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Predicting the Occurrence of Endangered 
Species in Fragmented Landscapes 
Niklas Wahlberg,* Atte Moilanen, likka Hanski 

Reliable prediction of metapopulation persistence in fragmented landscapes has be- 
come a priority in conservation biology, with ongoing destruction of habitat confining 
increasing numbers of species into networks of small patches. A spatially realistic 
metapopulation model, which includes the first-order effects of patch area and isolation 
on extinction and colonization, has been tested. The distribution of an endangered 
butterfly was successfully predicted on the basis of parameter values estimated for a 
well-studied congeneric species. This modeling approach can be a practical tool in the 
study and conservation of species in highly fragmented landscapes. 

Habitat destruction around the world (1) 
often leaves the remaining landscape se- 
verely fragmented (2), a condition that ag- 
gravates the threat to the survival of species 
that originally occupied more extensive and 
continuous habitats (3). Some species may 
nonetheless persist as metapopulations (4), 
assemblages of local populations inhabiting 
networks of habitat patches, even in highly 
fragmented landscapes. The quantitative 
understanding of metapopulation dynamics 
has become critical for the successful man-' 
agement and conservation of scores of en- 
dangered species (5). 

Recently, Hanski developed a spatially 
realistic metapopulation model, called the 
incidence function model (6), which strives 
to combine generality and realism in a 
framework that allows parameter estimation 
and quantitative prediction for real meta- 
populations (6, 7). In the incidence function 
model (8), the probability of local extinction 
is determined by the size of the respective 
habitat patch, which assumes a positive re- 
lation between expected population size and 
patch area. Such a relation is commonly 
observed for animals (9). The probability of 
colonization of an empty patch is deter- 
mined by its isolation from the occupied 
patches and by the sizes of these patches. 
Our recent studies of the Glanville fritillary 
butterfly (Melitaea cinxia) demonstrated that 
the effects of patch area and isolation dom- 
inate in the dynamics of its metapopulations, 
with factors that describe the quality of the 
habitat patches and the surrounding land- 
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scape exerting only relatively minor effects 
(7, 10). Other studies have reached similar 
conclusions (11), although often some at- 
tribute of patch quality has also been found 
to have a significant effect (12). 

The parameters of the incidence function 
model can be estimated from a snapshot of 
patch occupancies (8). In making these es- 
timates, we also assumed that the metapopu- 
lation from which the snapshot was taken 
was not far away from a stochastic steady 
state. This may be a problematic assumption 
for endangered species, many of which may 
be declining after recent habitat destruction. 
Often it is also difficult to collect sufficient 
data on rare species to estimate the parame- 
ters of any model. In this study, we used 
extensive data on metapopulation dynamics 
to test whether parameter values estimated 
for an unendangered butterfly species can be 
used as surrogates when data are unknown 
for a rare and endangered congeneric species. 

The false heath fritillary butterfly, Melitaea 
diamina, is an endangered species in Finland 
(13) and within much of its range in Europe 
(14). It occurs on moist meadows with the 
larval host plant Valeriana sambucifolia. In 
spring 1995, we surveyed its only well-known 
metapopulation in Finland for all suitable 
habitat patches (15). Within an area of 600 
km2 we located 94 suitable patches, of which 
35 were found to be occupied (16). It is 
unlikely that there are any other populations 
outside the study area within several hundred 
kilometers (17). Melitaea diamina is ecologi- 
cally similar to the congeneric M. cinxia (18), 
which we have studied intensively in a large 
network of -1600 habitat patches (7, 19). 
We have estimated the parameters of the 
incidence function model for M. cinxia (7), 
and we now use the published parameter val- 

1536 SCIENCE * VOL. 273 * 13 SEPTEMBER 1996 

This content downloaded from 195.221.106.25 on Fri, 08 Aug 2014 12:29:25 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


I REPORTS 

Table 1. Estimated parameter values (with standard errors) and simulation 
results. The parameters were estimated for four butterfly species (8, 21). For 
each parameter set 20 replicate simulation runs were performed (20): The ML 
value reported here is the log-likelihood error during model iteration, which 
can be calculated from Eq. 4 in (8) by using J, values determined from the 

simulation runs as the proportions of time each patch was occupied during 
iteration. The product ML measures the correspondence between predicted 
and empirically observed patch occupancies (Fig. 1); smaller values indicate 
better fit. Quantities P and PA are the fractions of patches and the pooled 
patch area occupied during the simulation, respectively. 

