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An alternative approach to the finite element method has been developed to simulate freezing and thawing processes in irregular
two-dimensional systems. A code employing boundary-fitted grids (BFG) was implemented in a numerically conservative form
(control volume formulation). The proposed model was satisfactorily checked against experimental data obtained with minced
meat and Tylose. The accuracy of the BFG method is similar to one obtained by finite elements but shorter computer times and
simpler codes were employed.
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Introduction

It is difficult to model freezing and thawing processes
because latent heat is released or absorbed over a range
of temperatures. A more realistic model for freezing of
solid biological materials is that of heat conduction with
variable thermal properties. Chilling and freezing time
prediction methods are often classified as: numerical
methods and simple formulae. Numerical methods are
generally considered the most realistic and versatile
approach (1–4). They make discrete mathematical
approximations to the time and spatial variations,
defined by the governing partial differential equations
for heat conduction. Finite differences and finite
elements schemes are generally used. Traditionally,
finite differences was considered a simpler method that
led to satisfactory results for regular geometries (5–10),
while finite elements method was more adequate for
taking into account irregular multi-dimensional shapes
(11–15). Finite elements needs large computer pro-
grams and computer facilities, requiring long processing
times.
An alternative approach is the boundary-fitted grid
method that employs a well behaved transformation in
order to generate a nonuniform grid adapted to the
irregular domain boundaries (16–18). This method
allows use of a fully conservative numerical scheme like
the control volume formulation (19) or subdomain
method, which is a variant of the method of weighted

residuals. In Patankar’s own words (19): ‘In the finite-
element method and in most weighted-residual meth-
ods the assumed variation of the dependent variable
consisting of the grid-point values and the interpolation
functions between the grid points is taken as the
approximate solution. In the finite-difference method,
however, only the grid-point values of the dependent
variable are considered to constitute the solution,
without any explicit reference as to how it varies
between the grid points’.
The objectives of the present study were: (i) to
numerically simulate freezing processes in two-dimen-
sional systems of arbitrary shape through the imple-
mentation of a conservative boundary-fitted grid code
using variable thermophysical properties, and (ii) to
compare the calculated freezing times with a set of
experimental data obtained for minced beef and Tylose
and predicted values by finite element method.

Mathematical Model

The governing equation for unsteady two-dimensional
heat conduction in solids may be written as follows:

ρ Cp 
∂T

∂t
= 

∂
∂x

(k ∂T

∂x
) + 

∂
∂y

(k ∂T

∂y
) Eqn [1]

When the integration domain has an irregular shape,
the proposed procedure for the solution of this problem
is to change coordinates conveniently; it is possible, in
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general, to map conformally arbitrary regions into
regular ones in the plane. Thus, the Cartesian coor-
dinates x, y of the irregular domain L(x,y) are used in
the initial frame system when the problem is posed
mathematically. Then, by a general mapping U = U (x,
y), V = V (x, y), the physical plane is mapped onto a
rectangle in the curvilinear coordinate plane U, V. The
irregular domain L(x,y) is transformed into a regular
one L’(U,V), where a one-to-one correspondence
between the points of both domains specifies a point-
wise defined coordinate transformation as follows:

x,y ; x,y (U,V) ⇔ U,V ; U,V (x,y)

It is useful to employ a well behaved transformation in
order to generate a nonuniform grid adapted to the
domain boundaries. In the present work, boundary-
fitted grids were generated by solving Laplace’s equa-
tions for the fitted coordinates, namely (20):

∂2x

∂U2 + 
∂2x

∂V2 = 0

Eqn [2]

∂2y

∂U2 + 
∂2y

∂V2 = 0

with boundary conditions x = P (U, V); y = Q (U, V).
In these expressions P and Q define the coordinates of
the various body boundaries.
The original Eqn [1] was transformed in terms of the
new coordinates U,V as follows:

ρCpJ 
∂T

∂t
= 

∂
∂U

[kJ( ∂T

∂U
AUU + 

∂T

∂V
AUV)] +

∂
∂V

[kJ( ∂T

∂U
AVU + 

∂T

∂V
AVV)] Eqn [3]

where J is the Jacobian of the transformation and the
coefficients shown in Eqn (3) are defined by:

J = 
∂x

∂U

∂y

∂V
– 

∂x

∂V

∂y

∂U
Eqn [4]

AUU = ( ∂U

∂x
)2 + ( ∂U

∂y
)2 Eqn [5]

AVV = ( ∂V

∂x
)2 + ( ∂V

∂y
)2 Eqn [6]

AUV = AVU = 
∂U

∂x

∂V

∂x
+ 

∂U

∂y

∂V

∂y
Eqn [7]

