PHASE EQUILIBRIA IN BINARY MIXTURES OF ETHANE AND HEXADECANE

R. DE GOEDE, C.J. PETERS *, H.J. VAN DER KOOI and R.N. LICHTENTHALER[†]

Delft University of Technology, Department of Chemical Technology and Materials Science, Julianalaan 136, 2628 BL Delft (The Netherlands)

Received February 9, 1989; accepted in final form April 8, 1989)

ABSTRACT

De Goede, R., Peters, C.J., van der Kooi, H.J. and Lichtenthaler, R.N., 1989. Phase equilibria in binary mixtures of ethane and hexadecane. *Fluid Phase Equilibria*, 50: 305–314.

This paper reports experimental results of a study of the phase behaviour of binary mixtures of ethane + hexadecane. In the near-critical region of ethane liquid + vapour and solid hexadecane + liquid two-phase boundaries have been measured. Also the three-phase equilibrium solid hexadecane + liquid + vapour has been determined experimentally. The experimental data cover the complete mole fraction range. Pressures up to 18 MPa were applied and the investigation was performed in a temperature region from about 260 K up to 450 K.

INTRODUCTION

This contribution is one of a series which studies the systematic change in phase behaviour with carbon number of ethane binaries with higher normal paraffins in the near-critical region of ethane. This phenomenon has been discussed in some previous papers by Peters (1986) and Peters et al. (1986). Excellent overviews of this subject have also been presented by Luks (Luks 1980, 1986). In these papers it has been shown how the phase behaviour changes systematically with increasing carbon number of the higher normal alkane. Binaries up to heptadecane are completely miscible in the liquid phase and binaries from octadecane up to tricosane show partial miscibility in the liquid phase with a lower and upper critical end point, indicated by LCEP and UCEP respectively. Examples of ethane binaries showing this

^{*} To whom correspondence should be addressed.

[†] Institute of Physical Chemistry, University of Heidelberg, Heidelberg (F.R.G.)

type of phase behaviour have recently been discussed by Peters et al. (1987a, 1988) for ethane + eicosane and ethane + docosane respectively. Additional information on this type of phase behaviour has also been given quite recently by Estrera and Luks (1987) and Estrera et al. (1987).

Owing to the simultaneous shift of the triple point of the higher normal paraffin with increasing carbon number to higher temperature on the one hand and the shift of both the LCEP and UCEP to lower temperatures on the other hand, it has to be expected that there will be a carbon number at which the three-phase equilibrium solid higher normal paraffin + liquid + vapour interferes the three-phase equilibrium liquid + liquid + vapour. This phenomenon results in the existence of a quadruple point, i.e. a four-phase equilibrium solid higher normal paraffin + liquid + vapour. Recently Peters et al. (1987b, c) found this type of phase behaviour in the ethane binaries of pentacosane and tetracosane respectively. In both binaries a LCEP will no longer be present but a UCEP still exists. As the carbon number increases further stable liquid + liquid demixing will be obscured completely by solidification of the higher normal alkane and consequently a UCEP does not exist any longer. For a detailed discussion on this subject reference should be made to the papers cited previously.

So far experimental work has been concentrated on those binaries in which partial miscibility in the liquid phase occurs. This paper, however, reports on a binary without the occurrence of the three-phase behaviour liquid + liquid + vapour.

In the underlying investigation the carbon number of the higher normal alkane has been chosen as low as 16. To the best of our knowledge no experimental data on the binary ethane + hexadecane are available in the literature that allow a comparison with the data obtained in this investigation.

PHASE BEHAVIOUR OF MIXTURES OF ETHANE AND HEXADECANE

Specovius et al. (1981) discussed the fact that mixtures of ethane and higher n-alkanes up to heptadecane are completely miscible in the liquid phase. This type of phase behaviour can most conveniently be represented by means of a p, T, x projection, shown schematically in Fig. 1. In this figure A and B refer to ethane and hexadecane respectively. It can be seen that partial miscibility in the liquid phase will not occur and consequently a three-phase equilibrium liquid + liquid + vapour (l_1l_2g) does not exist. The three-phase equilibrium solid hexadecane + liquid + vapour (s_Blg) runs continuously from the quadruple point s_As_Blg through a maximum in pressure to the triple point of hexadecane. Also the critical locus l=g in this binary

Fig. 1. Schematic p, T, x projection of the phase behaviour of the binary ethane + hexadecane (A, ethane; B, hexadecane).

has a continuous course from the critical point of ethane to the critical point of hexadecane.

