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The modeled transport equation for the joint probability density function (pdf) of the 
velocities and a single scalar composition in a turbulent flow is an integro-differential equation 
in up to seven independent variables and time. Because of its large dimensionality, this 
equatmn may be efficiently solved by a Monte Carlo method. An algorithm is developed that 
allows the pdf equation to be solved in a general orthogonal coordinate system. The method is 
based on a Lagrangian approach in which the behavior of fluid particles in a turbulent flow is 
modeled and particle trajectories are computed m the Monte Carlo solution algorithm. The 
techntque is applied to three self-similar turbulent free shear flows: the plane mixing layer, the 
plane jet, and the axisymmetric jet. Numerical test results are presented which compare the 
new algorithm with earlier methods, verify the statistical error estimates, and demonstrate 
convergence. ((3 1987 Academc Press. Inc. 

I. INTR~DLJCTI~N 

A numerical algorithm is developed for the solution (in general orthogonal coor- 
dinates) of a joint probability density function (pdf) transport equation that arises 
in the study of turbulent fluid flow. The pdf considered is the one-point joint 
probability density function of the Eulerian velocities and scalars, the ‘“velocity- 
composition” joint pdf. The method of modeling and solving a transport equation 
for a pdf as an approach to turbulence closures originated with the work of 
Lundgren [l, 21 and has subsequently been refined and developed by several 
investigators [3-51. Recent papers by Pope and coworkers [6-133 contain 
modeling studies based on the solution of a modeled velocity-composition joint pdf 
equation. These calculations demonstrate the strength of the pdf approach in the 
treatment of complex turbulent flows including those with variable density and 
reaction. A comprehensive account of the pdf method for turbulent flows including 
the Monte Carlo method is provided by Pope [14]. 

At first sight, the pdf method seems to be of little more than academic interest 
due to the apparent difficulty in obtaining solutions to the resulting rno~el~~ 
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equations. Even in constant-property inert flows, the modeled velocity-composition 
joint pdf transport equation (for a single scalar) is an integro-differential equation 
in up to seven independent variables and time. In flows of practical interest, 
analytic solutions are out of the question, and conventional numerical techniques 
(e.g., finite-difference methods) are impracticable. However, it is possible to solve 
the modeled pdf equation by a Monte Carlo method, a numerical method that is 
ideally suited to problems of large dimensionality Cl.5, 163. In the Monte Carlo 
method, computational requirements increase only linearly with the dimensionality 
of the pdf, while for finite-difference methods, it can be estimated that the increase is 
exponential [17]. This technique was originally proposed and developed by Pope 
[17, 141, and its feasibility has been amply demonstrated [613]. But no 
demonstration of convergence of the numerical method has been presented. Monte 
Carlo algorithms have been used for statistically one-dimensional time-dependent 
flows [S, 9, 11, 131 and for statistically two-dimensional boundary-layer type flows 
[lo, 121, both in Cartesian coordinates. In fact, the flows studied by Pope and 
Correa [ 121 and by Pope and Cheng [13] are in cylindrical and spherical coor- 
dinates, respectively, but were solved using a pseudo-Cartesian algorithm. This is 
discussed further at the end of Section IV. 

It is desirable to extend the method to non-Cartesian coordinates. Non-Cartesian 
coordinate systems are convenient in two situations. The most obvious case is a 
flow where boundary conditions or some other physical feature (e.g., body forces) 
are most naturally described in a non-Cartesian frame. The second case is more 
subtle. While the Monte Carlo method is well suited to a large number of dimen- 
sions, there is a computational advantage in minimizing the dimensionality in 
physical space. This dimensionality can sometimes be reduced by introducing a 
transformed coordinate system. It is the latter situation that is of primary interest in 
this paper. The self-similar axisymmetric jet, for example, is statistically three- 
dimensional in Cartesian coordinates, but by a suitable transformation to non- 
Cartesian coordinates, it can be rendered one-dimensional. This flow and two other 
examples are treated in Section IV. 

Another motivation for the development of the new algorithm is that the current 
boundary-layer method is restricted to flows where the streamwise mean velocity is 
nowhere very small compared to a characteristic velocity difference (see Section V); 
it cannot be applied to self-similar jets in stagnant surroundings or to low velocity 
ratio mixing layers (UJU, + 0, Fig. l), flows which are of both practical and 
theoretical interest in the study of turbulence. The computational method used (but 
not explained in detail) by Pope [6, 71 for the self-similar plane jet is similar to the 
technique developed here: the present approach is both a generalization and an 
improvement of the earlier method. 