The mathematical formulation of the problem in
curvilinear coordinates is more complicated because
the numerical coefficients AUU, AUV, AVV, AVU enter
the equations. However, the transition to a more
universal reference frame allows orthogonal grids that
are either uniform or nonuniform in one or both

directions to be constructed for more complex domains
in physical space (21).
An algebraic analog of Eqn [3] was obtained by
application of the control-volume formulation and an
explicit discretization scheme with respect to time (20).
The calculation domain was divided into a number of
nonoverlapping discrete control volumes such that
there is one control volume surrounding each grid
point. The resulting differential equation was integrated
over each control volume. The most attractive feature
of the control-volume formulation is that the resulting
solution would imply that the integral conservation of
energy is exactly satisfied over any group of control
volumes, and, of course, over the whole calculation
domain (19). Coefficients AUU, AUV, AVU and AVV
were numerically evaluated at faces east (E), west (W),
north (N) and south (S) of the control volume,
respectively. The Jacobian affecting the time derivative
was calculated at the centre of the cell. Jacobians
affecting spatial derivatives were computed at the
corresponding planes (N, S, E and W). Thermophysical
properties were considered to be variable through their
temperature dependence. Thermal conductivities were
also evaluated at each control volume face, for exam-
ple, at east face (E) it became:

kE = 2 ((ki,j)
–1 + (ki + 1,j)

–1)–1 Eqn [8]

where kij corresponded to the grid point situated to the
left of face E, and ki + 1,j to the material placed to the
right. Both points were equidistant to the face being
considered. This formulation is based on a correct
evaluation of the heat flux through each of the control
volume faces. Thermal conductivities were calculated in
the same way for the remaining faces.
The initial condition was:

t = 0; T = T0 for the complete domain

In order to consider the existence of a heat transfer
coefficient (h) at the interface (convective boundary
condition), heat balances were formulated on control
volumes at the solid–fluid interface, where conductive

Fig. 1 Grid developed for the elliptical shape used in the
experiments. 3 corresponds to thermocouple positions
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heat flux was replaced by convective heat flux on the
appropriate faces.
Thus, a convective heat flux term for faces south (j = 1)
and north (j = jmax) was:

qi,j = h (Tf – Ti,j) ARVi,j Ji,j Eqn [9]

The arc length between two grid points, parallel to the
north or south faces of the control volume situated at
the solid–fluid interface (ARVi,j) was calculated as:

ARVi, j = [[ ∂V

∂x
]2

i, j
+ [ ∂V

∂y
]2

i, j]1/2

Eqn [10]

For west (i = 1) and east (i = imax) faces the appro-
priate arc length was:

ARUi, j = [[ ∂U

∂x
]2

i, j
+ [ ∂U

∂y
]2

i, j]1/2

Eqn [11]

A code was written in Fortan ’77 and run in an PC/
486DX2 computer with 4 Mb RAM.

Materials and Methods

Experimental thermal data in freezing and thawing
processes were obtained for minced beef filling a
cylindrical mould (30.8 cm length) with an elliptical
cross section (12 3 7.7 cm). The two-dimensional
elliptical shape and the grid used (11 3 11 nodes) in
the prediction of the freezing and thawing times by the
BFG method are shown in Fig. 1. The container was
filled with minced lean beef (750 g/kg moisture, 30 g/kg
fat) and copper–constantan thermocouples were suita-
bly placed for recording time–temperature changes
(Fig. 1). Polystyrene foam insulation was placed on the
ends of the cylinder to reduce axial heat flow to an
insignificant amount. The filled shape was placed in a
constant-temperature freezer with stagnant air (–20 °C)
for the freezing experiments. A constant-temperature

Fig. 2 Cross sections and fitted grids for shapes A, B, C, D and E used in the numerical simulations of Cleland et al. (22)

Fig. 3 Variation of (a) ρ Cp (density 3 specific heat) and (b) k (thermal conductivity) for lean beef. (d) corresponds to
experimental data reported by Cleland et al. (23); (–––) piecewise interpolation (present work)
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Table 1 Comparison of predicted and experimental times
for freezing and thawing of two-dimensional irregular Tylose
shapes processed at different conditions

h Tf T0 texp tpred
Shape (W/(m2.˚C)) (˚C) (˚C) (h) (h) % ∈

A 28.0 –19.8 19.5 9.31 9.60 3.1
–26.9 20.1 7.13 7.14 0.14
–30.5 32.8 6.90 6.92 0.29
–38.5 13.4 4.63 4.84 4.5

20.3 –11.2 10.17 10.64 4.6
13.7 –19.9 14.47 14.39 –0.55

8.4 –19.4 18.69 20.07 7.4
5.6 –18.4 27.32 26.12 –4.4

B 28.0 –19.8 18.1 7.82 7.72 –1.3
–27.1 19.9 6.17 5.74 –7.0
–38.6 19.1 4.04 4.11 1.7

20.1 –21.5 8.98 8.55 –4.8
13.7 –32.5 12.28 11.42 –7.0

8.4 –13.2 16.86 15.41 –8.6
5.6 –9.5 21.19 19.88 –6.2

C 28.0 –19.7 31.8 9.53 9.51 –0.21
–23.7 4.3 6.31 6.39 1.3
–25.1 34.9 7.30 7.65 4.8
–26.9 20.0 6.70 6.50 –3.0
–38.6 1.8 3.96 3.88 –2.0

