb (17a) 

F,,(O) = F,,(m) = 0 (17b) 

F’;,+35=F’~,-18<Fz, =3~4F,,-~5F;,-9~F,Z 

-‘j[2F;2+Tfj55F6 (18a) 

Fz,(O) = F,,(a) = 0 (18b) 

F;;+352F’2,-185FzF,, 

= 2.3864(3{4F,Z-<5F;2)-{8F;) (19a) 

Fx(O) = F22(m) = 0 U9b) 

F;;+352F;,-18~F23 = -9rF,,-~5-*F’,, (2Oa) 

Fzs(0) = Fz3(co) = 0. (2Ob) 

The solution to equations (15) is clearly 

3 : 
F,(r) = l- rt1,3j 

s 
e-“’ drl. (21) o 

The remaining equations (16)-(20) are solved numeri- 
cally and the results are shown graphically in Fig. 2. 
The associated wall derivatives are given in Table 1. 
With the information provided in Fig. 2 and Table 1, 
the temperature field and the wall heat flux can be 
easily determined. The wall heat flux is obtained by 
differentiating equation (13) as follows : 

qw = -k 

+ F;(O)R’+ . . .]. P-9 

1.c 

0.5 

0.c 

-0.E 

- 1 .c 

1 

1 - 

, 

I 

I - 

)_ 

0.0 0.5 1.0 1.5 2.0 2.5 

F 

FIG. 2. Fij functions for a step change in wall temperature. 

Hence the Nusselt number is 

3d J(-1 2r 
Nu = -b Re’l’ 

(1 -r*/r)“3 
[F;(O)+& (O)(l -r*/r) 

+F;(O)(l -r*/r)‘+ .] (23) 

where b is given in equation (14a) and Re is the 
Reynolds number defined by U,d/v. The constants 
F;(O), F;(O) and F;(O) in the above equations are 
given by 

3 
Fb(0) = - I(l,3) 

F;(O) = -0.23329+0.046658Prm ’ 

F;(O) = -0.077764+0.0015553Pr~~ ’ 

G’4b) 

-0.0052878Prm’. (24~) 

Obviously, the solution is valid for r > r* only. 
The calculation shows that for a Prandtl number of 

the order of unity or larger, solution (13) converges 
very fast and good accuracy is obtainable with terms 
of up to order 2. For fluids with very small Prandtl 
number such as liquid metal, however, the solution 
converges only when R is small. In such a case, Euler’s 
transformation may be used for the evaluation of the 
sum. The Nusselt number profile is plotted in Fig. 3 
for Pr = 0.7. 7 and 20. 

3.2. Solution for a step change in wall heatflux 

In this problem the prescribed wall heat flux is zero 
for r < r* and q1 for r > r* where r* is located in 
the boundary layer region. Specifically, the boundary 
conditions are 

T(r*, 2) = 0, T(r, co) = 0, 

_kaT(r > r*,O) 
& =41. (25) 

A dimensionless temperature esg is defined as follows : 

where constant b is given by equation (14a). The speci- 
fic form of equation (26) is motivated by the con- 
sideration that the transformed boundary condition 
on the wall is still a constant. The dimensionless form 
of energy equation (1) and boundary conditions (25) 
then become 

Table 1. Wall derivatives 

F6(0) F; l(O) F; 2(O) F; I(O) F;*(O) FI?,(O) 

-1.1198 -0.23329 - 0.027649 -0.00092164 -0.0044312 -0.077764 
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FIG. 3. Nusselt number profile for a step change in wall temperature. 