Parameter values (SE) Fraction of habitat occupied 

Species (mean ? SD) 

x ey2 e y ML P PA 

Melitaea diamina 0.884 (0.257) 0.182 (0.105) 0.014 3.62 66.8 ? 6.4 0.36 ? 0.05 0.44 ? 0.07 
Melitaea cinxia 0.952 (0.271) 0.158 (0.166) 0.010 3.97 65.3 ? 8.1 0.40 ? 0.02 0.50 ? 0.04 
Scolitantides orion 0.964 (0.482) 0.239 (0.323) 0.009 5.04 65.4 ? 9.3 0.33 ? 0.04 0.45 ? 0.08 
Hesperia comma 0.975 (0.206) 0.830 (0.400) 0.009 9.65 85.8 11.9 0.19 0.02 0.32 0.06 

ues for M. cinxia to predict the dynamics of M. 
diamina in the patch network surveyed in 
1995 (20). 

The model predicted very successfully the 
pattern of patch occupancy in M. diamina 
(Fig. 1, A and B). The observed fraction of 
occupied patches was 0.37, whereas the pre- 
dicted value was 0.40 ? 0.04 (mean ? 2 SD). 
The successful prediction is essentially due to 
three clusters of patches, which had high in- 
cidences in the model prediction and a high 
rate of occupancy in reality. We ran the mod- 
el with three other sets of parameter values 
estimated for three species of butterflies (21) 
(Table 1). Parameter values for Scolitantides 
orion slightly underestimated the distribution 
of M. diamina in its patch network (Fig. 1C), 
whereas parameter values estimated for Hes- 
peria comma more clearly underestimated 
patch occupancy in M. diamina (Fig. 1D), 
possibly because these species appear to be 
poorer colonizers than the two Melitaea spe- 
cies (as suggested by the larger values of y in 
Table 1). Thus, although parameter values of 
a congeneric species correctly predicted hab- 
itat occupancy in M. diamina, parameters of 
unrelated species may not do so. Although 
many butterfly species have been studied in- 
tensively in recent years (22), these studies 
have not covered sufficiently large patch net- 
works to allow us to estimate the parameters 
of the incidence function model for species 
other than those in Table 1. 

These results have three important impli- 
cations. First, the results support the notion 
that metapopulation dynamics in highly frag- 
mented landscapes are dominated by the ef- 
fects of patch area and isolation on local 
extinctions and colonizations (7, 23). Sec- 
ond, the successful application of the model 
implies, although it does not suffice to prove, 
that the metapopulation of the endangered 
butterfly M. diamina is close to a stochastic 
steady state, apparently because of fast popu- 
lation turnover rate in relation to the rate of 
environmental change (24). And third, the 
results demonstrate the potential value of us- 
ing information for a more abundant and 
widespread congeneric species to estimate the 

Fig. 1. Patterns of patch oc- 30 C 1 30 
cupancy in the M. diamina A B 
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0 
0 0 ) 

0 
0 

000 0 0 
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cupied and empty patches, 10 * * 

OD 
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respectively. The size of the 
circle is proportional to the S aa ? 
area of the patch. (B) The pre- ? 10 C0 

1 2 
dicted incidences of patch oc- 0 2 300 

10c:30 30 
cupancy for M. diamina, 4 

based on the incidence func- 0 

tion model with parameter val-? 20 
ues estimated for M. cinxia. 2 0 0 0 0 0 0 0 0 

(C) Same as (B) but for Scoli- ?0 0 odo 
0 0 0 0 0 d).o 

0 

tantides orion. (D) Same as (B) 0o0 0 * 0 0 ?o0 0 
0 

but for Hesperia comma. The 10 ? o' O 10 'o 0 o 
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cates the incidence (long-term 
probability of occupancy) of 0 , o ,, 
individual patches: shade gra- 0 10 20 30 0 10 20 30 
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0.0) to black (incidence = 1.0). 

