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Abstract—The heat transfer in the boundary layer region of a circular free jet impinging on a flat solid
surface with non-uniform wall temperature or wall heat flux is investigated analytically. The flow is laminar,
incompressible and steady. The analysis begins with obtaining the solution to the problem with a step
change in wall temperature or wall heat flux. The solution to the corresponding problem with arbitrary
wall temperature or wall heat flux is obtained by superposition. This solution is then matched with that
for the stagnation region obtained in the first part of this study so that the Nusselt number throughout
the stagnation region and the boundary layer region is obtained. The results indicate that the Nusselt
number for increasing wall temperature or wall heat flux can be considerably higher than that for constant
wall temperature or wall heat flux outside the stagnation region. For the special case of constant wall
temperature, the result is in good agreement with the integral solution of Chaudhury.

1. INTRODUCTION

Tais 18 the second part of an analytical investigation
of heat transfer between an axisymmetrical free
impinging jet and a solid flat surface with non-uniform
wall temperature or wall heat flux. The objective is to
examine the heat transfer in the boundary layer region
when a circular free jet impinges normally on a flat
surface. It should be mentioned that the heat transfer
of a free impinging jet is not the same as that of a
submerged impinging jet since the flow field is different
for the two cases.

The heat transfer between a laminar, circular
impinging jet and a flat solid surface has been ex-
amined by a number of investigators. Chaudhury
[1] investigated the heat transfer in the boundary layer
region and similarity region. His solution is based on
the velocity distribution obtained by Watson [2]. In
his paper, the stagnation region is ignored. An integral
solution was obtained in the boundary layer region
and a similarity solution to the energy equation was
given in the similarity region. He considered two
specific cases. In the first case the wall is thermally
insulated for » < r, and is maintained at a constant
temperature which is different from that of the jet at
r > r, where r = r, is located in the similarity region.
In the second case the wall is maintained at a constant
temperature throughout. Brdlik and Savin [3] solved
the heat transfer problem of jet impingement with
constant wall temperature by the integral method and
also obtained experimental results. Their integral
solution is based on the assumption that the ratio of
thermal boundary layer thickness to viscous boundary

layer thickness is 1/Pr'/® and the local heat transfer
coefficient was not given in their experimental work.
Saad et al. [4] numerically examined heat transfer
from a laminar, semi-confined axisymmetric sub-
merged impinging jet. They used an upwind finite-
difference representation of the momentum and
energy equations to predict the flow and local heat
transfer characteristics of a laminar round jet
impinging normally on a flat wall. Laminar jet
impingement heat transfer including the effects of
melting was considered by Lipsett and Gilpin [5]. The
solution of the potential flow problem was obtained
by the finite-element method and the boundary layer
problem was solved by the Karman-Pohlausen
integral method. When there is no effect of melting,
the results show that a maximum in the heat transfer
distribution exists near r = r,, where r, is the jet
radius.

Heat transfer of submerged wall jets was investi-
gated analytically by Mitachi and Ishiguro [6]. They
obtained similarity solutions to the energy equation
for the boundary conditions of an isothermal wall, a
uniform wall heat flux and an adiabatic wall. For the
case of a step change in the wall temperature, the
energy equation is solved numerically.

2. FORMULATION

In the boundary layer region (see Fig. 1 in Part 1 of
this study), radial convection is much more important
than the radial conduction and hence the temperature
field is of the boundary layer type. For such a flow,
the energy equation is
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a,, as, ag, a;, constants defined in equations
C))

b constant defined in equation (14a)

d jet diameter

e, e, coefficients defined in equations (14b)
and (14c)

f dimensionless function, equation (4a)

k conductivity

Nu  Nusselt number, Q,, d/k(T,—T,)
Pr Prandtl number
Q.  heat flux on the wall

NOMENCLATURE

U, jetvelocity
w velocity in the z-direction
o coordinate normal to the wall.