(27) 

and 

ae,_ 
x --1 atr=O 

ess = 0 at<=oo. (2gb) 

Note that the only difference between equations (11) 
and (27) is that equation (27) has one additional term, 
i.e. the last term. Proceeding as with equation (13), 6, 
can be written in the following form : 

0, = B,(r)+B,(r)R+B,(r)RZ+B,(r)R3+. . . 
(2% 

Following the same procedure as that in Section 3.1 
and introducing the following definitions : 

B1 = e,B,,+B12 (304 

B2 = e2B2, +e,B22+B2, (30’3 

where e, and e2 are given by equations (14), one 
obtains the following differential equations and the 
corresponding boundary conditions : 

B6’+3<‘6;-3rB, = 0 (3la) 

B;(O)= -1, B,(a)=0 (3lb) 

Bi’~+31;2B;,-12tBI, = t4Bo-t5B;, (32a) 

B;,(O) = B,,(a) = 0 (32b) 

B;;+3t2B;2-12~B,2 = -yt*B;+;[B, (33a) 

B;*(O) = B,,(a) = 0 (33W 

B;‘,+3t*B;, -2l<B,, = 2.3864(4c4B,, -r5B;,) 

-t8Bh+t7Bo (34a) 

B;,(O) = B,,(a) = 0 

B;;+3~2B;2-21~B22 = 4r4B,2-c’B;2 

(34b) 

-~~B,,-~t;“B’,,+~ir’Bb+fr4B, (35a) 

B;,(O) = B**(a)) = 0 (35b) 

BY,+3t2B&-215Bz3 = -~~B12-~~2B’,2 (36a) 

B;,(O) = B23(~) = 0. (36b) 

The solution of equations (31) can be obtained in 
closed form 

while equations (32)-(36) are solved numerically. 

Note that&,&r, B12, B2r, &z, Bzs and F,,, Frr, F12, 
Fzr, Fz2, F2, in the previous section are independent of 
Prandtl number, and, therefore, have to be calculated 
only once. These functions are shown graphically in 
Fig. 4 and their values on the wall are given in Table 
2. Finally, the wall temperature is given by 

4 
Fro. 4. B,, functions for a step change in wall heat flux 



1366 X. S. WANG et ul. 

Table 2. B:, values on the wall 

and the Nusselt number is 

x a,(o)+B,(O)(l -r*/r)+B,(O)(l -r*/y2+. . . 

t39) 

where 

1 

“‘*) = l-(2/3) 

B,(O) = -0.10770~0*01~3~~~r- 8 

&(O) = -0.024726 -0.00073263&- ’ 

Wbf 

-O.O010623Pr-‘. (40~) 

The Nusselt number profile is shown in Fig. 5 for 
Pr = 0.7, 7 and 20, respectively. The comparison of 
Fig. 5 with Fig. 3 shows that the Nusseh number 
profiles for a step change in waII temperature and for 
a step change in wall heat flux are similar, but the 
latter is a little higher. As r approaches r*, the Nusselt 
number is singular because the wall temperature at 
r = I* is assumed to be equal to the temperature out- 
side the thermal boundary layer, as can be seen in 
boundary con~tio~~ (8) and (25). As a matier of fact, 

the behavior of tbe Nusselt number profiles is similar 
to that of the Blasius ffow over a flat plate with a 
constant wall temperature. 

3.3. Solution for non-uniform wall temperature 
We will now consider the case of a continuous wall 

temperature distribution T,(r) with T,.,(r) = 0 for 
r < r r, where r , may be taken to be 2r, fotlowing the 
discussion of Section 2. The temperature outside the 
boundary layer is assumed to be zero. In Section 3.1, 
we have obtained the solution to the problem with a 
step change in wall temperature. For the problem with 
continuous wall temperature distribution T,(r), the 
sohrtion can be obtained by the superposition method 
as follows : 

T(r, Z) = 
s 

’ fjat(r,z, r*)~i~~&*, (41) 
II 

The wafl heat flux is 

q,q=-k (42) 

where 

consequently, the NusseIt number is 
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Nu = _ b Re’12J(3d/2r) r 1 

T,(r) i I, (1 -r*/r)‘13 

x [F;(O)+F;(O)(l -r*/r) 

+%(O)(l -r*/r)‘+ . . .] dr 
dTw(r*)dr* 

(W 

where F;(O), F;(O) and P;(O) are given by equations 
(24). The Nusselt number profiles for different Prandtl 
numbers are shown in Fig. 6 for an increasing wall 
temperature which is also shown in the same figure in 
dimensionless form. 

