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Abstract

This paper presents a boundary element method for modelling contaminant transport of a

contaminant species in porous media which consists of both fractured and non-fractured
material. In the fractured material, blocks of solid matrix comprising the parent soil material
are assumed to be separated by discontinuities in the form of ®ssures, fractures or joints. The

method developed in this paper utilises a double porosity model to deal with contaminant
transport in the presence of the discontinuities and solid blocks. The underlying assumption
of a double porosity model is that the solid matrix blocks, said to have the primary porosity,

constitute one continuum while the network of discontinuities, the secondary porosity, form
the other continuum. Flux transfer between the two interacting continua is represented by a
source/sink term in the governing equation. When there are no discontinuities, the material

reduces to a single continuum with one porosity and so the formulation is able to deal with
deposits which consist of both ®ssured and non-®ssured material. This approach is used to
develop a boundary element technique which can enable a wide range of problems of practical
interest to be analysed. # 1998 Elsevier Science Ltd.. All rights reserved.
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1. Introduction

In many practical situations involving contaminant transport in soil and rock, the
properties of the porous media are known to vary widely. It is therefore conceivable
that the permeability and dispersivity values between any two locations within short
distances in a problem domain may di�er by several orders of magnitudes, this
could be due to either the signi®cantly di�erent properties of the parent materials or
it could also be due to the presence of (or lack of) discontinuities e.g. joints, frac-
tures and ®ssures within the parent materials. In the case of land®lls for example, the
integrity of clay layers may be compromised by the presence of desiccation and
shrinkage cracks which can a�ect the e�ectiveness of the barrier adversely. It has
also been reported that in clayey tills where many land®ll or waste sources are to be
situated structural defects are found to occur widely (e.g. [6,17,8]). The fact that
material non-homogeneity and discontinuities are present quite regularly in the
porous media and that they can have signi®cant impact on the contaminant trans-
port process suggest that it is both useful and necessary to develop appropriate
models which take account of these e�ects.
In an earlier paper, Leo and Booker [10] have presented a boundary element

method for analysing contaminant transport in fractured porous media in which the
sets of fracture planes are assumed to be orthogonal to each other. Leo and Booker
[11,12] have also presented a boundary element method for the analysis of non-
homogeneous non-fractured porous media. In this paper, it will be shown that both
techniques can be combined to develop a more general boundary element technique
which may be used to analyse sites consisting of zones of a number of di�erent
materials which may be either ®ssured or non-®ssured. While Rowe and Booker [16]
have shown that a ®nite layer method can be formulated for a system consisting of
both fractured and unfractured uniform layers of soil, proving to be a valuable tool
in many cases, however the boundary element method developed here is more gen-
eral and so is able to deal with more complex geometries in practice which cannot be
covered by the ®nite layer method. For example, a land®ll which is embedded in a
soil deposit must be treated as a surface source when using the ®nite layer method
but the embedment is easily modelled using the boundary element method.

2. Fractured and non-fractured porous media

The theories relating to a double porosity model of contaminant transport in
fractured material have been discussed in detail elsewhere previously (e.g.
[1,4,7,10,14,15,18,21]).
In the model proposed by Rowe and Booker [14,15], the fracture planes are

assumed to be orthogonal to each other. Fig. 1 shows a schematic diagram of the
fracture system where the fracture spacings are denoted by 2H1, 2H2, 2H3 and the
e�ective apertures are shown as 2h1, 2h2, 2h3. Set 1 of the fractures is parallel to the
~y ~z plane, set 2 to the ~z ~x plane and set 3 to the ~x ~y plane and where ~x; ~y; ~z are a set of
local axes.
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For a homogeneous fractured porous media where the groundwater advection is
temporally steady and spatially uniform, the equation of contaminant transport in
the local co-ordinate � ~x; ~y; ~z� axes is given by

r�DarC� ÿ VarC � �nf � �fKf ��@c
@t
� 
�f c� � q �1�

where, Da, `e�ective' tensor of hydrodynamic dispersion. The components of the
`e�ective' tensor are given by Leo and Booker [10]:

Da ~x ~x � �D0 � �LV ~x� h2
H2
� h3
H3

� �
;

Da ~y ~y � �D0 � �LV ~y� h3
H3
� h1
H1

� �
;

Da ~z ~z � �D0 � �LV ~z� h1
H1
� h2
H2

� �
;

Daij � 0 when i 6� j and i, j spans the index set � ~x; ~y; ~z�, D0, coe�cient of molecular
di�usion, �L, longitudinal dispersivity in the fractures, Vi, component of the seepage
velocity in the direction of ith co-ordinate axis, r=�@=@ ~x; @=@ ~y; @=@ ~z�T, Va, vector of
the components of the Darcy velocity, nf= h1=H1 � h2=H2 � h3=H3 is the fracture
porosity�f=1=H1 � 1=H2 � 1=H3 represents the surface area per unit volume, Kf,
linear distribution coe�cient de®ned as the mass of contaminant sorbed per unit
area of surface divided by the concentration of the contaminant, 
�f =
f=Rf , 
f sum
of the ®rst order radioactive and biodegradation constants, Rf=�1� �fKf=nf�, the
retardation coe�cient due to adsorption on the surface walls of the fractures.

Fig. 1. Fracture system in porous media.
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The quantity q is the rate at which the contaminant migrates into the matrix per
unit volume of the fracture-matrix system and it can be conceptualised as follows in
a simple experiment in which it is assumed that fracture-wall adsorption, con-
taminant decay and biodegradation and other sources and sinks are not present.
Suppose that the background concentration is identically zero everywhere initially
and the concentration of the fracture set is increased instantaneously at t=0 to cf0
and held constant, then the quantity of contaminant entering the matrix will be
proportional to the fracture concentration but will vary with time so that,

q t� � � cf0� t� �; �2�
where �(t) can be determined by monitoring the amount of contaminant which must
be added to maintain the fracture concentration constant. If the fracture con-
centration varies with time and it is assumed that the process is a linear hereditary
one then the Boltzmann superposition principle can be used to show that,

q�t� � cf0��t� �
�t
0

��tÿ �� @cf ���
@�

d�: �3a�

This relationship can be conveniently expressed in terms of a Laplace transform (Eq.
(4)) and it is found

q � scf�: �3b�

A theoretical value of the quantity � can be derived by assuming that the solid
matrix acts as storage blocks di�used into by contaminant from the surrounding
fractures. It may be seen to represent the rate at which contaminant di�uses into the
matrix for a unit increase of the contaminant concentration in the surrounding
fractures. The simplicity of Eq. (3b) as well as a number of other reasons which have
been elaborated ([1,14,9]) make it desirable to formulate the equations in Laplace
transform space. Expressions for the Laplace transform of q and � have been
derived previously ([1,14,9]).
Taking the Laplace transform

c �
�1
0

eÿstc�x; y; z; t� dt �4�

of Eq. (1), it is found that,

r�DarC� ÿ VarC � �nf � �fKf ��s� 
�f � Cÿ c0
s� 
�f

� �
� q �5�

and following Rowe and Booker [14,15], the Laplace transform of q (the form of the
expression below applies more generally for a case with fracture-wall adsorption,
contaminant decay and/or biodegradation) is found to be,

q � �s� 
�m�� cÿ c0s� 
�f
ÿ � �6�
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where, 
�m=
m=Rm, 
m, the sum of the decay and biodegradation constants for the
contaminant species in the solid matrix, Rm=1� �mKm=nm is the retardation coef-
®cient of the matrix, nm, the porosity of the solid matrix, Km, the distribution coef-
®cient of the solid matrix.
It is perhaps worth pointing out at this stage that the behaviour of a non-fractured

material can be recovered from that of a fractured material merely by setting q to zero
and then replacing the parameters for the fractured material by the corresponding
parameters for the non-fractured material, this leads to the equations [11,12]

r�Darc� ÿ Varc � �n� �Kd��s� 
�� cÿ c0
s� 
�

� �
; �7�

where, Da, `e�ective' hydrodynamic dispersion tensor of the contaminant in the non-
fractured material. The coe�cients of the `e�ective' hydrodynamic dispersion tensor
for an isotropic material are de®ned as the product of the porosity and the normal
hydrodynamic dispersion tensor