EXPERIMENTAL DETAILS

The experimental work has been carried out in a Cailletet apparatus. With this equipment pressures up to approximately 18 MPa are possible and a temperature region from 250 K up to 450 K can be covered. A detailed description of this equipment was given by van der Kooi (1981), de Loos et al. (1983) and Peters (1986). The experimental techniques and procedures to determine the various types of phase equilibria have been discussed in detail by Glaser et al. (1985), Peters (1986) and Coorens et al. (1988).

For pressures lower than 5.0 MPa the accuracy was 0.002 MPa, and for pressures above this value an accuracy of 0.01 MPa could be attained. Over the whole temperature range of interest, the temperature could be determined to an accuracy within 0.01 K. The experimental procedure for

TABL	.E 1
------	------

Experimental p, T data of the two-phase equilibrium vapour + liquid (x, mole fraction hexadecane in the liquid phase)

Т (К)	p (MPa)	<i>T</i> (K)	p (MPa)
x = 0.054			
262.25	1.748	341.21	9.216
263.22	1.792	350.67	10.373
264.84	1.866	360.35	11.447
265.77	1.910	370.08	12.442
266.70	1.954	370.44	12.467
267.67	2.003	370.67	12.491
268.55	2.047	371.18	12.540
269.37	2.086	373.06	12.722
274.49	2.361	374.93	12.883
278.75	2.601	389.19	14.085
283.38	2.905	399.31	14.786
288.44	3.248	411.26	15.477
293.41	3.611	422.23	15.576
303.21	4.440	422.36	15.992
312.89	5.391	432.29	16.316
322.81	6.681	444.20	16.610
332.84	8.078		
x = 0.125			
268.00	1.928	337.51	7.920
272.85	2.153	342.56	8.560
277.80	2.418	342.87	8.613
282.48	2.683	347.34	9.165
282.71	2.708	352.41	9.770
287.78	3.021	352.89	9.809
292.64	3.351	357.13	10.540
298.65	3.805	362.21	10.920
303.65	4.205	362.96	10.956
308.88	4.690	372.99	11.956
312.80	5.065	383.02	12.967
317.79	5.560	393.05	13.839
322.78	6.120	403.08	14.624
327.66	6.705	413.12	15.271
332.57	7.300		
x = 0.208			
270.89	1.901	352.62	8.472
272.83	1.986	362.67	9.502
274.15	2.051	372.65	10.492
277.58	2.221	382.74	11.424
282.57	2.486	392.68	12.291
292.50	3.066	402.72	13.080
302.38	3.746	412.73	13.801
322.64	4.556	422.79	14.439

T (K)	p (MPa)	<i>T</i> (K)	p (MPa)	· · · · ·
332.44	6.371	432.81	15.003	
342.24	7.376	442.87	15.483	
342.33	7.381	452.94	15.890	
342.68	7.442			
x = 0.282				
275.14	1.833	342.96	6.007	
275.69	1.857	352.80	6.791	
276.82	1.906	362.83	7.576	
279.42	2.019	372.83	8.355	
283.56	2.202	382.78	9.106	
288.42	2.437	392.80	9.836	
293.39	2.692	402.83	10.527	
298.44	2.957	412.84	11 180	
303 29	3 236	422.88	11 793	
313.16	3 849	433.04	12 342	
323.08	4 531	442.91	12.5 12	
332.90	5.242	452.97	13.273	
x = 0.394				
270.31	1 508	361 53	5 177	
279.51	1.598	371 37	5.96/	
282 01	1.012	381.15	6.483	
287.85	1.750	200.02	7.019	
207.05	2.902	390.93 400 72	7.018	
292.15	2.000	400.72	9.003	
212.05	2.405	410.55	8.003 8.404	
312.30	2.922	420.39	8.494 8.010	
222.30	3.302	430.39	0.289	
22.02 241.50	3.907	439.41	9.288	
351 57	4.372 4.887	449.95	9.700	
x - 0 561				
x = 0.501	1 224	242 21	2 760	
204.11	1.224	342.21	2.709	
204.24	1.234	332.04	2 202	
203.30	1.204	301.84 271.82	3.392 2.716	
287.51	1.297	3/1.83	3.715	
292.37	1.410	381.85	4.038	
297.35	1.533	391.79	4.352	
302.00	1.645	401.77	4.661	
308.24	1.828	411.80	4.965	
313.98	1.985	422.04	5.269	
318.00	2.098	432.14	5.549	
323.81	2.264	442.17	5.818	
327.80	2.377	452.50	6.063	
332.73	2.524			