3.4. Solution for non-uniform wall heatJEux 
The wall heat flux is assumed to have a continuous 

distribution Q,,,(r) with Q,,.(r) = 0 for r < r ,. Conse- 
quently, the wall temperature is T,(r) = 0 for r < r, 
if the temperature outside the thermal boundary layer 
is assumed to be zero for convenience. The tem- 
perature distribution for r > r, may be obtained from 
the corresponding solution for a step change in wall 
heat flux by the superposition method as follows : 

T(r, z) = 
1 

b J (3 U,/2vr)k 

(45) 

where f&(r, z, r*) is defined by equation (29). The wall 
temperature for r > r, is 

1 
T, = 

b,/ (3UJ2vr)k 

(46) 

where 

&(r,O,r*) = B,(O)+B,(O)(l -r*/r) 

+B,(O)(l -r*/r)‘+ . . . (47) 

and B,,(O), B,(O), B2(0) are given by equations (40). 
The Nusselt number can be obtained as follows : 

Nu = b Re’12J(3d/2r)Q,(r) 
I 

{il(I-~)“‘[B~(~)+B,(o)(I-F) 

+B,(O)(l-Gl+...]vdr*) (48) 

The Nusselt number profile is shown in Fig. 7 for 
an increasing wall heat flux with r. Comparing Figs. 
6 and 7 with Figs. 3 and 5, one can see that the Nusselt 
number for continuously increasing wall temperature 
or wall heat flux is higher than that for a step change 
in wall temperature or wall heat flux. The reason is 
that at the same location, the fluid is hotter for the 
case of step change in wall temperature or wall heat 
flux than it is for the case of continuously increasing 
wall temperature or wall heat flux if the wall tem- 
perature or wall heat flux at that point is the same for 
both cases. 

3.5. Solution to the problem with T, = TW, and 

Qw = Qw, 
Since the wall temperature or wall heat flux is con- 

stant for r > r,, it is possible to obtain a similarity 
solution. For the case of prescribed wall heat flux, the 
boundary conditions are 

-kg= Q_.(r,) atz= 0 aZ (49a) 

T= T, atz=co. (49b) 

The dimensionless temperature ecs, is now introduced 
as follows : 

T- T, 
(50) 

Energy equation (1) and boundary conditions (49), 
therefore, can be written as 

0 2 4 6 6 10 

r/r0 

FIG. 6. Nusselt number profile for continuous wall temperature. 
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0 2 4 6 a 10 

r/r@ 

FIG. 7. Nusselt number profile for continuous wall heat flux. 

(5la) 
T= Tcx +P-t&,)-T,1 

e:,(o) = - 1, 8,,(co) = 0 (51b) 

which may be solved numerically. Once Ocs is known, 
the temperature distribution corresponding to Qw = 
Q,, is given by 

T= T,+ Q&d 
J(3UO/2vr)k0cq’ 

(52) 

For the case of prescribed wall temperature, the tem- 
perature distribution correspondmg to T, = T,, can 

_ be obtained by the same method as follows : 

T = T, +[T&d- T,l 

(53) 

With the above solutions and those obtained in Sec- 
tions 3.3 and 3.4, we are able to obtain the solutions 
for arbitrary wall temperature and wall heat flux. 

3.6. Solution for arbitrary wall temperature 
For Prandtl numbers larger than unity, the thermal 

boundary layer thickness is always smaller than the 
total thickness of the fluid layer in the boundary layer 
region. Consequently, the temperature outside the 
thermal boundary layer is the same as the jet tem- 
perature. Following the previous discussion, if the jet 
temperature is T, and the wall temperature is T..,,(r), 
the temperature distribution in the boundary layer 
region should be the sum of equations (41) and (53) 
for r > r,. That is 

+ i ’ Qdr, 2, r*) 
dT&*) 

Jr, 
~dr*. (54) 

The wall heat flux is 

qW = -kJ(3U,,/2vr) 
r 

b s 1 

,, (1-r*/r)‘!’ 