The contributions of this paper towards the development of solution algorithms 
for the pdf transport equation are as follows. First, a general algorithm is developed 
that allows the modeled pdf transport equation to be solved in non-Cartesian 
orthogonal coordinate systems. Second, the new method is applied to three self- 
similar turbulent flows of practical interest: the plane mixing layer, the plane jet, 
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and the axisymmetric jet. Third, for one flow (the plane mixing layer) it is 
demonstrated that three different solution algorithms, including the new one 
developed here, agree in appropriate limiting cases. And fourth, numerical tests are 
presented that demonstrate convergence of the Monte Carlo method. 

The algorithm developed is independent of the specific models chosen: fairly 
crude models are used here for simplicity. While we focus on a pdf equation that is 
derived from the equations governing turbulent fluid flow, the material concerning 
coordinate system transformations and the discrete representation may be 
applicable to pdf equations or other tensor density equations that arise in di~ere~t 
fields of study. 

We begin in Section II with an overview of the pdf method including basic 
definitions, modeling, and a solution algorithm for Cartesian coordinate systems. In 
Section III, transformation rules to general orthogonal coordinate systems are 
presented and a Monte Carlo method appropriate to these coordinates is 
introduced. This material is difficult and somewhat involved because of the nature 
of the quantities being transformed: we are working with tensor densities, not 
functions. Specific forms for the three self-similar flows mentioned earlier are given 
in Section IV. Section V contains the computational results. A comparison is made 
among three solution algorithms for the self-similar plane mixing layer; conclusions 
are then drawn concerning the limitations of these algorithms. The statistical error 
inherent in the Monte Car10 method is investigated and convergence is 
demonstrated. Finally, a summary and conclusions are given in Section VI. 

II. BACKGROUND 

This section contains a summary of those features of the pdf method, the 
modeling, and the Monte Carlo solution technique that are needed in the develo 
ment of the new numerical algorithm. These are presented in a form appropriate to 
Cartesian coordinate systems. For concreteness, specific models are selected for 
analysis, but the algorithms to be developed in Sections III and IV are not limited 
to these models. Further details on the material in this section can be found in 
Ref. [14]. 

11.1. Pdf Method 

We begin by considering the turbulent flow of a variable density fluid, including 
chemical reaction. The Eulerian velocity, scalar (“composition”), and pressure fields 
are denoted by U(x, t), @(x, t), and p(x, t), respectively. The body force per unit 
mass is g and the rate of increase of @ due to reaction is S. The fluid density is 
denoted by p; zil is the viscous stress tensor and J is the diffusive mass flux vector of 
di. We limit our attention to flows where the fluid properties and S are unique 
functions of the single scalar @ [14]; all information about the flow field is then 
contained in the Eulerian conservation equations for mass, momentum, and the 
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scalar. In Cartesian tensor notation with the usual summation convention on 
repeated indices, these equations are 

aP a(Pui) = o 
at+- ax, 3 (1) 

T+ uj--L-----+& au. 1 azi, I ap 
axI P ax, P ax, 

(2) 

!E+ u*E& -%+s. 
P ax, I 

(3) 

Additional scalars may be included simply by making @ be a vector-valued quan- 
tity. Then p = p(m), S = S(O), etc. 

Due to the difficulty in obtaining full solutions of these equations in a turbulent 
flow, and because it is generally only mean quantities that are of interest, a 
statistical approach is usually adopted [14, 181. The approach of interest here is the 
pdf method. The goal of the pdf method is to determine the evolution of the 
velocity-composition joint pdff(V, F; x, t). This is the joint probability density of 
the event {U(x, t) = V, @(x, t) = vl}. Knowing the one-point joint pdf is equivalent 
to knowing all one-point statistics of the Eulerian velocity and scalar fields. This 
pdf is a tensor density in the 4-dimensional velocity-composition space; it is also a 
function of position and of time. The pdf is defined such that when multiplied by an 
infinitesimal volume element in the velocity-composition space (denoted by dV dY) 
the result is the probability that the Eulerian velocities and scalar at position x and 
time t lie inside this element: 

f(V, ul; x, t) dV d!P= Prob{ V, < Ui(x, t) < V, f dl/,, i= 1, 2, 3; 

Y-c @(x, t) < Y+ d!Pj. (4) 

The properties of the pdf follow from this definition: it is nonnegative since it 
represents a probability 

f(V, e x, t ) B 0; (5) 

over the entire 4-dimensional velocity-composition space it integrates to unity 

SJ’ f (V, Y; x, t) dV dY = 1; (6) 

and, most importantly, the mean of any function of the velocities and scalars 
QCW, t), @(x, t) 
weighted integral 

1 can be expressed as an integral over the pdf, or as a probability 

Angled brackets ( ) are used to denote means throughout this paper. 

sf QW, Yu)fW, u; x, t) dV dY= <Q(x, t)>. (7) 
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In variable-density flows, it is convenient to work with density-weighted means, 
or Favre averages [19]. The density-weighted mean Q of a random variable 
Q(U, @) is defined by 