Dakl � n D0 � �TV� ��kl � �L ÿ �T� �VkVl

V

� �
;

V, magnitude of the seepage velocity, �T, coe�cient of tranversal dispersivity, n,
porosity of the non-fractured material, Va, Darcy velocity vector in the non-frac-
tured material, �, dry density of the non-fractured material, Kd, linear distribution
coe�cient of the sorbed contaminant onto the solid grains of the non-fractured
material 
*= 


Rd
, 
, the sum of decay and biodegradation coe�cients of the con-

taminant in the non-fractured material, Rd=1� �Kd=n, the retardation coe�cient
in the non-fractured material.
It can be observed that the general form of Eq. (5)Eq. (7) remains identical thus

enabling a boundary element method to be developed which can accommodate both
fractured and non-fractured materials.

3. Governing equations for zoned porous media

For prismatic land®lls which are commonly found in practice, it will su�ce to
consider only plane conditions. The attention in this paper will therefore be restric-
ted to developing a boundary element method for plane analysis only. The porous
media will usually consists of zones of several di�erent materials, some of which
may be fractured while others are not. Each zone will be assumed to consist of fairly
homogeneous material. In each zone j, the Laplace transform equation of con-
taminant transport for a single species in local ( ~x; ~z) space is given by,

r�Dajrc� ÿ Vaj �rc � �j cÿ c0j
�j

� �
; �8�
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where for de®niteness, a subscript j has been added to each of the quantities de®ning
the properties in zone j. For a non-fractured zone it follows from Eq. (7) that:

�j � �nj � �jKdj��s� 
�j �; �9a�
�j � s� 
�j ; �9b�

and for a fractured zone it follows from Eq. (5)Eq. (6) that:

�j � nf jRf j�s� 
�f j� � �j�s� 
�mj�; �10a�

Rf j � 1� �f jKf j

nf j
; �10b�

�j � s� 
�f j; �10c�

The local � ~x; ~z� co-ordinates are related to the global (x,z) co-ordinates as follows,

~x � x cos �j � z sin �j;

~y � ÿx sin �j � z cos �j;
�11�

where yj is the angle between the local and global co-ordinate system. Thus Eq. (11)
can be used to perform a co-ordinate transform between the global and local co-
ordinate systems.
If the local co-ordinate system is chosen so that the local axes are parallel to the

principal directions of Daj, then Eq. (8) reduces to,

Da ~x ~xj
@2c

@ ~x2
�Da ~z ~zj

@2c

@ ~z2
ÿ Va ~xj

@c

@ ~x
ÿ Va ~zj

@c

@ ~z
� �j cÿ c0j

�j

� �
�12a�

and the normal component of the mass ¯ux on the boundary is given by,

f ~n � Va ~njcÿ �Dajrc�Ij �12b�

where, Va ~nj, component of Darcy velocity normal to the boundary of zone j, Ij, unit
normal vector to the boundary of zone j. Now suppose that,

cp � �j �13�
is a particular solution of Eq. (12a)Eq. (12b). The simplest and commonest case will
be when the initial concentration in the zone c0j is spatially constant, then it is easily
found that cp � c0j=�j. It follows from Eq. (13) that,

�c � cÿ �j �14�
satis®es the equation,

Da ~x ~xj
@2�c

@ ~x2
�Da ~z ~zj

@2�c

@ ~z2
ÿ Va ~xj

@�c

@ ~x
ÿ Va ~zj

@�c

@ ~z
� �j�c �15a�

and the normal component of the mass ¯ux, f ~n�j on the boundary, due to sj is,
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f ~n�j � Va ~nj�j ÿ �Dajr�j�Ij
so that,