Greek symbols
o diffusivity
0 boundary layer thickness defined in
equation (6)
d’ boundary layer thickness defined in
equation (7)
n dimensionless variable defined in

r coordinate along the wall equation (5)
ro jet radius O dimensionless temperature defined in
R dimensionless coordinate defined in equation (50)
equations (10) Oy dimensionless temperature defined in
Re Reynolds number, U, d/v equation (26)
T temperature 0, dimensionless temperature defined in
T. wall temperature equation (9)
T, jettemperature or temperature outside v kinematic viscosity
the thermal boundary layer ¢ dimensionless variable defined in
u velocity in the r-direction equation (10).
oT oT o’T conditions in the stagnation region on the flow in the
“ar +W52 e (M boundary layer region. In Part 1 of this study, it was
and the boundary conditions are shown Fhat th§ bo.unc.iary layer thickness outside the
stagnation region is given by
T=T,(r) or Q=0,() atz=0 (2a)
420 v c

where T, is the jet temperature, T, (r) the wall tem-
perature, and Q,,(r) the wall heat flux. The velocity
components ¥ and w are obtained from the solution
to the flow field [2]

u=Upf ()
W= (—nf+ %f)

where 1 is defined by a third-order ordinary differential
equation and can be expanded in the following form:

(3a)

(3b)

f= a2n2+a5n5+a8118+a,1n“+... (4a)
a, = 0.23480, as= —0.18377x 10* (4b)
ag = 0.28252x107%, a,, = —0.45686 x 1078, (4c)

The primes in equations (3) denote differentiation
with respect to # which is defined as

3U,\
"= / (z“) ©

As was pointed out in ref. [2], the above solution is
based on the assumption of r > r, so that the con-
ditions in the stagnation region do not affect the flow
in the boundary layer region. To investigate the spatial
range in which the above solution is applicable, we
use the integral solution to examine the effect of the

where
v

The term c/r? represents the influence of the stag-
nation region on the boundary layer thickness in the
boundary layer region. If this effect is neglected, the
boundary layer thickness becomes

. {420 v
o ‘/(37 U) @)

Comparison between equations (6) and (7) shows that
for r > 2r,, the influence of the stagnation region on
the boundary layer thickness in the boundary layer
region is smaller than 0.5%. It follows that solution
(3) is valid for r = 2r, with negligible error.

3. SOLUTIONS

Because of the linearity of energy equation (1), it is
possible to obtain the solution by the superposition
method. We seck a solution for the general case of
arbitrary wall temperature or arbitrary wall heat flux.
As shown in Fig. 1, an arbitrary wall temperature
distribution T, (r) or wall heat flux distribution Q. (r)
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Fi1G. 1. Division of arbitrary wall temperature or wall heat flux.

may be divided into two parts. In the first part, the
wall temperature or wall heat flux is

Tw, = Tw(r)_Tw(rl)
or
Qw, = Qw(r)_Qw(rl)

for r > r, and is zero for r < r,. In the second part,
the wall temperature or wall heat flux is T,,, = T,,(r)
or @, =Q,(r) for r<r, and is Ty, = T,(r,) or
Qu, = Qu(ry) for r>ry. Tt follows that the tem-
perature distribution in the boundary layer region for
r>r; can also be divided into two parts. We will
proceed by first obtaining the solution to the problem
with a step change in wall temperature or wall heat
flux. Then we obtain the solutions to the problem
with T,=T, or Q,=Q, and T,=T,, or
Qv = Q,, as shown in the figure. Finally, the solution
to the problem with arbitrary wall temperature or wall
heat flux is obtained by superposition.

3.1. Solution for a step change in wall temperature

In this section, we consider the case where part of
the wall, r < r*, is assumed to be thermally insulated
and the rest maintained at a constant temperature T,.
The end point, r = r*, of the thermally insulated part
is located in the boundary layer region. Therefore, for
r < r* the wall temperature is uniform and equal to
the fluid temperature which is assumed to be zero for
convenience. Consequently, the boundary conditions
are

T(r*,2)=0, T(r,0)=0, T(r>r*0)=

®
To write the energy equation and boundary condi-

tions in dimensionless form, we introduce the follow-
ing dimensionless temperature and coordinates :

0= o)
and
r*
R=1-2, e=p-1 (10)

where 7 is defined in equation (5) and b is a constant
to be determined later. The dimensionless forms of

energy equation (1) and boundary conditions (8),
therefore, become

020, 2Pr1— - 3 6(9st
F3d [%2 TR |
2 2/3
3b2R (l—R)f —0 an
and
Hst(R’ 0) = 1’ est(R’ w) = 0' (12)

Transformation (10) has two advantages.