D = <PQ>I<P>, 6) 

and the fluctuation about this mean is 

Q’kQ-D. (91 

We then decompose the Eulerian velocity and scalar fields into their (Favre- 
averaged) mean components 6(x, t), 6(x, t) and their Favre fluctuations 
u”(X, t), @“(X, l), 

U(x, t) = 6(x, t) + u”(X, t), (101 

@(x, t) = S(x, t) + @“(X, t), (11) 

while conventional averaging is used for the pressure field, 

ptx, t) = (P(X, t)> sp’tx, f). (12) 

The density-weighted joint pdfT(V, ly, x, t) is defined by 

m, c x, t) ~.f(V, YY; x, t) P( W(Pk t)>, (13) 

where7 has the properties of a pdf, Eqs. (5) and (4). In terms ofI density~weigbted 
means are expressed as 

analogous to Eq. (7). Note that in a uniform-density flow, Q = (Q) and y=J: 
A third density function that is useful in the description of variable-density tur- 

bulent flows is the mass density function (mdf) F, 

F(V, fK x; 1) = pt WfW, Y; x, t) = (Ax, f))j?V, T x, t). (15) 

The properties of F follow from this definition and from the properties off an 

Ii F(V, Y, x; t) dV dY = (p), 

J‘s F(V, Y, x; t) [p(Y)] -’ dV dY= 1, (17) 

ss F(V, K x; t) Q(V, Y) dV dp= <PQ > = <P > 0. 
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In these equations, the means are functions of x and of t. The mdf is a density with 
respect to x as well as with respect to V and Y. Equation (15) is valid only in a 
Cartesian coordinate system; the generalization to non-Cartesian systems is 
discussed in Section III. 

The evolution equation for F is derived from Eqs. (l)-(3) [S, 141, 

) U(x, t) = v, @(x, t) = Y) I 

The mean pressure field can be expressed in terms of one-point statistics of the 
velocity field using a Poisson equation for the mean pressure, so that no modeling 
is required for the left-hand side of Eq. (19). The notation (A 1 B) denotes the con- 
ditional expectation of the event A, given event B; thus in Eq. (19), 
(dr,j&, / U(x, t) = V, @(x, t) = !Y) is the mean of az@x, conditional of the event 
(U(x, t) = v, @(x, t) = Y), and similarly for the other terms on the right-hand side. 
These conditional expectations cannot be expressed in terms of the one-point pdf, 
and hence must be modeled. 

11.2. Modeling 

In the pdf method, it is most convenient both for the modeling and for the 
solution algorithm to adopt a Lagrangian approach; modeling the behavior of fluid 
particles in a turbulent flow provides closure models for the conditional expec- 
tations on the right-hand side of Eq. (19). Let x+(t), U’(t), and Q’(t) denote the 
position, velocity, and composition of a fluid particle at time t. The relationship 
between Lagrangian quantities and the corresponding Eulerian fields is given by 

U’(t) = U[x’(t), t], Q’(t) = @[x’(t), t]. (20) 

That is, the velocity and composition of a fluid particle is equal to the value of the 
corresponding Eulerian field at the position occupied by the particle. The rate of 
change of position of a fluid particle is its velocity, the velocity of a particle changes 
in accordance with the Navier-Stokes equation (Eq. (2)) and the particle com- 
position changes by Eq. (3): 

dx: = U,+ dt, (21) 

PC@‘) axj PC@‘) ax, (22) 

1 
d@+ =S(@+)dt--- aJz dt 

P(Q + ) ax, 
, (23) 



PDF EQUATION IN GENERAL COORDINATES 317 

where the Eulerian variables on the right-hand sides are evaluated at the particle 
position x+(t). 

In the pdf method, the fluctuating pressure gradient and viscous terms in Eq. (22) 
and the molecular diffusivity term on the right-hand side of Eq. (23) are modeied, 
usually by stochastic processes. Using a superscript * to indicate a property of a 
modeled particle, we can write 

dx,* = UT dt, (241 

dU; = A,* dt, (251 

d@* = B* dt, (26) 

where A,? dt and B* dt model the right-hand sides of Eqs. (22) and (23 ), respec- 
tively. 

One set of models that has been suggested for the particle velocity corresponds to 
a stochastic diffusion process for the effects of the viscosity and the fluctuating 
pressure gradient terms in Eq. (22) [20]. In the simplest diffusion model, the par- 
ticle velocities are governed by a stochastic differential equation of the Langevin 
type [ISI, 

In this equation, E(X, t) is the viscous dissipation rate of the turbulent kinetic energy 
k, where 

,& Lqu:‘) 
2(P) . 

