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Abstract

Natural convection in a 2-D vertical cylinder containing an isotropic porous media with internal heat generation

was studied numerically for assessing the e�ect of Darcy's law with and without the Brinkman extension on the
streamlines, isotherms and Nusselt numbers. Two cases were analyzed: (1) insulated walls at the top and bottom of
the cylinder and cooled external walls; (2) isothermally cooled walls at all external surfaces. The e�ect of the

Brinkman extension was signi®cant for high values of Da (10ÿ4±10ÿ1). In addition, the Nusselt number increases
asymptotically as Da decreases. Also, four correlations for the average Nusselt number were derived. # 1999
Elsevier Science Ltd. All rights reserved.

1. Introduction

The phenomena of natural convection in a cylinder
containing a saturated porous media with internal heat
generation, has been analyzed in great detail in the last

ten years, due to the various applications in engineer-
ing [1,2], particularly in the study of grain and cereal
storage, drying and fumigation in silos, where import-
ant problems to analyze are related to the e�ect of the

metabolic heat generation in grains, causing hot spots
that induce fungal growth, grain germination or the
proliferation of insects [1,3]. Other important appli-

cations deal with heat transfer studies in the con®ne-
ment of nuclear wastes, and the analysis and design of
®xed-bed catalytic reactors. Many studies on natural

convection have been published in the literature, and
the papers by Havstad and Burns [4], Prasad and Chui

[5], David et al. [6], Hunt and Tien [7], and Chang and
Hsiao [8], are related to this work. All of these use
Darcy's law to describe the ¯ow in the porous media,

despite this approach does not satisfy the non-slip con-
ditions, neglecting inertial e�ects when they may
become important.
The utilization of Darcy's law implies ¯uid slip at

the walls, since it lacks a di�usive term that considers
the distortion of the velocity pro®les near a solid
boundary. Brinkman [9] suggested that a second-order

term, mH2, could be added to the Darcy's law to
account for the energy losses due to viscous transport,
considering the distortion of the streamlines in the

proximities of impermeable rigid walls. In this form,
Brinkman's extension allows the use of a non-slip con-
dition at the solid wall, which becomes important in
the study of the behavior of high porosity porous

media, although, in many cases the e�ect of viscous
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transport is negligible (porous media with Darcy's

number, Da < 10ÿ4). Ochoa-Tapia and Whitaker [10]

have proposed a jump condition to couple Darcy's law

and the Brinkman extension to the Stokes equation,

obtaining a continuous volume-averaged velocity ®eld.

This provides a theoretical support to the Darcy's law

for the use of a non-slip criterion, and for the coupling

of equations at inter-regional boundaries occurring in

systems with porous medium±¯uid interfaces, like

those at the upper part in a silo [2,9]. On the other

hand, Lauriat and Prasad [11] showed that the Nusselt

number decreases as the Darcy number increases

above 10ÿ5, while maintaining constant the Rayleigh

number and the geometric aspect ratio. Kladias and

Prasad [12] studied the natural convection in a hori-

zontal porous layer heated from below, employing

Darcy's law with the Brinkman±Forchheimer exten-

sion. They found that for Da < 10ÿ5, Nu remains

almost unchanged, however its value increases as

Da>10ÿ5, approaching to an asymptotic value at lar-

ger Da.

The objective of this work is to investigate the e�ect

of the Brinkman extension on Darcy's law, in the

study of natural convection, for two di�erent bound-

ary conditions, in a two-dimensional cylindrical satu-

rated porous cavity with internal heat generation, for

10ÿ10 R Da R 10ÿ1. This includes the range of import-

ance of viscous dissipation (10ÿ4 < Da< 10ÿ1), up to

the limit when inertial e�ects become important

(Da>10ÿ1). The conservation equations are solved

using orthogonal collocation, and the results are com-

pared with those obtained previously by Prasad and

Chui [5].

2. Mathematical formulation and numerical methods

The geometrical system under study is a vertical

cylindrical cavity of radius R and height L, containing

an isotropic and saturated porous media with uniform

volumetric heat generation, as shown in Fig. 1.