(1) R is always less than unity. This is very impor-
tant for obtaining a series solution in powers of R.

(2) The boundary conditionsatr = r*and at z = o
are merged into one, therefore the number of bound-
ary conditions is reduced to two. Since R is bounded
between 0 and 1, the dependent variable 6,, can be
expanded in a Taylor series as follows :

0o = Fo(§)+F1(E)R+FL (R +F5(HR* + . ..
13)
Upon substituting equations (4), (10) and (13) into

equation (11), comparing the coefficients of like power
of R and introducing the following definitions :

4a 1/3
b= ) 8 i3 2 0.32644Pr  (14a)
10P
e = r6a5 = —1.6875Pr" (14b)
9
16P.
ey = —— 2% 1.1933Pr 2 (14c)
9%
F =F, +eFy, (14d)
Fy,=eFy +eFy+Fyy (14¢)

the governing ordinary differential equations and the
boundary conditions for the universal functions

Fo(&), F11(&), F15(&), Fay (&), Fpy(&) and Fy3(%), are
obtained as follows:

F{+38F, =0 (15a)
Fo(0)=1, Fo(0)=0 (15b)
F'1/1+352F/11_96F11=‘1352F6 (16a)
F1(0) = Fyy(0) = (16b)
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F,4+38°F,—9¢F,, = —E5F,  (17a)
Fi3(0) = Fi3(00) =0 (17b)
F3 +38°Fy —188F,, = 3E°F,, —&°F;, —9¢F
—HEFL+HF, (18a)
F3,(0) = F;(00) =0 (18b)

Fiy+38%Fy, — 188 Fy,

= 2.3864(3E4F,, —E°F,)—E2F,  (19a)
Fy(0) = Fy3(0) =0 (19b)
F 4+ 3E2F), —18EF,y = —9EF  —1EE2F,,  (20a)
F33(0) = Fy3(00) = 0. (20b)
The solution to equations (15) is clearly
Fo®) = - 'r e dy. 1)
ra/3)y Jo

The remaining equations (16)~(20) are solved numeri-
cally and the results are shown graphically in Fig. 2.
The associated wall derivatives are given in Table 1.
With the information provided in Fig. 2 and Table 1,
the temperature field and the wall heat flux can be
easily determined. The wall heat flux is obtained by
differentiating equation (13) as follows :

3U,\ b , ,
qw=—kj(5§>ﬁﬁnwum+ﬂmm
+F50R* +..] (22)
1.0
o5 Fo Fax 100
Fax10
0.0 Fr
Fx10\ Fex19
~05
~1.0 . 1 . L
0.0 0.5 1.0 1.5 20 25

§

F1G. 2. F;; functions for a step change in wall temperature.
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Hence the Nusselt number is

J
2r
FF0)1—r*/r)  + .. ]

Nu = —b Re'? [Fo(0)+ F1(0)(1 —r*/r)

(23)

where b is given in equation (14a) and Re is the
Reynolds number defined by U,d/v. The constants
Fy(0), Fi(0) and F50) in the above equations are
given by

Fol®) = = i (240)

F(0) = —0.23329+0.046658Pr ! (24b)

F5(0) = —0.077764+0.0015553Pr !
—0.0052878Pr=2. (24c)

Obviously, the solution is valid for > r* only.

The calculation shows that for a Prandtl number of
the order of unity or larger, solution (13) converges
very fast and good accuracy is obtainable with terms
of up to order 2. For fluids with very small Prandtl
number such as liquid metal, however, the solution
converges only when R is small. In such a case, Euler’s
transformation may be used for the evaluation of the
sum. The Nusselt number profile is plotted in Fig. 3
for Pr = 0.7, 7 and 20.

3.2. Solution for a step change in wall heat flux

In this problem the prescribed wall heat flux is zero
for r < r* and ¢, for r > r* where r* is located in
the boundary layer region. Specifically, the boundary
conditions are

T(r*,z2)=0, T(r,o0)=0,

oT(r > r*,0) _

—k a7 q:.