x[F;,(O)+F;(O)(l-r*lr) 

dTdr* 1 
+F$(O)(l -r*/r)‘+. .]---dr* 

dr 

(55) 
and the Nusselt number is 

Nu = &‘I2 JWP) 
Tw (4 - T, 

s r 1 

-b r, (1 -r*/r)‘j3 
[&(O)+F’,(O)(l-r*/r) 

+F’s(0)(l-r*/r)2f . ..]y!dr* 

1 

(56) 

where &(O), F;(O) and 10;(O) are given by equations 
(24). For a Prandtl number smaller than unity, the 
thermal boundary layer reaches the free surface before 
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the viscous boundary layer does. Consequently, the 
present solution is valid in a smaller region if Pr < 1. 

3.7. Solution for arbitrary wall heatflux 
The temperature distribution in the boundary layer 

region for the case of arbitrary wall heat flux Q,,,(r) 
and constant temperature T, outside the boundary 
layer can be obtained by the superposition of equa- 
tions (45) and (52) as follows : 

Q&d ew+ 
1 

T= T,+ 
J(3 W2vr)k bJ (3 U,/2vr)k 

x (1 -r*/r)‘l’Q,(r, z, r*) v dr*. (57) 

The Nusselt number is obtained as 

Nu = ~e”‘,/W/WQdr> 
II 

Q&d%(O) 

+i ‘(l-r*/r)‘~3[B,(0)+B,(0)(1-r*/r) 
s r1 

dQ&*) 
+Br(O)(l -r*/r)‘+ . . .I----- dr dr* (58) 

where B,(O), B,(O) and B*(O) are given by equations 

(40). 
Equations (56) and (58) give the Nusselt number 

profiles in the boundary layer region for prescribed 
wall temperature and wall heat flux, respectively. In 
the first part of this study, the Nusselt number profile 
in the vicinity of the stagnation point has been 
obtained. The integral solution in the transition region 
between the stagnation region and the boundary layer 
region is also obtained in the first part. Hence, one 
can plot the Nusselt number profile throughout the 
stagnation region and the boundary layer region. 
Since the asymptotic solution in the stagnation region 
is valid only for small values of r and the integral 
solution cannot be matched with the boundary layer 
region solution analytically, the solutions in different 
regions have to be matched graphically to obtain a 
continuous Nusselt number distribution. The pro- 
cedure can be described as follows : first, the Nusselt 
number profiles near the stagnation point and in the 
boundary layer region are plotted, then we plot the 
Nusselt number profile in the transition region 
between the stagnation region and the boundary layer 
region. Finally, each segment of the curve is interp- 
olated in such a way that the resulting curve is smooth 
everywhere. The results are shown in Figs. 8 and 9 
for non-uniform wall temperature and wall heat flux, 
respectively. 

In Figs. 8 and 9, the result of constant wall tem- 
perature and wall heat flux is compared with the result 
of increasing wall temperature and wall heat flux with 
r. The figures indicate that the Nusselt number for 
increasing wall temperature or wall heat flux is higher 
than that for constant wall temperature or wall heat 

_ increasing T, 

----i constant T, 

_I 
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FIG. 8. Nusselt number profile for arbitrary wall temperature. 
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FIG. 9. Nusselt number profile for arbitrary wall heat flux. 

flux outside the stagnation region. It can be seen from 
Figs. 8 and 9 that the Nusselt number near the stag- 
nation point is essentially constant. At larger radial 
distance, however, the Nusselt number drops with r 
steeply. Very far away from the stagnation point, the 
Nusselt number decreases with r slowly. 

The present result is compared with those obtained 
by Chaudhury [l] and Brdlik and Savin [3] in Fig. 10 
for the case of constant wall temperature. The figure 
shows good agreement between the present result and 
Chaudhury’s integral solution. For Brdlik and Savin’s 
result, however, the Nusselt number is considerably 
higher than the present result and Chaudhury’s result. 
This is because in ref. [3], the velocity at the outer edge 
of the boundary layer was assumed to be 2U,,, where 
U,, is the jet velocity. If the velocity outside the bound- 
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ary layer is taken to be UO in ref. [3], the result will 
be in good agreement with the present solution and 
Chaudhury’s solution. 