Fig. 2. Consequences of 30 -Q 1.0 
habitat destruction in the M. A 
diamina metapopulation. (A) Qo.8 
Consequence of the de- - 20 
struction of 47 patches '- *o 0.6 
around the edges of the net- *x 
work described in Fig. 1A ; a .4 
(55% of the total area of 0.59 10- 
km2 destroyed). Each de- C 0.2 
stroyed patch is represented 
by anX. The shading of the 0 

10 20 30 LL 0.00 100 200 300 400 
patches is as in Fig. 1 B. (B) Distance (km) Time units 
The results of 10 replicate 30 1.0 
simulations for the patch net- C D 
work.in (A). In each simula- C0.8 D 

0-0.8- 
tion the incidence function 0 X 
model was iterated for 400 0 20 o o 0 00.6 
time units starting from the a) 0 0 

o) U,Oo ? 0 a) 
co0 observed patch occupancy ( 0 0 0 ? 0 4 

pattern shown in Fig. 1A. (C) 10 i - 'cO 0 _ 

Same as (A), except that 15 0 

patches were destroyed in o0 0 0.2 
areas critical to the persis- 0C 
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apopulation (44% of the total Distance (km) Time units 
area destroyed). (D) Same as 
(B), but for the network described in (C). 
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parameters of predictive models for endan- 
gered species, although clearly this approach 
must be used with great caution (25). 

Because the incidence function model suc- 
cessfully predicted the occupancy pattern of 
M. diamina with surrogate parameters (Fig. 1, 
A and B), it would be justified to use the 
model as a practical management tool in this 
case. By changing the number, areas, and 
spatial locations of the habitat patches in the 
model, the likely consequences of habitat al- 
teration to the long-term survival of the spe- 
cies may be explored. As an example, we 
simulated the destruction of patches in the M. 
diamina network either around the edges of 
the network (Fig. 2A) or in more central 
positions (Fig. 2C). Destroying patches 
around the edges had little effect on long- 
term occupancy in the remaining patches 
(Fig. 2B). In this instance, the destroyed 
patches were generally so isolated that they 
played only a small role in the dynamics of the 
metapopulation as a whole. In contrast, de- 
stroying patches in more central positions of 
the network caused the metapopulation to 
collapse (Fig. 2D). 

With such numerical exercises, patches 
and regions that are particularly significant 
to the survival of the species may be identi- 
fied, although the possible value of patches 
that are deemed less critical for metapopula- 
tion survival by this analysis must also be 
considered. We would stress that comparable 
results are not obtained with models that are 
spatially implicit or spatially explicit but un- 
realistic, such as the Levins model or step- 
ping-stone models (26). 

Our results demonstrate that the inci- 
dence function model is a practical tool that 
can be used to predict the occurrence of 
butterflies and similar taxa in fragmented 
landscapes (7). The model is sufficiently 
simple to make parameter estimation realis- 
tic for many species. Furthermore, as a first 
approximation, a single set of parameter val- 
ues may be used for a group of related species, 
such as the butterflies in Table 1, with qual- 
itatively although not necessarily quantita- 
tively correct predictions about metapopula- 
tion responses in changing landscapes. 

The successful application of the inci- 
dence function approach requires that the 
habitat of the focal species occurs in discrete 
and relatively small patches and that these 
patches have local breeding populations as 
stipulated by metapopulation models in gen- 
eral. The incidence function model cannot 
be applied to species with entirely different 
spatial structures, such as patchy populations 
but with panmictic reproduction. With these 
caveats, the incidence function approach 
may serve as the basis for a practical and 
predictive theory of the metapopulation dy- 
namics of species living in networks of dis- 
crete and small habitat patches. 
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