TABLE 1 (continued)

$\overline{T}(\mathbf{K})$	p (MPa)	<i>T</i> (K)	p (MPa)	
x = 0.801				
289.14	0.536	352.68	1.164	
293.09	0.560	353.02	1.148	
298.11	0.599	357.61	1.225	
303.10	0.648	363.36	1.291	
308.15	0.698	374.81	1.412	
313.27	0.752	384.83	1.522	
318.52	0.800	394.07	1.644	
322.52	0.838	403.46	1.742	
327.97	0.899	413.46	1.840	
333.06	0.951	423.18	1.958	
338.27	1.005	433.21	2.066	
342.90	1.056	443.12	2.164	
347.84	1.115	453.15	2.262	

TABLE 1 (continued)

preparing the samples, as described previously by Peters et al. (1987b), makes possible an accuracy of 0.002 in the mole fraction.

The ethane used in this work was an AGA product with a minimum purity of 99.995 mol.%. This purity was verified by measuring the saturated vapour pressure curve. Excellent agreement with measurements of Douslin and Harrison (1973) was obtained. The hexadecane used was a Merck product and its purity was specified to be better than 99.0 mol.%. From gas chromatography as well as differential scanning calorimetry it was found that the purity of the hexadecane was at least 99.0 mol.%. Both chemicals were used without further purification.

EXPERIMENTAL RESULTS

For seven different overall compositions two-phase boundaries vapour + liquid (lg) and solid hexadecane + liquid (s_B l) have been determined experimentally. In Table 1 the bubble points (lg data) and in Table 2 the points of crystallization (s_B l data) are summarized. A graphical representation of the data of Tables 1 and 2 is shown in Fig. 2. In this figure the full curves are best polynomial fits to the experimental data. Figure 2 also shows that intersection of a lg boundary with the corresponding s_B l boundary — i.e. boundaries of the same overall composition — results in a point of the three-phase equilibrium solid hexadecane + liquid + vapour (s_B lg). In Table 3 these points of intersection are given. The three-phase equilibrium s_B lg was also measured directly in a similar way as discussed previously by Peters (1986). A disadvantage of the latter method is that only *p*, *T* data of this

Fig. 2. Experimental data (\circ) of lg and s_Bl two-phase boundaries. (\bullet) points of intersection between corresponding isopleths. Full curves are obtained by least squares polynomial fit.

TABLE 2

T (K)	p (MPa)	<i>T</i> (K)	p (MPa)	
x = 0.054				
262.27	2.000	262.26	10.000	
262.27	6.000	262.26	14.000	
x = 0.125				
267.77	3.250	268.19	7.250	
267.87	5.050	268.22	8.750	
267.91	5.450	268.32	8.750	
267.91	5.350	268.32	9.350	
267.95	5.850	268.33	7.650	
267.97	5.850	268.33	8.050	
268.11	5.950	268.50	9.750	
268.19	7.650			
x = 0.208				
271.02	3.100	271.55	5.900	
271.14	3.850	271.75	7.000	
271.18	3.750	271.95	8.150	
271.35	4.950	272.14	9.100	
271.49	5.900			
x = 0.282				
275.17	3.800	276.43	9.600	
275.59	5.600	276.89	11.500	
276.00	7.600			
x = 0.394				
279.31	2.500	281.03	10.300	
279.94	5.500	281.51	12.400	
280.54	8.100	281.99	14.400	
x = 0.561				
283.67	1.700	285.08	7.600	
284.10	3.500	285.43	9.200	
284.56	5.400	286.39	13.400	
284.91	6.900			
x = 0.801				
288.66	1.820	290.22	8.200	
289.24	4.200	290.89	11.000	
289.73	6.200	291.32	12.600	

Experimental p, T data of the two-phase equilibrium solid hexadecane + liquid (x, mole fraction hexadecane in the liquid phase)

equilibrium can be obtained. In Table 4 the p, T data of the three-phase equilibrium s_B lg are given. Figure 3 compares the data from Table 3 and Table 4.