4. CONCLUSIONS 

The heat transfer in the boundary layer region of 
an axisymmetrical jet impinging normally on a flat 
plate with non-uniform wall temperature or wall heat 
flux has been investigated analytically. The solution 
converges very fast for a Prandtl number of the order 
of unity or larger. For a very small Prandtl number, 
however, the solution may be divergent when R is not 
very small. In such a case, one may assume that the 
solution is semi-divergent and use Euler’s trans- 
formation to evaluate the sum. The solution is mat- 
ched with that in the stagnation region obtained in 
the first part of this study so that the Nusselt number 
distribution throughout the stagnation region and the 
boundary layer region is obtained. 

The solution presented in this paper may be useful 
in some applications. It can be used to solve the con- 
jugate problem in which an axisymmetrical jet 
impinges on the top surface of a solid plate with pre- 
scribed wall temperature or wall heat flux at the 

bottom surface. The solution is also useful when one 
is considering the heat transfer of multi-jet impinge- 
ment. With the Nusselt number distribution shown in 
the figures, it is clear that the distance between jets 
should not exceed about four jet diameters in order 
to obtain approximately uniform heat transfer. 

REFERENCES 

1. Z. H. Chaudhury, Heat transfer in a radial liquid jet. 
J. Fluid Mech. 20, 501-5 11 (1964). 

2. E. J. Watson, The radial spread of a liquid jet over a 
horizontal plane, J. &id Mech. 20,481499 (1964). 

3. P. M. Brdlik and V. K. Savin, Heat transfer between an 
axisymmetric jet and a plate normal to the flow, J. Engng 
Phys. 8,91-98 (1965). 

4. N. R. Saad, W. J. M. Douglas and A. S. Mujumdar, 
Prediction of heat transfer under an axisymmetric laminar 
impinging jet, Ind. Engng Chem. Fun&m. 16, 148-154 
(1977). 

5. A. W. Lipsett and R. R. Gilpin, Laminar jet impingement 
heat transfer including the effects of melting, Int. J. Heat 
Mass Transfer 21,25-33 (1978). 

6. K. Mitachi and R. Ishiguro, Heat transfer of wall jets (1st 
report : theoretical discussions of the temperature field), 
Heat Transfer-Jap. Res. 3(4), 2740 (1974). 

7. B. T. Chao and L. S. Cheema, Forced convection in wedge 
flow with non-isothermal surfaces, ht. J. Heat Mass 
Transfer 14, 1363-1375 (1971). 

TRANSFERT THERMIQUE ENTRE UN JET CIRCULAIRE, LIBRE, INCIDENT ET UNE 
SURFACE SOLIDE AVEC TEMPERATURE PARIETALE OU FLUX DE CHALEUR 

PARIETAL NON UNIFORME-2. SOLUTION POUR LA REGION DE COUCHE LIMITE 

R&m&-On &die analytiquement le transfert thermique dans la region de couche limite pour un jet 
libre circulaire qui frappe une surface solide a temperature ou flux de chaleur non uniforme en paroi. 
L’ecoulement est laminaire, incompressible et permanent. On obtient la solution du problbme pour un 
changement en echelon de la temperature ou du flux. On obtient par superposition la solution du 
probltme avec variation arbitraire de la temperature ou du flux. Cette solution est ensuite eprouvee avec 
celle de la region d’arret obtenue dans la premiere partie de l’etude, de faGon a obtenir le nombre de 
Nusselt dans la region d’arret et dans la zone de couche limite. Les rbsultats montrent que le nombre 
de Nusselt pour une augmentation de temperature ou de flux a la paroi est considerablement plus 
grand que lorsque la temperature ou le flux reste uniforme en dehors de la region d’arret. Pour le cas 
particulier dune temperature pa&ale constante, le resultat est en bon accord avec la solution 

inttgrale de Chaudhury. 
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WARMEUBERTRAGUNG ZWISCHEN EINEM KREISFGRMIGEN FREI 
AUFIREFFENDEN STRAHL UND EINER FESTEN OBERFLACHE MIT 