A characteristic time scale of the turbulence is r(x, t) defined by 

T SE kje. 591 

The model constant Co is ascribed the value 2.1 [S]. The isotropic Wiener process 
W(t) is a continuous Markovian stochastic process whose increments dW( t) have a 
joint-normal distribution with zero means and an isotropic covariance matrix, 

(dW,(t) > = 0, (dW,(t) dJ+‘,(tD = dt h,, (309 

where 6, denotes the Kronecker delta. Further information concerning this 
Langevin model and its applications in turbulent flows is contained in Refs 
[S, 11, 14,211. 

For the molecular diffusivity, we take the simple linear deterministic model 
proposed by Dopazo [22], 

d@* = S(@*) dt -f C,(@* - 8);: 
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where C@ is a model constant, with C, = 2.0 being the usual value [ 141. It should 
be realized that this model is physically unrealistic (see Ref. [14], for example) and 
its use here is solely illustrative. 

The modeled pdf equation corresponding to Eqs. (24), (27), and (31) is 

(32) 

For this equation to be closed, an additional model is needed for the dissipation 
rate E or for the turbulent time scale z: E may be obtained from a modeled equation 
[ 181 or z may be specified directly [7]. Henceforth, E and r are assumed to be 
known. Recalling that (p) and k can be expressed as integrals over the pdf, it may 
be seen that Eq. (32) is an integro-differential equation in up to seven independent 
variables and time. 

11.3. Monte Carlo Method 

The modeled pdf evolution equation (Eq. (32)) has been derived from modeled 
particle equations (Eqs. (24), (27), and (31)). It is reasonable, then, to base a 
Monte Carlo solution method for Eq. (32) on the numerical solution of these par- 
ticle equations for a large number of particles N. Each of the particles exists in a 
7-dimensional velocity-composition-position state space. The particle positions, 
velocities, and compositions evolve according to the modeled Lagrangian 
equations, which must be written in discretized form for numerical implementation. 
A finite difference approximation of the ordinary differential equation (Eq. (31)) is 
obtained in a straightforward manner; derivation of difference approximations for 
the stochastic ordinary differential equations (Eqs.(24) and (27)) requires some 
knowledge of stochastic calculus [23]. A discretization that is first order in the 
computational time step h is 

dx:rx:(t+h)-x:(t)= UTh, 

AU,* - U;(t + h) - U:(t) 

(33) 

= gi-p(~*) axi 
~<P))h-(~+~C,)(U:-~j)~+(C,Eh)lI’S,, (34) 

A@*s@*(t+h)-@*(t)=S(@*)h-;C,(@*-8);, (35) 
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where all quantities on the right-hand sides are evaluated at time level t. Hence 5 is 
a vector of independent standardized Gaussian random variables: 

(5,) =o, <tztj> =6zj. 636) 

Equation (34) is a Gaussian random walk in velocity space. Higher order numericaH 
schemes have also been developed [23]. 

The precise relationship between particle properties Ix*, U*, @* > and the pdfTis 
less obvious. To elucidate this connection, we introduce a discretization of the mass 
density function (mdf). Within the volume in physical space V, the mdf is represen- 
ted by N particles, each representing a mass of fluid Am. The nth particl 
numbering being arbitrary-has position xc”), velocity YJcn), and compositio 
The discrete mass density function F*(V, Y, x; t) is defined by 

F*(V, Y, x; t) 2 Am f 6(V -U’“‘(t)) S(!F-- Q’“‘(t)) Is(x -x’“‘(t)). (371 
n=l 

Here, 6(x - x’“‘(t)) is a 3-dimensional delta function 

6(x - x’“‘(t)) z 6(x, - xyqt)) 6(x, -q(t)) 6(x, - xyqt)), 

and similarly for 6(V - U’“‘(t)). Denoting by M the total mass in the volume v 
(M = N. Am), the expectation of Eq. (37) is 

(F*(V, “a/, x; t)) = M(6(V - u*(t)) 6( Y- Q*(t)) 6(x-X*(t))), (391 

where the * refers to any particle IZ, 1 6 y1< N. 
The particle properties are deduced by requiring that this discrete representation 

be a consistent representation of the mdf in the mean, i.e., 

(F*(V, !F, x; t)) = F(V, Y, x; t). (401 

We let I(x) be the pdf of particle positions, that is, the pdf of the event x* =x, 

I(x) = (6(x -x*(t))). 1411 

Integrating Eq. (39) over velocity-composition space yields 

ss (F*)dVdY=M(6(x-x*(t)))=Ml(x), (42) 

while integrating Eq. (40) gives (see Eq. 16) 

ss (F*) dV dY= (p(x, t)). (43) 
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Thus, a necessary condition for Eq. (40) to hold is 

4x) = (Pk t))/M: (44) 

the density of particles in physical space is proportional to the mean fluid density. 
The pdf of particle properties at a fixed location x* = x isf*(V, c t 1 x* = x), where 

f*(v, Y; tlx*=x)E 
(W-U”(t)) h(Y-@*(t)) 6(x-x*(t))) 

(6(x -x*(t))> 
(45) 

Using Eqs. (15), (39)-(41), (44), and (45), it may be seen that 

Fl F&f F 
f*(v, ‘iv; tlx*=x)=- -=--=- 

M4x) M (P> (p) 
=jlv, Y; x, t): (46) 

the distribution function of particle velocities and compositions at a given location 
is the density-weighted velocity-composition joint pdf. 