! ~n� f ~n ÿ f ~n�j: �15b�
It is possible to reduce Eq. (15a) to the more mathematically convenient modi®ed
Helmholtz equation by using a second series of co-ordinate transforms [9] as follows:

~x � ujX; �16a�
~z � wjZ; �16b�
VaXj � wjVa ~xj; �16c�
VaZj � ujVa ~zj; �16d�
�fN � �wjlx̂jLXj � ujlzjLZj��f ~n; �16e�

where l ~xj, l ~zj and LXj, LZj are the direction cosines of the normals on the boundary of
zone j in the � ~x; ~z� and (X,Z) spaces, respectively, and:

uj � Da ~x ~xj

Daj

� �1=2

; �17a�

wj � Da ~z ~zj

Daj

� �1=2

; �17b�

Daj � �Da ~x ~xjDa ~z ~zj�1=2: �17c�

Furthermore, introducing the change of variable:

�c � �c�e�$jX�ljZ�; �18a�
�f � �f

�
e�$jX�ljZ�; �18b�

where,

!j � VaXj

2Daj
; �19a�

lj � VaZj

2Daj
; �19b�

it is found that Eq. (15a) can be reduced to the familiar modi®ed Helmholtz equation,

Dajr2�c� � Sj�c� �20a�

where,
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Sj � �j �Daj�!2
j � l2j �: �20b�

Thus proceeding formally in the manner outlined in Leo and Booker [11,12], Eq.
(20a) can be used to formulate the boundary integral equation,

"�r0��c��r0� �
�
j

��c��fN ÿ�c�f�N� d �21�
where,

"�r0� �
1 if r0 is within the domain of zone j;
0 if r0 is outside the domain of zone j;
1
2 if r0 lies on a smooth boundary of zone j or its
value is the subtended angle � 2� if the boundary is not smooth;

8>><>>:
r0, position vector of the point of disturbance, ÿj, transformed boundary of zone j in
the (X,Z) space, �c � 1=2�Daj K0

�������������
Sj=Daj

p
R

ÿ �
, the fundamental solution of Eq.

(20a), K0 , modi®ed Bessel function of the second kind of order zero.
�fN � VaNj=2 �c ÿDaj @�c=@N; VaNj, the normal component of the Darcy velocity

on the boundary of zone j in (X,Z) space, R= �Xÿ X0�2 � �Zÿ Z0�2
h i1=2

; X0;Z0=

co-ordinates of the point of disturbance.

A boundary element approximation of the boundary integral equation (21) can be
formulated using conventional techniques widely described in literature (e.g.
[5,2,11,12] and takes the form of,

H�j �c� � G�j �f
�
N; �22�

where Hj
*, Gj

* are the fully populated in¯uence matrices, �c�;�f�N are the vectors of
nodal values on the boundary elements of zone j. If the co-ordinate transformations
in Eq. (11) and the change in variables given in Eqs. (14), (15b), (18a) and (18b) were
reversed, it is found that Eq. (22) can be expressed in natural co-ordinates and in
terms of the nodal values of the variables c; fN as,

Hjc � GjfN � Bj: �23�

The vector Bj arose due to the presence of the non-zero initial concentration in the
zone. Using Eq. (23) the contributions from all the zones are then assembled to form
a global system,

Hc � GfN � B; �24�

where H, G and B are the global in¯uence matrices and vector. It is noted that the
in¯uence matrices in the global system are not fully populated. Eq. (24) is used to
solve for the unknown concentration and normal mass ¯ux on the external bound-
aries and on the interfaces between the zones. Once these values are known the value
of the concentration can be solved at any internal point in the domain.
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It should however be observed that the solution found by applying these equa-
tions will be in the Laplace transform domain and thus has to be inverted to obtain
the solution in the time domain. This is done by performing a numerical inversion of
the Laplace transform using the algorithm by Talbot [19].