Assuming that the external walls of the cylinder are

kept to a constant temperature Tc, two cases are ana-

lyzed:

1. Adiabatic horizontal walls.

2. Isothermally cooled horizontal walls.

Because of the symmetry of velocity and temperature

pro®les with respect to the axial axis of the cylinder,

only the region between 0 < r< R and 0 < z< L is

considered. Moreover, the model is based on the fol-

lowing assumptions:

1. E�ective isotropic medium with constant thermo-

dynamic properties, where viscosity and density cor-

respond to that of the ¯uid, using an e�ective

thermal conductivity for the porous medium.

2. The porous medium is a cavity with rigid imper-

meable walls, therefore there is no ¯uid slip.

3. The interstitial ¯uid is Newtonian, moving in lami-

nar ¯ow, and the system is at steady state.

The corresponding dimensionless conservation

equations are obtained by applying the curl to the

momentum equation, eliminating the pressure term [5],

together with the use of the stream function and vor-

ticity criteria [13]:

Vorticity:

Nomenclature

A height/radius ratio aspect, L/R
Da Darcy number, K/R 2

K permeability of the porous medium, m2

L height of cylindrical cavity, m
Nu Nusselt number, hcR/k
R cylinder radius, m

Ra Rayleigh number for the porous medium,
grbKSR 3/(2mak )

S volumetric heat source, W/m3

u dimensionless velocity, vrR/a, vzR
2/aL.

Greek symbols
z dimensionless axial coordinate, z/L

y dimensionless temperature (TÿTc)/(SD
2/

2k )
x dimensionless radial coordinate, r/R

c dimensionless stream function
o dimensionless vorticity.

Subscripts

c cooled wall
max maximum value
med average value
r radial direction

z axial direction.
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In these expressions, the dimensionless velocities ur and

uz are de®ned in terms of the stream function c as:

ur � ÿ�1=x� @c=@z uz � �A2=x� @c=@x �4a,b�

The corresponding boundary conditions for the steam
function and dimensionless temperature are:

x � 0, c � 0, @y=@x � 0 �5a�

x � 1, c � 0, y � 0 �5b�

z � 0, c � 0, @y=@z � 0 or y � 0 �5c�

z � 1, c � 0, @y=@z � 0 or y � 0 �5d�

On the other hand, Wood's approximation [13] was
used to obtain the boundary conditions for the vor-
ticity term in the momentum equation. The system of

nonlinear elliptic PDE, Eqs. (1)±(3), was discretized
using the method of orthogonal collocation [14]. The
number of interior collocation points selected were:

13 � 13 for low values of the Rayleigh number, and up
to 25 � 25 for high values of Ra (>104), due to the
increasing e�ect of the buoyancy forces as Ra

increases, consequently, increasing the distortion of the
isotherms at the boundaries, a well-known source for
numerical instability [5]. The set of nonlinear algebraic

equations was solved either by using a quasi-Newton
method with LU factorization, or by using nonlinear
relaxation (NLR), via the code ELI-COL [15]. The ac-
curacy of the numerical solution was veri®ed by per-

forming a global energy balance that compares the
heat generated internally versus the heat removed
throughout the external walls of the cylinder.

3. Results and discussion

For the case of natural convection considered in this
study buoyancy forces are produced by the heat gener-

ated at the solid phase, and this term has been
included in the de®nition of the Rayleigh number
(Ra ). For values of Ra< 10 the conductive e�ect

dominates, while for greater values of Ra the generated
heat together with the cooling at the external walls of
the cylinder, induce density gradients in the interstitial

¯uid, causing ¯uid motion. The rate of this motion
increases as the Rayleigh number increases, due to an
increase in heat transfer; therefore, it is expected that
the Nusselt number (Nu ) will be a direct function of

Ra.
As mentioned before, two cases are considered in

this study. Of particular interest is case two, for which

predictions of bicellular ¯ow with Darcy's law are not
found when the Brinkman extension is used, as shown
below.