The validity of the Monte Carlo method rests on the consistency between the dis- 
crete representation of the mdf and the exact mdf, Eq. (40): given the same initial 
and boundary conditions, (F*) and F evolve in the same way for all time [14]. It 
can be shown that a necessary and sufficient condition for F (or (F*)) to remain a 
valid mdf for all time (i.e., to satisfy the realizability condition of Eq. (5), the con- 
sistency condition of Eq. (16) and the normalization condition of Eq. (17)) given 
that it is a valid mdf initially, is the satisfaction of the mean continuity equation. 
The mean continuity equation is simply the mean of Eq. (1): 

w)+aw4)-w I x(P) QI=, - - 
at ax, at ax, ’ (47) 

This equation also follows on integration of the mdf evolution equation (Eqs. (19) 
or (32)) over all velocity and composition space. Equation (47) is satisfied provided 
that the mean pressure (p) evolves according to a Poisson equation [14]. 

The extraction of density-weighted means 0 from the discrete representation is 
discussed later. For the homogeneous case (in which 7 independent of x), it suffices 
simply to take the mass-weighted ensemble average over the N particles, 

(48) 

The ensemble average &,, is itself a random variable. According to Eqs. (24), (27), 
and (31), each particle evolves independently. Simple statistical analysis then shows 
that, as N tends, to infinity, the distribution of &,, approaches a normal dis- 
tribution with mean 
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and variance 

The standard deviation cr is a measure of the statistical error in approximating 
means as ensemble avarages over particles. 

To summarize: the Lagrangian solution algorithm outlined above is a 
Carlo solution method for the modeled pdf evolution equation, Eq. (32). Ea 
title represents a fixed mass of fluid and can be viewed as an independent 
realization of the flow or as a delta function discretization of the mdf. The particle 
number density in physical space is proportional to the mean fluid density and the 
distribution of particles in velocity-composition space at a fixed position x is the 
density-weighted pdf. In the limit as N -+ cc and as h -+ 0, the solution converges to 
an exact solution of the modeled pdf transport equation. These notions are made 
rigorous in Ref. [ 141. The chief merit of the Monte Carlo method is that it replaces 
the single partial differential equation for the joint pdf by 7N (stochastic) ordinary 
differential equations for the particles. This is a considerable Sirnpli~cat~Q~ 
numerically. The computational requirements increase only linearly with the dimen- 
sionality of the pdf in the Monte Carlo method, while for finite-difference meth 
this increase is exponential [17]. The main disadvantage of Monte Carlo meth 
is the slow convergence of the statistical error as N-‘j2 (Eq. (50)). 

III. NON-CARTESIAN COORDINATE SYSTEMS 

In this section, the Lagrangian description and Monte Carlo solution algorithm 
of Section II are adapted to allow solution of the modeled pdf equation in non-Car- 
tesian coordinate systems. The goal is to devise a discrete representation that is 
consistent with the modeled pdf transport equation in the new coordinate system. 
The transformation from Cartesian to general orthogonal coordinates is treate 
first. This is followed by the development of the discrete representation an 
Monte Carlo solution algorithm. 

III.l. Coordinate System Transformations 

Consider the transformation from Cartesian coordinates x = (x1, x2, xj) to the 
general orthogonal coordinates X = {jE,, X2, X3}. Let (e,, e2, e3} denote a set of 
orthonormal basis vectors in the (x1, x2, x3 > directions, respectively, and 
(Gl 9 E,, e,} denote a set of orthonormal basis vectors in the {x1, X,, Ts) directions. 
The change in the position vector r corresponding to increments in (zI, x,, ~~1 
defines the scale factors h(,, by the relationship 

dr = dx, e, = h,,, dTi E,. (511 

Even though we are no longer dealing (exclusively) with Cartesian tensors, we 
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retain the summation convention on all but bracketed suffices. Hence the final term 
in Eq. (51) is to be interpreted as 

- - - - 
hci, d$ G, = h, dit, @I + h2 dx, e, + h, dx3 e3. (52) 

The physical components of a vector P in the two systems are denoted by Pi and 
Pi, respectively: 

P = Piei = P,e,. (53) 

These components obey the transformation rule 

P,=a,P,, (54) 

where ag are the direction cosines aii = e, . e,. It is convenient to introduce a scaled 
velocity vector in the transformed coordinate system. The components of this scaled 
velocity are related to the physical velocity components via a stretching factor ~(5). 
Thus the transformed velocity components Bi are 

8, = ,a(%) arr Uj. (55) 

These are equal to the physical velocity components only if p(X) s 1. The scalar 
transforms trivially under this set of transformations, 

CF=@. (56) 

A dot over a quantity is used to indicate the material derivative or the time rate 
of change following a particle. The material derivative of the position coordinates is 
given by 

and that of the velocity components by 

tii=pa,ii,+ C,, 

where 

. ukop akj @ati) @a,) 
ci= @aJ uj= U,U, ax, 

=7h,,,ah7-,. 