40.6 –12.1 5.40 5.93 9.8
20.3 –31.3 9.98 10.10 1.2
13.7 –21.9 13.28 13.10 –1.4
13.6 –17.2 13.11 13.02 –0.67

5.6 –31.7 24.98 24.01 –3.9

D 34.2 –19.6 31.4 5.01 5.18 3.4
–26.9 20.0 3.55 3.53 –0.56
–30.6 22.0 3.21 3.17 –1.2
–39.1 2.3 2.05 2.10 2.4

40.4 –29.8 3.19 3.25 1.9
20.2 –20.1 5.23 5.18 –0.96
13.7 –20.9 7.14 6.82 –4.5

5.5 –9.7 13.08 12.23 –6.5

E 34.2 –19.7 14.4 3.40 3.18 –6.5
–27.1 19.4 2.65 2.40 –9.4
–38.7 18.3 1.70 1.69 –0.59

20.3 –22.1 2.9 3.87 3.73 –3.6
–29.6 33.7 3.48 3.59 3.2
–34.1 34.5 3.11 3.16 1.6

34.2 40.6 –11.9 1.76 1.82 3.4
20.6 –11.4 3.01 3.04 1.0
13.7 –20.2 4.43 4.25 –4.1

5.6 –15.1 7.99 7.86 –1.6

20.3 15.6 –12.1 4.70 5.16 9.8
8.1 –11.2 7.69 8.32 8.2
5.3 –27.6 11.77 11.59 –1.5

texp=experimental times from Cleland et al. (22); tpred=
predicted times, present work.
A, B, C, D and E correspond to shapes 3, 4, 2, 6 and 8,
respectively, from Cleland et al. (22).

Table 2 Comparison of predicted and experimental times
for freezing and thawing of two-dimensional irregular minced
beef shapes processed at different conditions

h Tf T0 texp tpred
Shape (W/(m2.˚C)) (˚C) (˚C) (h) (h) % ∈

A 28.0 21.0 –27.1 10.07 10.78 7.1
8.1 –13.2 19.50 19.68 0.92

–29.1 18.8 6.27 6.76 7.8
–30.2 24.5 6.33 6.81 7.6

E 20.3 –23.3 3.1 3.43 3.57 4.1
–37.8 32.2 2.59 2.86 10.4

13.9 –11.6 5.05 5.42 7.3
6.5 –16.3 8.75 9.54 9.0

Shapes from Cleland et al. (22).

Table 3 Percentage differences between the experimental
and predicted freezing and thawing times for Tylose and
minced lean beef in two-dimensional irregular shapes

Numerical ε
method Mean (%) SD (%)

Freezing and thawing BFG –0.4 4.6
Tylose (46 runs) FEMf 0.3 5.1

FEMs 4.2 6.1

Freezing BFG –4.4 3.7
Tylose (22 runs) FEMf –1.0 4.5

FEMs 2.6 4.8

Thawing BFG –0.4 5.3
Tylose (24 runs) FEMf 1.5 5.5

FEMs 5.8 7.0

Freezing and thawing BFG 6.8 3.0
Minced beef (8 runs) FEMf 12.3 2.9

BFG=boundary-fitted grid method, this work; FEMf=finite
element method, full unmodified formulation (3); FEMs=
finite element method, simplified formulation (3).

storage room (20 °C) was used for the thawing runs
(with air convection).
Heat transfer coefficients for freezing and thawing were
determined a priori using an acrylic cylindrical shape of
the same equivalent diameter as the elliptical shape and
similar experimental conditions.