UNGLEICHFC)RMIGER WANDTEMPERATUR ODER WARMESTROMDICHTE- 
2. LGSUNG FUR DAS GRENZSCHICHTGEBIET 

Zmspmmenfpapuog--Es wird der Wiinnetibergang im Grenzschichtgebiet eines kreisfijnnigen freien Strahls 
bei Auftreffen auf eine ebene feste Obertlbhe mit ungleichfirmiger Wandtemperatur oder W%rme- 
stromdichte analytisch untersucht. Die StrSmung ist laminar, inkompressibel und station*. Der erste 
Schritt der Betrachtung ist die Liisung des Problems bei einer stufenfiirmigen Anderung der Wand- 
temperatur oder Warmestromdichte. Die Losung fur den Fall beliebiger Wandtemperatur oder Warme- 
stromdichte wird durch Uberlagerung erhalten. Diese wird dann an die Liisung fiir das Stagnationsgebiet 
angepagt, so dag die Nusselt-Zahl durchgehend vom Stagnations- bis zum Grenzschichtgebiet erhalten 
wird. Die Ergebnisse zeigen, da6 die Nusselt-Zahl fiir zunehmende Wandtemperatur oder WPrme- 
stromdichte betrachtlich groger sein kann als fiir konstante Wandtemperatur oder Wlrmestromdichte 
augerhalb des Stagnationsbereiches. Fur den Spezialfall konstanter Wandtemperatur stimmen die Ergeb- 

nisse gut mit der Integrallijsung von Chaudhury iiberein. 

TEl-IJIOl-IEPEHGC MEmY KPYFJIOH CBO6OAHO l-IA&UO~Ett CTPYEti ti TBEPAOR 
l-IOBEPXHOCTbIO C HEO~HOPO~HbIM PACllPEaBJIEHkIEM TEMIIEPATYPbI WI&i 

TEl-UIOBOl-0 IIOTOKA-2. PEIJIEHHE flJl5l OEJIACTPi l-IOl-PAHWIHOI-0 CJIOII 

A~~T~~AH~JIUTHY~~JKH uccne~yercx rennonepenoc B o6nacru norpanmmoro cxon ,UJII tcpyrnofi 
crpyn, cao6oruro naaammeir ria nnocxym rnepnyro noaepxnocrb c ueo~oponnbthf pacnpenenemrehf 
TeMneparypni H rennonoro noroxa. Tenetme arutaercn nar+mnapn~, HecxcnMaeMbIM II CrannorrapHbun. 
AH~JIA~ HaYmiaerca c nonynemfa pemenns 3anami co cxaxxoo6pa3nbru SuMeHeHHeM Tehmeparypbt mm 
TenJIOBOrO IIOTOIC~ Ha CTeHXe. M~TOAOM cynepnosamn4 nOny¶eHO pemeHHe COOTeercTayKXtteti 3a&~rn 
nim npouseonbmdx reMneparypbr.u.rni rennonoro noroxa ria crerixe. &mioe pememre 3areM cornaco- 
BbmaeTca c pememreM Ana 06~tacrri TopMoxcemia, nonyveHHbIM 6 nepBoe ¶acTH ECG'I~AOBaHEH, c I&Jlblo 
onpeAeneHH5l gncna HyccenbTanO acefi 3oHeTOpMOxceHEna norpatisixriorocnor. k3)'AbTaTbIiIokW,I- 

B~wT, 3~0 nnn eo3pacrarottmx na crerixe rebfneparypbI mm renn0~0r0 noroxa mmno HyccenbTa 
MOEeT 661~b 3tiayHTeJlbHO BbIIlle,¶eMAJIIl llOCTOJlHHbIX3aIIpc?.AeJlaMa30HbITOPMOXCeHE%k3YAbTaTJJ 

AAR qacruoro cnyuar noc~onn~oii rehmeparypbi cremcri xopomo cornacymrcx c mrrerpanbribt~ peme- 
mieM 9aynxypki. 