The Jacobian of the transformation in physical space is denoted by J,, 

(57) 

(58) 

(59) 

(60) 
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and that of the velocity space transformation by J,, 

For the transformation between the two seven-dimensional velocity-composition- 
position state spaces, the Jacobian J is 

The analysis is restricted to those transformations for which the Jacobians of 
Eqs. (60)-(62) are strictly positive. 

The density functions F(V, Y, x; t), y(V, Y; x, t), and f(V, p, x, t) are tensor den- 
sities that transforme by the Jacobians of the transformations of their respective 
sample spaces. (By convention, the sample space variables appear to the left of the 
semicolons.) Velocity and composition sample space variables transform by 
Eqs. (55) and (56), Yz = pu, V, and p= Y. Using an overbar to denote these density 
functions in the transformed coordinate system, the transformed mdf F(V, p, X; 1) is 
related to F(V, Y, x; t) by 

-- - 
JF(V, Y, X; t) = F(V, Y, x; t), (63) 

and the transformed density-weighted joint pdfT(V, p; X, t) is related to 
i”O’, ‘v; K t) by 

JUT@, F; 2, t) =7(v, Y; x, t). 

Combining Eqs. ( 15) and (62)-(64), we obtain the relationship between F and 7 

Thus, as previously noted, Eq. (15) is valid only in Cartesian coordinate systems. 

111.2. Pdf Equation Transformations 

To transform the pdf evolution equation from Cartesian to non-Cartesian coor- 
dinates, it is most expedient to work with the mdf and then to use Eq. (65) to relate 
the transformed mdf to the transformed pdf. In Cartesian coordinates, the equation 
for F(V, Y, x; t) corresponding to Eqs. (21)-(23) or to Eqs. (24)-(26) can be 
written as [14] 

where x represents, collectively, the mean pressure gradient term, the body force 
term, the scalar source term, and the modeled terms in the mdf equation. These 

581,112/2-4 
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terms represent transport of the mdf in velocity and composition space (Eq. (19)). 
The observation that x inolves no transport of the mdf in physical space greatly 
simplifies the task of transforming Eq. (66). In the transformed coordinate system, 
this term is the same as in a Cartesian system that is locally aligned with iz. Then 
for all consistent models (i.e., those that satisfy the modeling principles of dimen- 
sional consistency and coordinate system independence [14], such as those 
introduced in Section II of this paper), x transforms, simply, by 

J/?=X. (67) 

All that remains, then, is to transform the model-independent left-hand side of 
Eq. (66). These terms can be transformed directly to yield an evolution equation for 
F, but the algebra is tedious and provides little motivation for the development of 
the Monte Carlo solution algorithm. It is simpler and more informative to use a 
Lagrangian approach. 

The transformation can be obtained simply by considering the particle equations 

it: = u,*, ip=O, c&*=0, (68) 

in a Cartesian coordinate system (i.e., Eqs. (24)-(26) without the terms that con- 
tribute to x in Eq. (66)). This leads to [14] the corresponding mdf equation 

g+ vg=o. I (69) 

For a non-Cartesian system, we apply the transformations of Eqs. (56) (57), and 
(58) to Eq. (68) to obtain 

The transport equation for P follows directly from Eq. (70), using Eq. 4.39 of 
Ref. [ 141: 

Substitution of Eq. (65) into Eq. (71) then yields 

(71) 

(72) 

This is the required transformed pdf equation. We now show that this equation is 
consistent with conservation of mass in the new coordinate system. 
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Integration of Eq. (72) over all velocity-composition space gives 

which can be recast in the form (Eqs. (8) and (60)) 

Recalling that ,L-~B,. is the physical component of the velocity in the X, direction ih 
may be seen that Eq. (74) is the mean continuity equation in the curvilinear coor- 
dinate system (see Appendix 2 of Ref. [24]), i.e., 

a(p) ,-+v. (pU>=O. 

This serves as a consistency check on Eq. (72); it demonstrates that the spatial 
derivatives in that equation are in the proper divergence form. 

The time derivative and convective transport in physical space terms of the pdf 
equation have now been transformed to general orthogonal coordinate systems. 
The term J-l .x (Eq. (67)) is added to the right-hand side of Eq. (71) to corn 
the transformation of the mdf equation; and, the term J;’ .x (Eqs. (62), (65), 
(67)) is added to the right-hand side of Eq. (72) to complete the transformation of 
the density-weighted pdf equation. 