Numerical Simulations

Numerical simulations of freezing and thawing proc-
esses were performed for two-dimensional irregular
Tylose shapes which correspond to a large set of
experimental data published by Cleland et al. (22).
Figure 2 shows the grids generated in the present work
for these shapes.
Tylose – MH – 100 or ‘Karlsruhe test substance’, is a
23% gel made of methylhydroxyethyl cellulose. Its
thermal properties are very similar to those of lean beef
with 74% water.
Assessment of the prediction accuracy of the numerical
methods was made by direct comparison of the
numerically calculated times for the thermal centre
temperature of the objects to reach –10 °C for freezing
and 0 °C for thawing, with the experimentally measured
times reported by Cleland et al. (22). Freezing and
thawing times for minced lean beef (750 g/kg moisture,
30 g/kg fat) were also predicted. The grids of Fig. 2 were
used for the calculations, as well as the grid shown in
Fig. 1 which corresponds to the experiments performed
in the present work and described above. The variation
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of ρCp (density 3 specific heat) and k (thermal con-
ductivity) with temperature for lean beef as reported by
Cleland et al. (23), and the piecewise interpolation that
was fitted in the present work by the computer code,
are shown in Fig. 3a and b, respectively. A similar
approach was used for the thermal properties of Tylose.
The time step was kept smaller than 0.5 s in order to
avoid the problem of ‘jumping’ of the sharp peak in the
effective specific heat according to the recommenda-
tions of Cleland and Earle (2).
Predicted times obtained with the boundary-fitted grid
method developed in the present work were compared
to those obtained by finite elements methods, both
simplified and full unmodified formulations (3) for the
same geometrical systems and experimental
conditions.

Results and Discussion

Tables 1 and 2 show predicted freezing and thawing
times for Tylose and minced beef, respectively, proc-
essed at different conditions. Experimental data
reported by Cleland et al. (22) and percentage differ-
ences are also included in these tables. As can be
observed in Table 3, average percentage difference for
freezing and thawing times was –0.4% in the case of
Tylose. Accurate predictions of these times (within the
tolerances allowed for experimental error) were
obtained for all tested shapes. For minced beef the
average percentage difference was 6.8%, which was
higher than for Tylose. According to Cleland et al. (3)
this can be attributed to a systematic error in the
estimation of the surface heat transfer coefficient.
Percentage differences obtained by Cleland et al. (3)
using finite element are also included in Table 3. The
obtained errors with the boundary-fitted grid method
(present work) were similar to those calculated by the
full unmodified formulation of the finite element
method.
In order to simulate thermal profiles in the cylindrical
shape with an elliptical cross section the heat transfer
coefficient of the system described in the above section
was determined as the one that gave a minimum sum of
squared deviations between the predicted and meas-
ured temperatures in the experiments performed with
cylindrical shapes. The obtained values were h = 6.0

Fig. 4 Freezing of minced lean beef: h = 6.0 W/(m2·K); Tf =
–20.0 °C; T0 = 7.5 °C. (a) Comparison of temperature profiles
for the thermocouples located at positions 1 (centre) and 4
(surface) shown in Fig. 1. (b,c) Isothermal field at processing
times of 4 h, (b) and 10 h (c). Numbers in isotherms
correspond to temperature in °C

Fig. 5 Thawing of minced lean beef: h = 14.0 W/(m2·K);
Tf = 20.0 °C; T0 = –18.0 °C. (a) Comparison of temperature
profiles for thermocouple number 2 shown in Fig. 1. (b)
Isothermal field at 4 h. Numbers in isotherms correspond to
temperature in °C
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W/(m2·K) and h = 14 W/(m2·K) for freezing and
thawing conditions, respectively.
Typical predicted temperature profiles obtained by the
BFG method were compared with those measured,
both for freezing and thawing experiments. (Figs 4a and
5a). Very good agreement was found between predicted
and experimental temperatures at each measured
point. Relative errors in the predicted temperatures did
not exceed 3%. Computer isotherm curves during
freezing (Fig. 4b,c) and thawing (Fig. 5b) were also
obtained in the present work.

Conclusions

Boundary-fitted grid is an adequate method that can be
applied to predict freezing and thawing times in
irregular shaped food. Its accuracy is similar to that of
the full unmodified finite elements formulation; oscilla-
tions in the solution were not produced even with an
explicit time scheme; computer memory requirements
were much lower than in FEM methods; simple codes
can be developed without the need for using commer-
cial programmes; very short computer times and small
memory requirements (less than 520 Kb) were neces-
sary; heterogeneous systems with different thermal
properties can be modelled; agreement between
numerical solution and experimental data was very
good.
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Nomenclature

AUU, AVV, AUV, AVU = Coefficients defined in Eqns
[5] to [7]

ARU, ARV = Arc lengths defined in Eqns [11] and
[10], respectively

Cp = Specific heat  (J/(kg·K))
h = Heat transfer coefficient (W/(m2·K))
J = Jacobian of the transformation
k = Thermal conductivity (W/(m·K))
q = Heat flux (W/m2)
t = Time (s)
T = Temperature (°C)
Tf = Temperature of the surrounding fluid (°C)
T0 = Initial temperature of the object (°C)
∆T = Temperature difference between the object of

the surrounding fluid (°C)
U, V = Reference coordinates in the computational

plane
x, y = Spatial coordinates of the irregular domain

Greek letters
ρ = Density (kg/m3)
% ε = ((Predicted time – Experimental

time)/Experimental time) 3 100

Superscripts
E, W, N, S = Corresponds to faces east, west, north

and south, respectively

Subscripts
i, j = grid coordinates
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