TABLE 3

T (K)	p (MPa)	x	
262.29	1.804	0.054	
267.53	1.890	0.125	
270.80	1.923	0.208	
274.66	1.820	0.282	
279.12	1.597	0.394	
283.55	1.205	0.561	
288.28	0.522	0.801	

p, T, x data of the three-phase equilibrium solid hexadecane+liquid+vapour (x, mole fraction hexadecane in the liquid phase)

TABLE 4

p, T data of the three-phase equilibrium solid hexadecane + liquid + vapour

T (K)	p (MPa)	<i>T</i> (K)	p (MPa)	
263.96	1.789	279.87	1.521	
265.69	1.846	281.75	1.348	
268.14	1.887	283.64	1.125	
271.81	1.890	285.53	0.837	
273.71	1.846	288.22	0.515	
275.57	1.787	289.22	0.356	
277.96	1.660	290.24	0.182	

Fig. 3. Experimental data of the three-phase equilibrium solid hexadecane + liquid + vapour. Open circles are taken from Table 4 and the open squares are taken from Table 3. Full curve is a best fit to the experimental data.

DISCUSSION

It has already been pointed out that no experimental data are available in the literature for comparison.

In comparison with the lg points of Table 1 the s_Bl data points of Table 2 are somewhat less accurate; the mole fraction of 0.054 especially provides rather inaccurate experimental results. This is caused by the steepness of the s_Bl -boundary (see Fig. 2). Figure 3 compares the data of the three-phase equilibrium s_Blg obtained by intersection (Table 3) with the experimental data obtained by direct measurements (Table 4). From this figure it can be concluded that both kinds of experimental data are in complete agreement.

REFERENCES

- Coorens, H.G.A., Peters, C.J. and de Swaan Arons, J., 1988. Phase equilibria in binary mixtures of propane and tripalmitin. Fluid Phase Equilibria, 40: 135–151.
- Douslin, D.R. and Harrison, R.H., 1973. Pressure, volume, temperature relations of ethane. J. Chem. Thermodyn., 5: 491–512.
- Estrera, S.S. and Luks, K.D., 1987. Liquid-liquid-vapor equilibria behavior of certain ethane+n-paraffin mixtures. J. Chem. Eng. Data, 32: 201-204.
- Estrera, S.S., Arbuckle, M.M. and Luks, K.D., 1987. Solubility and partial miscibility of ethane in certain hydrocarbon liquids. Fluid Phase Equilibria, 35: 291-307.
- Glaser, M., Peters, C.J., van der Kooi, H.J. and Lichtenthaler, R.N., 1985. Phase equilibria of (methane + n-hexadecane) and (p, V_m, T) of n-hexadecane. J. Chem. Thermodyn., 17: 803–815.
- van der Kooi, H.J., 1981. Metingen en berekeningen aan het systeem methaan-n-eicosaan. Ph. D. Thesis, Delft University of Technology.
- de Loos, Th.W., van der Kooi, H.J., Poot, W. and Ott, P.L., 1983. Fluid phase equilibria in the system ethylene + vinylchloride. Delft Progr. Rep., 8: 200-213.
- Luks, K.D., 1980. Experimental techniques in solid-liquid equilibrium. Proc. 2nd Int. Conf. on Phase Equilibria and Fluid Properties in the Chemical Industry, West Berlin.
- Luks, K.D., 1986. The occurrence and measurement of multiphase equilibria behavior. Fluid Phase Equilibria, 29: 209–224.
- Peters, C.J., 1986. Phase behaviour of binary mixtures of ethane + n-eicosane and statistical mechanical treatment of fluid phases. Ph. D. Thesis, Delft University of Technology.
- Peters, C.J., Lichtenthaler, R.N. and Swaan Arons, J. de, 1986. Three phase equilibria in binary mixtures of ethane and higher n-alkanes. Fluid Phase Equilibria, 29: 495–504.
- Peters, C.J., de Roo, J.L. and Lichtenthaler, R.N., 1987a. Measurements and calculations of phase equilibria of binary mixtures of ethane + eicosane. Part I: Vapour + liquid equilibria. Fluid Phase Equilibria, 34: 287-308.
- Peters, C.J., de Roo, J.L. and de Swaan Arons, J., 1987b. Three-phase equilibria in (ethane + pentacosane). J. Chem. Thermodyn., 19: 265–272.
- Peters, C.J., Kooi, H.J. van der and de Swaan Arons, J., 1987c. Measurements and calculations of phase equilibria for (ethane + tetracosane) and (p, V_m^*, T) of liquid tetracosane. J. Chem. Thermodyn., 19: 395–405.
- Peters, C.J., Spiegelaar, J. and de Swaan Arons, J., 1988. Phase equilibria of ethane + docosane and molar volumes of liquid docosane. Fluid Phase Equilibria, 41: 245–256.
- Specovius, J., Leiva, M.A., Scott, R.L. and Knobler, C.M., 1981. Tricritical phenomena in quasi-binary mixtures of hydrocarbons. 2. Binary ethane systems. J. Phys. Chem., 85: 2313–2316.