3.1. Case I. Insulated top and bottom walls

For this case the numerical simulations consider the

parameter range: 0 R Ra R 25,000; 0.5 R A R 5.0 and
10ÿ10 R Da R 10ÿ1. Inside the range for the Darcy's
number, viscous e�ects become more important as Da

approaches the value of 10ÿ1, on the other hand, iner-
tial e�ects become important when Da>10ÿ1, and the
porosity of the solid medium approaches the value

of 1.
Fig. 2 shows the e�ects of the varying Darcy's num-

ber, when Da= 10ÿ1, 10ÿ2, 10ÿ6 and 10ÿ10, on ¯ow

Fig. 1. Geometric system used in this work, with axial sym-

metry.
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Fig. 2. E�ect of the Darcy number on ¯ow patterns and isotherms at A= 1 and Ra= 1000 for insulated top and bottom. (a)

Da= 10ÿ1, (b) Da= 10ÿ2, (c) Da= 10ÿ6, (d) Da= 10ÿ10.
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patterns and isotherms, for Ra= 1000 and A= 1. It
can be observed that for Da= 10ÿ1 (Fig. 2(a)), the

¯ow moves slowly, isotherms present its maximum
values and the heat transfer rate is the lowest, as com-
pared to those for Da = 10ÿ6 and Da= 10ÿ10 (Fig.

2(c) and (d)), for which almost no variation is found in
¯uid velocity and temperature pro®les, as viscous

e�ects become negligible. This is an important di�er-
ence between the predictions obtained with and with-

out Brinkman's extension to the Darcy's law for this
case, as Darcy's law will predict a similar behavior for
the case in Fig. 2(a) as those for cases 2(b)±(d). For

the case of Ra= 5000, the ¯ow moves faster than for
Ra = 1000, therefore, the isotherms exhibit lower

Fig. 3. Behavior of (a) ymax and (b) the average Nusselt number versus the Darcy number for insulated top and bottom walls.
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values due to a larger cooling throughout the vertical
walls. A similar behavior was reported by Lauriat and

Prasad [11] in their study of a rectangular enclosure
with insulated horizontal walls.
In summary, the value of Da = 10ÿ4 represents the

limit where viscous e�ects are important in a porous
medium, and this becomes practically Darcian as Da is
further reduced. This has already been pointed out by
several authors [11,12] for other geometries and has

also been found for this geometric system.

3.1.1. Global heat transfer

To evaluate the heat transfer throughout the walls a
di�erence between the average temperature at the axial
axis of the cylinder (Tmed) and the external wall tem-

perature (Tc) has been used. Then, as a result of the
global energy balance, the average Nusselt number is
de®ned as:

Numed � 1

ymed

�6�

Based on the values of ymax, ymed and Numed obtained,
we concluded that in a pure conductive regime (i.e.,
Ra= 0), Numed=2 for all values of A and Da. Figs.

3(a) and (b) compare model prediction using Darcy's
law with and without Brinkman's extension term,
showing the dependency of ymax and Numed as a func-

tion of Da, for Ra= 1000 and Ra= 5000. Again, the
inclusion of the Brinkman extension term to the
Darcy's law shows a di�erent behavior for ymax and

Numed, when 10ÿ4 < Da< 10ÿ1. The value of ymax

remains practically constant for Da< 10ÿ4, increasing
afterwards for 10ÿ4 < Da< 10ÿ1 when viscous e�ects
become important. In the case of Numed, it shows an

opposite behavior as Ra increases. As expected, ymax is
always located at the center of the top surface. An

empirical expression has been obtained for Numed, in
terms of the Darcy and Rayleigh numbers and the
aspect ratio A, as follows:

Numed � 0:4132Ra0:3884 Aÿ0:4857 Daÿ0:01063 �7�

The relation is valid in the range: 100 R Ra R 10,000,
0.5 R A R 5.0, 10ÿ2 R Da R 10ÿ10. The maximum
error obtained was 12% using values of Ra, A and Da,
with an average error of 5.94%. Eq. (7) cannot be

used for values of Da= 10ÿ1, due to the large error
obtained (25%), suggesting that the behavior in this
region is more complex, as inertial e�ects becomes im-

portant. In comparison, the correlation obtained using
the results from Darcy's law is given by:

Numed � 0:3958Ra0:4168 Aÿ0:4654 �8�

Valid in the range: 100 R Ra R 10,000 and

0.5 R A R 5.0, with an average error of 5.09%. Table
1 compares the values of Numed from Eq. (7) with
those obtained from the numerical simulations, for
selected values of Ra, A and Da. Table 1 also shows

that predictions of the Nusselt number from Eq. (7)
are good, even for values of Ra = 25,000. This con-
®rms the fact that the ¯ow, under these boundary con-

ditions, is stable and unicellular. Prasad and Chui [5]
reported values of Numed for A = 1, 5 and 20. The
®rst two cases are compared with results obtained in

this work and are given in Table 2 for Da = 10ÿ10,
considering that the ¯ow is Darcian [5]. Finally, Fig. 4
compares the variation of Numed as a function of Ra
for {A= 1, Da= 10ÿ8} and {A= 5, Da = 10ÿ10},

Table 2

Values of Numed for selected values of Ra and A

Ra A Numed Prasad and Chui [5] Numed numerical Numed Eq. (7)

100 1 3.155 3.096 3.157

1000 1 7.639 7.435 7.721

10,000 1 19.841 18.762 18.883

100 5 2.513 2.107 1.445

1000 5 5.695 3.608 3.553

10,000 5 14.006 7.979 8.641

Table 1

Comparison between Numed estimated from Eq. (7) and Numed calculated numerically

Ra A Da Numed Eq. (7) Numed numerical % Error

575 155 5.75 � 10ÿ7 4.531 4.766 4.95

2383 83 1.23 � 10ÿ4 10.236 9.926 3.12

25,000 100 1.00 � 10ÿ8 25.703 26.811 4.13
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evaluated with Eq. (7) with those from the numerical
simulations. It can be observed that, as A increases
because of the increase in the height of the cylinder,

the e�ect of the buoyancy forces decrease, reducing
Numed.
The accuracy of the orthogonal collocation method

was successfully tested, obtaining a maximum error
1.97% in the global energy balance closure. Some of
the parameters like Ra, A and Da, were selected to be

the same as those reported by Prasad and Chui [5], to
have a basis for comparison. Also, in this way, the
contribution of the Brinkman extension term has been
assessed.

3.2. Case II. Exterior walls isothermally cooled

For this case, the numerical simulations were per-

formed in the parameter range: 0 R Ra R 10,000,
0.5 R A R 5.0 and 10ÿ10 R Da R 10ÿ1. Fig. 5 shows
streamlines and isotherms when Ra= 5000 and A= 1

for Da= 10ÿ1, 10ÿ2, 10ÿ4 and 10ÿ10. As in the pre-
vious case, the predictions show that the ¯ow rate
increases as Da decreases, until the limiting value of

10ÿ4 is reached, with apparently no further increase as
Da is reduced to 10ÿ10. The corresponding isotherms
show again larger temperatures when Da = 10ÿ1, as a

result of the slower ¯uid motion. Furthermore, bicellu-
lar ¯ow is predicted (Figs. 5(c) and (d)) for
Da < 10ÿ4, which is in agreement with the work of

Prasad and Chui [5]. The di�erence observed between
the predicted temperature and streamline pro®les in
Figs. 5(a) and (b) with those from Figs. 5(c) and (d)

are due to the Brinkman's extension term in the
Darcy's law, which plays no role in the last two cases,
but becomes important in Figs. 5(a) and (b).

3.2.1. Global heat transfer
The Nusselt number is de®ned in terms of a global

energy balance, as in Case I, i.e., considering the di�er-

ence between Tmed and Tc. Because for this case Tmax

is not located at the axial axis, it is necessary to calcu-
late Tmed by a discrete integration. The expression is:

Numed � A

�A� 1�ymed

�9�

Eq. (9) shows that Numed depends on the geometric

aspect ratio, and it can be observed that as the height
of the cylinder increases, the heat transfer throughout
the walls decreases. This can be compared with Eq. (6)

for Case I, where Numed is not given as an explicit
function of the geometrical aspect ratio. The variation
of Numed with respect to Ra, A, and Da presents an

Fig. 4. Comparison of Eq. (7) with numerical values of average Nusselt number as a function of the Rayleigh number for insulated

top and bottom walls.
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analogous behavior as in Case I. On the other hand,
comparing Cases I and II (top and bottom surfaces
insulated and cooled walls, respectively), Numed is

greater in the second case due to the larger heat

removal because of the allowance for a greater heat
transfer area due to the boundary conditions.
Figs. 6(a) and (b) show the behavior of ymax and