4. Application

4.1. Veri®cation

An example of a test problem for verifying the correctness of the codes is given
here. It compares the semi-analytical solutions of the contaminant distribution from
a long elliptical source in the (x,z) space (shown in the inset of Fig. 2) against the
numerical solutions obtained by the boundary element codes. The geometry of the
given elliptical source is a special case in that when it is transformed spatially, the
resulting transformation yields a cylindrical source where the coe�cients of hydro-
dynamic dispersion will be isotropic. Hence it is possible to develop semi-analytic
solutions based on an approach given by Rahman and Booker [13]. The elliptic
source is assumed to have an x-intercept of 7.071 m and a z-intercept of 3.536 m.
Within the source, the initial concentration is given as 1000 mg/l and the di�usion
coe�cient of the contaminant within the source is very large relative to the sur-
rounding soil. It may be seen that in this case, the concentration within the source
will remain spatially uniform but will however diminish with time since the mass of
contaminant within the source is ®nite. The components of the Darcy velocities are

Fig. 2. Test problem 1 ± comparison of BEM and semi-analytic solutions in fractured porous media.
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assumed to be 0.08 and 0.02 m/a in the x and z directions, respectively. The sur-
rounding porous media is assumed to be fractured, the fracture and matrix proper-
ties are given in Table 1 where the fractures spacings H1,H2,H3 and the aperture
opening sizes h1, h2, h3 are taken to be along the x,y,z directions, respectively.
Solutions were found in the boundary element method using a total of 320 con-

stant-valued boundary elements. As shown in Fig. 2, the agreement between the
semi-analytical solutions and the boundary element solutions are found to be very
good.

4.2. Illustrative Examples

Two illustrative examples are presented to demonstrate the boundary element
method described herein. To demonstrate the e�ects of the presence of fractures in
the porous media, the ®rst illustrative example considers two cases. In the ®rst case a
20 m� 5 m rectangular repository containing a single species of contaminant with
an initial concentration of 1000 mg/l is situated in surrounding porous medium
which is fractured. For the second case, the same repository is assumed to be foun-
ded in intact (non-fractured) porous medium. In both cases, there is a downward
Darcy velocity of 0.004 m/yr. Two sets of vertical fracture planes (aperture 60 mm,
spacing 0.2 m) are present in the intact material of the fractured material and the
longitudinal dispersivity in the fractures is 1 m.
The e�ective di�usion coe�cient in the intact material of the fractured porous

medium is 0.0003 m2/yr. Fig. 3 gives the distribution of the contaminant at 1000
years for the fractured porous medium. One of the distinguishing features in the
contour plots is the signi®cantly one-dimensional nature of the contaminant migra-
tion in the fractured medium, generally along the direction of the advection velocity,
because of the highly anisotropic values of the coe�cient of hydrodynamic disper-
sion used in the simulation. Compared with Fig. 4, which is for the unfractured case,
the contaminant migration in the fractured material is much faster along the direc-
tion of the advection. This was in spite of a higher value of e�ective di�usion (0.004
m2/yr) used for the intact material in the unfractured case.

Table 1

Test problem 1 ± properties of fractured material

Properties of fractures

D0 (m
2/yr) �L(m) �fKf h1 (m) h2 (m) h3 (m) H1 (m) H2 (m) H3 (m)

0.02 1.0 0 10ÿ3 0.1 10ÿ3 0.1 10ÿ3 0.1

Properties of matrix

Dm(m
2/yr) nm �mKm

0.02 0.1 0
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A second example is presented to demonstrate the use of the boundary element
method to model the e�ects of a proposed single cell land®ll. The dimensions of the
land®ll are shown in Fig. 5 and it is located in an 8 m thick fractured material
underlain by a 2 m thick con®ned aquifer. The physical properties of the land®ll,
liner and aquifer are presented in Table 2 while the properties of the fractured
material are identical to those in Table 1. Initially, the background concentration in
the porous media is assumed to be zero everywhere and in the land®ll, the con-
taminant concentration is speci®ed as 1000 mg/l.
Two design options have been considered viz. (a) no liner is used (b) a 1 m thick

clay liner with adsorptive properties is incorporated in the land®ll design. The ¯ow
regime is assumed to be directed downwards from the base of the land®ll towards
the aquifer below due to the presence of a 1 m head di�erence. In the aquifer, the
¯ow is assumed to be predominantly in the horizontal direction.