(25)

A dimensionless temperature 8,, is defined as follows :

_ b\/ (3U0/2vr)lg

qu - qul/3

(26)

where constant b is given by equation (14a). The speci-
fic form of equation (26) is motivated by the con-
sideration that the transformed boundary condition
on the wall is still a constant. The dimensionless form
of energy equation (1) and boundary conditions (25)
then become

Table 1. Wall derivatives

Fy©) F11(0) F'2(0)

F5:(0) F22(0) F53(0)

—1.1198 —0.23329  —0.027649

—0.00092164

—0.0044312  —0.077764
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FI1G. 3. Nusselt number profile for a step change in wall temperature.
2 2Pr1- 21(0) = By,(0) =0 (34b)
00 +l: : o3 éf —Rl/sf] “ 2 nl 4 s
0¢> T L9* R 3438285, —21E By, = 4E°By, —E°BY,
§P’R2/3f (1- R)a— —$&B — FEB + 5¢E°By+1¢°B, (35a)
R s
22(0) = B,,(0) = (35b)
2P 1 rr ’ 4
9b2R2/3f (R 2)05q=0 27 Y3+38°By;—21EByy = — 2 EB, — 2B, (362)
23(0) = By3(c0) = 0. (36b)
and The solution of equations (31) can be obtained in
losed fi
Ba_ 1 atg=0 (28a) Cocrom
aé (3 ¢ 3
- -n —_
6,=0 atf=o. @by  BolO)= r(2/3)[ +35L ne d"] ¢ 6N

Note that the only difference between equations (11)
and (27) is that equation (27) has one additional term,
i.e. the last term. Proceeding as with equation (13), 6,,
can be written in the following form :

0. = Bo($)+B1(E)R+ By (OR* + By (HR* +
(29)

Following the same procedure as that in Section 3.1
and introducing the following definitions :

B, =¢e,B,,+B,
B, = e,B;,+e,B5,+B,;

(30a)
(30b)

where e; and e, are given by equations (14), one
obtains the following differential equations and the
corresponding boundary conditions :

By +3¢*By—3EB, =0 (31a)

By(0)= —1, By(0)=0 (31b)

N\ +3E%B1, —12¢B,, = £*B,— 5B, (32a)

B),(0) = B, ,(0) =0 (32b)

12+3¢7B1,—12¢B, = — FE°B+3¢B,  (33a)

12(0) = B 5(c0) =0 (33b)
51+3&2BY, —21¢B,, = 2.3864(4¢*B,, — £°B))

—¢%By+E7B, (34a)

while equations (32)—(36) are solved numerically.
Note that By, By, B|2, Ba1, By, Bysand Fy, Fyy, F s,
F,,, F,,, F,;in the previous section are independent of
Prandt] number, and, therefore, have to be calculated
only once. These functions are shown graphically in
Fig. 4 and their values on the wall are given in Table
2. Finally, the wall temperature is given by

1.0

o5

00

2% 10

-0.5 n . . L
0.0 0.5 10 1.5 20 25

§
F1G. 4. B, functions for a step change in wall heat flux.
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Table 2. B, values on the wall

B,4(0)

Bo(0) B () B0 B,1{(0} B::(0)
0.73849 —0.0091171 —0.10770 —{,00089019 ~§.00043415 —0.02472¢6
___q@R" ) the behavior of the Nusselt number profiles is similar
Ty = 1/3u, (Bo(0)+ B (OR+B:(OR"+ .1 1 that of the Blasius flow over a flat plate with a
b \j' (—3}1% constant wall temperature.
2vr
(3%)

and the Nusselt number is

1
M=
3d
12 Ja
pre (2)
X Bo©@+ B, (0) (L —r*/A+B,(0)(1 —r* /"7 + ...
{39
where
By(0) = — 402)
R OTE)! (40a
B,(0) = —0.10770+0.015385Pr" (40b)
B,(0) = —0.024726 —0.00073263Pr"
—0.0010623Pr=2.  (40c)

The Nusselt number profile is shown in Fig. 5 for
Pr= 0.7, 7 and 20, respectively. The comparison of
Fig. 5§ with Fig. 3 shows that the Nusselt number
profiles for a step change in wall temperature and for
a step change in wall heat flux are similar, but the
latter is a little higher. As r approaches r*, the Nusselt
number is singular because the wall temperature at
r = r* is assumed to be equal to the temperature out-
side the thermal boundary layer, as can be seen in
boundary conditions {(§) and {25). As a matter of fact,