Numed, as a function of Da, for Ra = 1000 and

Fig. 5. E�ect of the Darcy number on ¯ow patters and isotherms at A= 1 and Ra= 5000 for isothermally cooled walls. (a)

Da= 10ÿ1, (b) Da= 10ÿ2, (c) Da= 10ÿ4, (d) Da= 10ÿ10.
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Ra= 5000. The magnitude of ymax remains practically
constant for Da= 10ÿ4, increasing afterwards. In the

case of Numed, the inverse behavior is observed. The
explanation for these phenomena has been described
previously; in addition to this, the behavior of ymax

and Numed are related to the viscous transport region
(Da>10ÿ4) and the Darcy-¯ow region (Da< 10ÿ4). It
is important to say that, in this case, ymax is located
within the region de®ned by: 0>x < 1 and
0.5 < x < 1.

Fig. 6. Behavior of (a) ymax and (b) the average Nusselt number versus the Darcy number for isothermally cooled walls.
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For prediction purposes, a correlation was devel-
oped for Numed in terms of Ra, A, Da, by a nonlinear
regression, yielding the following expression:

Numed � 1:837Ra0:2204 Aÿ0:5376 Daÿ0:00492 �10�

The validity range for Eq. (10) is: 100 < Ra < 1000;

0.5 < A< 5.0 and 10ÿ10 < Da < 10ÿ1. Comparing
the predicted values with those numerically obtained, a
maximum error of 5.35% was found, with an average

error of 2.68%. The parameter range in this case is
narrower than the one for Eq. (7), which may be
explained by the ¯ow-transition e�ects in the porous
media (inertial e�ects), that are manifested at

Da= 10ÿ1. Also, we obtained the following expression
for the Nusselt number with the results for Darcy's
law:

Numed � 2:0497Ra0:2163 Aÿ0:5122 �11�

The validity range for Eq. (11) is: 100 < Ra< 1000
and 0.5 < A< 5.0, with an average error of 2.52%.
On the other hand, Table 3 presents an evaluation of

the usefulness of Eq. (10) for predicting Numed, using
parameter values of: Ra, A and Da not used previously
in the computer simulations. A comparison of the
Numed values is presented with those obtained by the

numerical solution of the conservation equations, even
for those cases which are outside of the validity range
of Eq. (10).

4. Conclusions

A numerical study is presented on the natural con-
vection inside a closed cylinder containing an isotropic

porous media with internal heat generation, to assess
the importance of Brinkman's extension included in
the Darcy's law in the region where the viscous e�ects

are important (10ÿ4 < Da < 10ÿ1). The incorporation
of this term allows the ¯ow analysis in the porous
medium when the solid matrix is sparse (high values of

Da ). In this way, the viscous e�ects can also be evalu-
ated as they are manifested on the solid±¯uid interface.
Furthermore, it allows one to support, mathematically,

the non-slip conditions on rigid and impermeable
walls, that constitute most of the boundary conditions

in engineering application problems.
The e�ect of the Darcy number is important for

values in the range 10ÿ1±10ÿ4, becoming negligible for

smaller values, showing the validity of the Darcy's law
within this range, for the geometric system considered
in this study and the like reported elsewhere in the lit-

erature. In Case I, the Nusselt number increases by
reducing Da, approaching to a limiting value when
Da = 10ÿ4. For Case II, a similar situation is

observed, but the magnitude of Numed is greater. On
the other hand, for values of Da near 10ÿ2, they cause
the ¯ow to become unicellular, while at lower values a
bicellular ¯ow appears.

In summary, it has been shown, for this problem in
particular, that a region with important viscous e�ects
at Da>10ÿ4 exists, while as Da decreases, the behavior

of the ¯ow becomes closer to the one described by
Darcy's law, as has been reported previously in the lit-
erature for other geometries. This limit is, in general

terms, independent of the particular values of Ra and
A. Also, correlations have been proposed to estimate
Numed as a function of Ra, A and Da, for the two

cases analyzed. Eqs. (7) and (10) could serve to evalu-
ate, quantitatively, the heat transfer of a problem in
particular considering the Darcy number, while Eqs.
(8) and (11) could serve for Darcian porous media.

However, some experimental data is required to verify
the computed ¯ow patterns and isotherms, and the
range of validity of those correlations.
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