111.3. Monte Carlo Method 

The next step is to construct a Monte Carlo algorithm for the solution of 
Eq. (72). To this end, we first recall that the primary motivation for introducing 
non-Cartesian coordinates is to redu_ce the dimensionality of the problem . 
physical space, i.e., such that a( (p)B/a%, = 0 for some i. For a statistically 
dimensional flow, it is possible to order the Xi such that a( (p)~/&, = 0 for the last 
3 -D z?s. With this ordering, we define 

and 
z,=%+Ll, i = l,..., 3 -D. (77) 

Thus for a statistically one-dimensional flow, (X,, -X2, X3) = (yl, z,, z2); for a 
statistically two-dimensional flow, (Z7,, X,, Xg) = (yl, yz, 2,); and, for a statistically 
three-dimensional flow, (x_,, 1,, x3) = (yl, y2, y3). By definition, am)/&, =O. 
In general, although (p ) 7 is independent of z, p, J,, and P can still depend upon z. 
Hence, for definiteness we take z to be fixed at some arbitrary value. 

We appeal to a Lagrangian approach, and seek a Monte Carlo solution in terms 
of the particle properties y*(t), D*(t), G*(t) and w*(t), where w*(t) is a 
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weight (as yet unspecified). It is not necessary to carry the particle locations in the 
homogeneous directions (z) in the computations. By analogy with Eqs. (37) and 
(39), we introduce a delta function discrete representation 

G(O, F, y; t)- (w*(t) d(P-6(t)) S(F- S*(t), @y-y*(t))). (78) 

We then require that G be a consistent representation of $in the sense that, for a 
specified positive density A(y), 

G(P, F, y; t) = (p)fio, e’;x, t) l(y) = F(V, F, ?‘i; t) J,l(y). (79) 

We consider the general particle evolution equations 

jr = Qx*, o*), (80) 

fp =A(%*, O”), (81) 

& = a(%*, cl*) w(t), (82) 

and deduce the unknowns 8, & and 52 by requiring that Eq. (79) be satisfied. 
The transport equation for G of Eq. (78), with particle properties evolving by 

Eqs. (80)-(82) is derived from first principles [ 141: 

Next, we substitute G = (p) y;Z (Eq. 79) to obtain the corresponding pdf equation: 

Upon comparison of Eqs. (72) and (84), it may be seen that consistency of these 
two equations demands that the right-hand side of the particle evolution equations 
(Eqs. (80)-(82)) be 

1 (87) 

The choice of A is not unique: any positive A(y) may selected, as long as the 
appropriate weight evolution is used. If there are no deleted coordinates, then 
II = J; l is the obvious choice, since this gives 52 = 0. In general, the best choice for 
A(y) appears to be A = J;‘, where J, is the Jacobian J, with arbitrary fixed values 
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for the deleted coordinates z. Then J(y) is proportional to the inverse of a volume 
in y space, and it transforms as a density, consistent with its definition in Eq. (79). 

A physical interpretation of the particle weights may be deduced as follows. The 
quantity w*,l;l has dimensions of a mass times a volume in y space divided by a 
volume in Cartesion (x) space (Eqs. (78) and (79)). Thus w*/il is the volume 
sity of mass represented by a particle, independent of the choice of J,(y), and 
w*/(U,) is the mass of fluid represented by a particle. If we choose k(y) =L J; I9 then 
w* itself is the particle mass. 

We now have a discrete representation that is consistent with the modele 
evolution equation in non-Cartesian coordinates. As was done in Section II fo 
tesian systems, we next relate the particle properties to the density-weighted 
Integrating G (Eq. (78)) over all velocity-composition space yields 

(w*~(Y -dew = CP> a(Y). 

It can also be shown [S, 141 that the left-hand side of Eq. (88) is equal to the ccpn- 
ditional expectation of w*, given that y* = y, multiplied by the pdf of particle 
locations, denoted by Z(y): 

It follows from Eqs. (88) and (89) that the pdf of particle positions Z(y) is related to 
the particle weights w*, to L(y), and to the mean fluid density (p) by 

<P> a(Y) 
I(y)= (w* 1 y* =y)’ 

Thus any two of the three quantities Z(y), A(y), and (w* 1 y* = y) may (initially) be 
chosen arbitrarily. Equation (90) is consistent with the interpretation of w*/l as the 
volume density of mass represented by a particle. 

By analogy with Eq. (45), the pdf of particle properties at a faxed location y* = J 
is given by 

f*(v, Fgly*=y)= (W*(t)S(P-O*(t))6(~-rn*(t))S(Y-Y*(t))). (91) 

(w*(t) S(Y - Y*(t))> 

The numerator is (p)a (Eqs. (78) and (79)) and the denominator is ( 
(Eq. (8X)), so that 

f *(o, !F; t 1 y* = y) =jjv, !P; 2, t). 