3.3, Solution for non-uniform wall temperature

We will now consider the case of a continuous wall
temperature distribution T, (r) with T,(r) =0 for
¥ < ry, where r, may be taken to be 2r, following the
discussion of Section 2. The temperature outside the
boundary layer is assumed to be zero. In Section 3.1,
we have obtained the solution to the problem with a
step change in wall temperature. For the problem with
continuous wall temperature distribution T,(r), the
solution can be obtained by the superposition method
as follows:

v *
T(r,z) = J' 04(r, z, r*)%gw)- dr*.

| : o)

The wall heat flux is

4o = «kj T om0 ST e @)

Oz
where

d b (3U,{2vr)
b;gsl(ra Gv r*) = W

2
+F1(0)(1~ K;) +F’2(0)(1-r;> + :| (43)

Consequently, the Nusselt number is

[F o(0)

30

201
8
g Pr=20

101 Pr=7

Q.7
0.0 i 1 1. i
o 2 4 & 8 16
riv,

Fic. 5. Nusselt number profile for a step change in wall heat flux.
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_ bRe'/(dj2r) 1
Nu = T, f A=r 7
X LF3(0)+ F{©)(1—r*/r)
FFO) (1 =P+ .. ] gT-:’ifr—*)df* (44)

where Fy(0), F;(0) and F5(0) are given by equations
(24). The Nusselt number profiles for different Prandtl
numbers are shown in Fig. 6 for an increasing wall
temperature which is also shown in the same figure in
dimensionless form.

3.4. Solution for non-uniform wall heat flux

The wall heat flux is assumed to have a continuous
distribution Q,, () with Q,,(r) = 0 for r < r,. Conse-
quently, the wall temperature is 7,(r) =0 for r <7,
if the temperature outside the thermal boundary layer
is assumed to be zero for convenience. The tem-
perature distribution for r > r, may be obtained from
the corresponding solution for a step change in wall
heat flux by the superposition method as follows :

1

T = T Gumk

Qw(r*) .
dr

j(l r*N'"30,(r, z, 1) —— 45)

where 0,,(r, z, r*) is defined by equation (29). The wall
temperature for r > r, is

1
"7 by BU20r)k
J (1= 0,0, g ag)

where

0, (r,0,r*) = B, (0)+ B, (0)(1 —r*/r)

+ B (0)(1 —r*/r)* + 47
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and B,(0), B,(0), B»(0) are given by equations (40).
The Nusselt number can be obtained as follows:

Nu = bRe'/(3d]21)Q.(r) /

r *\1/3 *
U (1—’-) [30(0)+Bl(0)<1—’—>
h r r
r*Y do,(r*) .,
+BZ(O)(1— 7) + ...]Tdr } (48)

The Nusselt number profile is shown in Fig. 7 for
an increasing wall heat flux with r. Comparing Figs.
6 and 7 with Figs. 3 and 5, one can see that the Nusselt
number for continuously increasing wall temperature
or wall heat flux is higher than that for a step change
in wall temperature or wall heat flux. The reason is
that at the same location, the fluid is hotter for the
case of step change in wall temperature or wall heat
flux than it is for the case of continuously increasing
wall temperature or wall heat flux if the wall tem-
perature or wall heat flux at that point is the same for
both cases.

3.5. Solution to the problem with T, =T,, and
O. = sz

Since the wall temperature or wall heat flux is con-
stant for r > r,, it is possible to obtain a similarity
solution. For the case of prescribed wall heat flux, the
boundary conditions are

(49a)
(49b)

AT _ _
kaz =Q,(r) atz=0
T=T, atz = 0.