4.3. Design case (a)

In this case, no liner is used in the land®ll design. The fractured material is taken
to have a hydraulic conductivity value of 1.78� 10ÿ7 cm/s thus giving a Darcy
velocity in the underlying fractured material of approximately 0.014 m/yr. Using a
total of 276 boundary elements, the boundary element solutions are presented in

Fig. 3. Contaminant distribution for fractured porous medium at 1000 years.
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Figs. 6±8 showing the contaminant distribution at 10, 50 and 100 years after the
start of land®lling. Within 50 years, it is shown that the contaminant plume will
have reached and contaminated the underlying aquifer. Given a Darcy velocity of
0.014 m/yr, the true (or seepage) velocity within the fractures will be 0.7 m/yr (since
the plane velocity in the z-direction is h1/H1+ h2/H2=2� 10ÿ2). Thus, if di�usion
into the solid matrix and mechanical dispersion in the fractures were ignored, it is
interesting to ®nd that the plug ¯ow would contaminate the aquifer in less than 10
years. However as the contaminant contours in Fig. 6 show, the plume (de®ned as a

Fig. 4. Contaminant distribution for non-fractured porous medium at 1000 years.

Fig. 5. Pro®le beneath proposed land®ll.
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contour of 100 mg/l) would not have reached the aquifer at the elapsed time of 10
years. This is largely due to the attenuation of the concentration pro®le arising from
the di�usion of the contaminant into the solid matrix.

4.4. Design case (b)

Several options may be considered for improving the performance of the land®ll
design. The common methods include using a more impervious clay layer as a liner
below the base of the land®ll. In this design case, a 1 m thick clay liner with sorptive
properties ��jKdj � 5� has been incorporated in the design. The composite liner-
fractured soil will result in a Darcy velocity of about 0.004 m/a, assuming that the
hydraulic conductivity of the liner is one-tenth the hydraulic conductivity of the
fractured soil (i.e. 1.78� 10ÿ8 cm/s). Using a total of 346 constant-valued boundary
elements, solutions have been obtained for this design case again for 10, 50 and 100
years after start of land®lling. Unlike the previous case, it is observed that con-
taminant distribution is now much more contained within the land®ll after an
elapsed time of 10 years as shown in Fig. 9. It would seem that the clay liner with its
adsorptive properties has successfully been able to prevent the contaminant plume

Table 2

Properties of non-fractured zones

Zone Doj (m
2/yr) �Tj (m) aLj (m) nj rjKdj Vaxj (m/yr) Vazj (m/yr)

Land®ll 1.0 0 0 1.0 0 0 0

Liner (Case b) 0.005 0.01 0.1 0.4 5 0 0.004

Aquifer 1.0 0.2 0.2 2.0 0.35 1.4 0

Fig. 6. Design case (a) ± contaminant distribution at 10 years.
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from breaking through into the aquifer at the elapsed time of 50 and 100 years
(Figs. 10 and 11). The results suggest that the clay liner has considerably improved
the performance of the land®ll.

5. Conclusion

A boundary element method has been presented for analysing contaminant
transport in porous media which may or may not be fractured. To deal with the

Fig. 7. Design case (a) ± contaminant! distribution at 50 years.

Fig. 8. Design case (a) ± contaminant distribution at 100 years.

178 C.J. Leo, J.R. Booker / Computers and Geotechnics 23 (1998) 165±181



fractured material, a double porosity model has been used. A Laplace transform and
a series of co-ordinate transforms are then used to formulate a boundary integral
equation from which the system of algebraic boundary element equations can be
obtained. As an illustrative example, the boundary element method developed has
been used to help assess the design of a land®ll.
For further reading please see references [3,20].

Fig. 9. Design case (b) ± contaminant distribution at 10 years.

Fig. 10. Design case (b) ± contaminant distribution at 50 years.
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