The dimensionless temperature 6,,, is now introduced
as follows:

T-T,
Q. (r1)

Energy equation (1) and boundary conditions (49),
therefore, can be written as

boq = ==/ (3U,/[2vr)k. (50)

Nu/Re™®

1.0

T/Tw

105

0.0

8 10

riry

FiG. 6. Nusselt number profile for continuous wall temperature.
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Nu/Re"?

rirg
F1G. 7. Nusselt number profile for continuous wall heat flux.

d26,, 6., Pr
o TP g 3 P =0 1)
05,0 = —1, B4(00)=0 (51b)

which may be solved numerically. Once 8., is known,
the temperature distribution corresponding to Q,, =
Q., is given by

_ Qu(r1)
T=T,+ Tt Oeq - (52)

For the case of prescribed wall temperature, the tem-

perature distribution corresponding to T, = T,,can
be obtained by the same method as follows :

T= Too +[Tw(r1)— T:zo]

J‘” exp [—Pr jﬂfdn] dn
Jw exp [—Pr J”fdn] dy

With the above solutions and those obtained in Sec-
tions 3.3 and 3.4, we are able to obtain the solutions
for arbitrary wall temperature and wall heat flux.

x | 1—

. (53)

3.6. Solution for arbitrary wall temperature

For Prandtl numbers larger than unity, the thermal
boundary layer thickness is always smaller than the
total thickness of the fluid layer in the boundary layer
region. Consequently, the temperature outside the
thermal boundary layer is the same as the jet tem-
perature. Following the previous discussion, if the jet
temperature is T, and the wall temperature is T, (r),
the temperature distribution in the boundary layer
region should be the sum of equations (41) and (53)
for r > r,. That is

T= Tm +[Tw(rl)— Tao]
fﬂ exp [—Pr J‘ﬂfdn] dn
J‘x exp [—Pr Jnfdn] dn

X {1—

’ dT,, (r*
+J Bst(r,z,r*)—ﬂg—)dr*. (54)
A dr
The wall heat flux is
4 1
4w = —k\/(3UO/2W') b , FF/T‘)TG
X [Fa(0)+ F1(0)(1 —r*/r)
dT, (r*
+ F0)(1—r*/r)* +...] —~l(f—) dr*
dr
Tw(rl)_T\x (55)

foo exp [—Pr fnfdnjl dn

and the Nusselt number is

_ Re'”/(3d|2r) To(r)—T,
Nu = Tw (r)_ Tao *© n N
f exp |:— Pr j fdn] dn
0 0

' 1
—b‘[ W[FB(O)—\LF"(O)(]_,*/”

dT,(r*)

+FLO)(1=r*r)*+ .. ] = drk e (56)

where Fy(0), F(0) and F5(0) are given by equations
(24). For a Prandtl number smaller than unity, the
thermal boundary layer reaches the free surface before
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the viscous boundary layer does. Consequently, the
present solution is valid in a smaller region if Pr < 1.

3.7. Solution for arbitrary wall heat flux

The temperature distribution in the boundary layer
region for the case of arbitrary wall heat flux Q,.()
and constant temperature T, outside the boundary
layer can be obtained by the superposition of equa-
tions (45) and (52) as follows:

Qu(r1) 1
= JBU 2wk boa by/(3U,[20r)k

X Jr(l —r*/n)'"P0,(r,2,r%) dQ_:,l(r2 dr*,

(57
s r

The Nusselt number is obtained as

/(
Nu = Re",/(3d/2r)Q,(r) / iQw(rl)ocq(o)
+% Jr(l—r‘/r)’/s[Bo(0)+Bl(0)(1—’*/")

+B,(0)(1—r*/r)*+ .. .]d—Q:;f-rf—)dr*} (58)

where B,(0), B,(0) and B,(0) are given by equations
(40).

Equations (56) and (58) give the Nusseit number
profiles in the boundary layer region for prescribed
wall temperature and wall heat flux, respectively. In
the first part of this study, the Nusselt number profile
in the vicinity of the stagnation point has been
obtained. The infegral sohition in the transition region

olailled, 1 0CIIesidl sOIULIOIN M1 e i alMUIon Icss

between the stagnation region and the boundary layer
region is also obtained in the first part. Hence, one
can plot the Nusseit number profile throughout the
stagnation region and the boundary layer region.
Since the asymptotic solution in the stagnation region
is valid only for small values of r and the integral
solution cannot be matched with the boundary layer
region solution analytically, the solutions in different
regions have to be matched graphically to obtain a
continuous Nusselt number distribution. The pro-
cedure can be described as foliows: first, the Nusseit
number profiles near the stagnation point and in the
boundary layer region are plotted, then we plot the
Nusselt number profile in the transition region
between the stagnation region and the boundary layer
region. Finally, each segment of the curve is interp-
olated in such a way that the resulting curve is smooth
everywhere. The results are shown in Figs. 8 and 9
for non-uniform wall temperature and wall heat flux,
respectively.

In Figs. 8 and 9, the result of constant wall tem-
perature and wall heat flux is compared with the result
of increasing wall temperature and wall heat flux with
r. The figures indicate that the Nusselt number for
increasing wall temperature or wall heat flux is higher
than that for constant wall temperature or wall heat
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F1G. 9. Nusselt number profile for arbitrary wall heat flux.

flux outside the stagnation region. It can be seen from
Figs. 8 and 9 that the Nusselt number near the stag-
nation point is essentially constant. At larger radial
distance, however, the Nusselt number drops with r
steeply. Very far away from the stagnation point, the
Nusselt number decreases with r sowly.

The present result is compared with those obtained
by Chaudhury [1] and Brdlik and Savin [3] in Fig. 10
for the case of constant wali temperature. The figure
shows good agreement between the present result and
Chaudhury’s integral solution. For Brdlik and Savin’s
result, however, the Nusselt number is considerably
higher than the present result and Chaudhury’s result.
This is because in ref. [3], the velocity at the outer edge

of the boundary layer was assumed to be 2U,, where
U, is the jet velocity. If the velocity outside the bound-
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FiG. 10. Comparison with other results.

ary layer is taken to be Uj in ref. [3], the result will
be in good agreement with the present solution and
Chaudhury’s solution.

4. CONCLUSIONS

The heat transfer in the boundary layer region of
an axisymmetrical jet impinging normalily on a flat
plate with non-uniform wall temperature or wall heat
flux has been investigated analytically. The solution
converges very fast for a Prandtl number of the order
of unity or larger. For a very small Prandtl number,
however, the solution may be divergent when R is not
very small. In such a case, one may assume that the
solution is semi-divergent and use Euler’s trans-
formation to evaluate the sum. The solution is mat-
ched with that in the stagnation region obtained in
the first part of this study so that the Nusselt number
distribution throughout the stagnation region and the
boundary layer region is obtained.

The solution presented in this paper may be useful
in some applications. It can be used to solve the con-
jugate problem in which an axisymmetrical jet
impinges on the top surface of a solid plate with pre-
scribed wall temperature or wall heat flux at the

bottom surface. The solution is also useful when one
is considering the heat transfer of multi-jet impinge-
ment. With the Nusselt number distribution shown in
the figures, it is clear that the distance between jets
should not exceed about four jet diameters in order
to obtain approximately uniform heat transfer.
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TRANSFERT THERMIQUE ENTRE UN JET CIRCULAIRE, LIBRE, INCIDENT ET UNE
SURFACE SOLIDE AVEC TEMPERATURE PARIETALE OU FLUX DE CHALEUR
PARIETAL NON UNIFORME-—2. SOLUTION POUR LA REGION DE COUCHE LIMITE

Résumé—On étudie analytiquement le transfert thermique dans la région de couche limite pour un jet
libre circulaire qui frappe une surface solide & température ou flux de chaleur non uniforme en paroi.
L’écoulement est laminaire, incompressible et permanent. On obtient la solution du probléme pour un
changement en échelon de la température ou du fiux. On obtient par superposition la solution du
probléme avec variation arbitraire de la température ou du flux. Cette solution est ensuite éprouvée avec
celle de la région d’arrét obtenue dans la premiére partie de I'étude, de fagon a obtenir le nombre de
Nousselt dans la région d’arrét et dans la zone de couche limite. Les résultats montrent que le nombre
de Nusselt pour une augmentation de température ou de flux 4 la paroi est considérablement plus
grand que lorsque la température ou le flux reste uniforme en dehors de la région d’arrét. Pour le cas
particulier d’une température pariétale constante, le résultat est en bon accord avec la solution
intégrale de Chaudhury.
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WARMEUBERTRAGUNG ZWISCHEN EINEM KREISFORMIGEN FREI
AUFTREFFENDEN STRAHL UND EINER FESTEN OBERFLACHE MIT
UNGLEICHFORMIGER WANDTEMPERATUR ODER WARMESTROMDICHTE—

2. LOSUNG FUR DAS GRENZSCHICHTGEBIET
Lusnlnmemassung——ns wird der Wanneuuergang im Grenzschi ntgeoiet eines Kft‘:lsmmgeﬁ freien Sirahls
bei Auftreffen auf eine ebene feste Oberfliche mit ungleichformiger Wandtemperatur oder Wirme-
stromdichte analytisch untersucht. Die Strémung ist laminar, inkompressibel und stationdr. Der erste
Schritt der nnfrnn‘hhmn igt die L& nmma des Problems bei einer cf“fpnfnrmlcrf-n Andprnno der Wand-
temperatur oder Warmestromdlchte Dne Losung fiir den Fall beliebiger Wandtemperatur oder Wairme-
stromdichte wird durch Uberlagerung erhalten. Diese wird dann an die Losung fiir das Stagnationsgebiet
angepaBt, so daB die Nusselt-Zahl durchgehend vom Stagnations- bis zum Grenzschichtgebiet erhalten
wird. Die Ergebnisse zeigen, daB die Nusselt-Zah! fiir zunehmende Wandtemperatur oder Wirme-
stromdichte betrdchtlich groBer sein kann als fiir konstante Wandtemperatur oder Wiarmestromdichte
auBerhalb des Stagnationsbereiches. Fiir den Spezialfall konstanter Wandtemperatur stimmen die Ergeb-
nisse gut mit der Integrallosung von Chaudhury tiberein.

TEIUVIONIEPEHOC MEXJY KPVIJIOM CBOBOJHO NMAJAIOIMENA CTPYEN U TBEPAON
NOBEPXHOCTBIO C HEOOJHOPOJHBIM PACINPEAEJIEHWMEM TEMIIEPATYPHI UJIN
TEITIJIOBOI'O ITOTOKA—2. PEMIEHUE JJIS OBJIACTH ITOTPAHHUYHOIO CJIOA

Ansoraimms—AHA/IHTHYECKH HCCJIEAYCTCH TENJIONEPEHOC B 06JaCTH NMOrPaHHYHOIO CHOA AJIA Kpyrio
CTpYyH, cBoOOAHO majarolieH Ha IUTOCKYIO TBEPAYIO NMOBEPXHOCTh ¢ HEOQHOPOJHBIM PAcIpPEAeNeHHEM
TeMNepaTypEl M TEILIOBOrO MOTOKA. TeyeHne SBJIAETCA IAMHHAPHBIM, HECKMMACMBIM H CTALMOHAPHBIM.
AHaJH3 HaYHHACTCH C NOJTyYCHAS PElICHHS 33498 CO CKaukooOpaIHbM HIMCHECHHEM TeMIIEPATYPH IWIH
TETNJIOBOTO TMOTOKA Ha CTCHKS. MeTonoM CyncpiiosniiAl IOJydeHO PELicHAE COOTBETCTBYIONIEH 3a4aid
JUIS TIPOH3BOJILHBIX TEMIICPATYPHI-HJIH TENJIOBOTO MOTOKA Ha CTCHKE. JJaHHOE DEIICHHE 3aTEM COIJIaco-
BBIBAETCA C PELICHHEM JUIA 06/1aCTH TOPMOXEHHS, IOJMYYEHHBIM B NIEPBON YacTH HCCIECAOBAHMES, C HEJIBIO
onpenenenus yucna HyccensTa no Beelt 30He TOPMOXEHHS B NOrPaHUMHOrO cnog. PeaynpTaTht mokazsl-
BAOT, 9TO 71 BO3PacTaiolMX Ha CTCHKE TEMIEPATYpPhl HIH TemWIoBoro nmotoka umcao Hyccensra
MOXET GLITH 3HAYATENILHO Bhillle, YeM JUIS NOCTOSHHBIX 32 NpeaciaMHu 30HB TOPMOXKEHHA. Pe3yibTaThl
IUIs YaCTHOTO CJTY4asi MOCTOSHHOR TEMIIEPATYpPhl CTEHKH XOPOINO COTJIACYIOTCA C MHTErpPaJIBHBLIM pelle-
HHeM Yaynxyps.
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