Thus, as in the Cartesian algorithm, the distribution of particles in velocity-com- 
position space at a fixed position is equal to the density-weighted joint pdf. 
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With Eq. (92), we can derive the evolution equation for the particle number den- 
sity 4~) = (@y-y*(t))>: 

al 
-=-~.li(Y)~~:lY*=Y)l=-~[i(Y)(~lY*=Y)l 
at , I I 

(93) 

Here we have made use of Eqs. (80) and (85) and the result of Eq. (92), which says 
that averages of particle properties at a fixed spatial location are equal to density- 
weighted means. If there are no deleted coordinates, Eq. (93) reduces to the mean 
continuity equation (Eq. (73)), but with ZJ, in place of (p). From this it follows 
that if if 1 is initially set proportional to (p )/J,, then I remains proportional to the 
local value of (p)/J, for all time. In general, however, we are free to choose the 
initial particle number density Z(y) and either the initial particle weights w* or the 
density A(y) in any convenient manner. Independent of this choice, l(y) evolves in 
time according to Eq. (93). When there are deleted coordinates, there may be no 
obvious initial choice of Z(y) such that Z(y) remains constant for all time. 

As is the case for Cartesian coordinates, satisfying the mean continuity equation 
guarantees that P remains a valid mdf for all time, given that it is valid initially; the 
discrete representation of Eq. (78) remains a valid representation of F for all time 
for any choice of I(y), provided that the particle weights evolve according to 
Eqs. (82) and (87); and, the particle number density in physical space evolves by 
Eq. (93) and satisfies Eq. (90) for all time under these conditions. 

From Eqs. (78) and (79) and the discussion following Eq. (87), it follows that 
mass-weighted ensemble averages over particles at a fixed location in physical space 
are estimates of Favre averages. Consider a subregion of physical space of volume 
V, centered at yk and containing Nk particles. If this volume is sufficiently small so 
that variations in mean quantities are negligible inside of it, then 

where the summation is over the Nk particles in cell k. The statistical error in this 
approximation is of order N; , l/* by the same reasoning that let to Eqs. (49) and 
(50). 

In the Monte Carlo solution algorithm, we solve the particle equations 
(Eqs. (80~(82) with Eqs. (85)-(87)), atding thctransformed terms pavAT and B* 
(Eqs. (25), (26), (56), and (58)) to the U,* and @* equations, respectively. We solve 
at arbitrary fixed valuesof the deleted coordinates z. Particle positions in directions 
of homogeneity of (p)r need not be carried in the computations. The density I(y) 
is chosen to be J;‘. The initial distribution of particle positions is taken to be 
proportional to the mean fluid density; Eq. (90) then shows that the initial particle 
weights w* are proportional to J.;‘. Particle initial velocities and compositions are 
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set to correspond to the initial density-weighted joint pdf (Eq. (92)). The ~-d~rnc~~ 
sional physical space is divided into K cells, the kth being centered at yk with a 
volume I’, and containing Nk particles. In principle, weighted ensemble averages 
over particles within each cell (Eq. (94)) can be used to extract profiles of mean 
quantities as a function of y from the numerical solution; in practice, however, the 
statistical error is too large. A more satisfactory method of extracting means from 
the solution is a curve-fitting technique, cross-validated least-squares cubic splines 
with smoothing [14,25]. For Favre averaging, each particle is assigned a weight 
w*/(q,) = w* in forming the splines. Using this technique, we expect that the 
statistical error for any local function of the velocity and scalar fields scales as 
N-1/2. Numerical tests confirming this assertion are presented in Section V. 

To keep the spline-fitting well conditioned, it is desirable to prevent particle 
weights from becoming excessively large or small in the course of the calculations. 
Ideally, we would like to have equal particle weights within each cell. It may seen 
from Eq. (94) that particle weights can be modified in many ways that leave 
weighted averages unaltered. For example, the weights of all particles can be mul- 
tiplied by any constant (or by any function of the deleted coordinates z); particles 
can be “cloned,” i.e., a particle of weight w can be split into two particles of weight 
w/2 with the same properties at the same physical location; and, particles of wei~~~ 
u’, less than some preferred weight 6, can be “annihilated,” or removed, with 
probability I- w/G and “promoted” from weight w to weight G with probabi~i~~ 
w/G, with only a small statistical error. These ideas are used to keep ~artic~e 
weights within each cell more or less uniform. 

III.4. Summary 

Rules for transforming pdf equations from Cartesian to general orthogonal coor- 
dinates have been presented, and a discrete representation has been devi 
forms the basis for the Monte Carlo solution algorithm in the transform 
dinate system. The essential ingredients of the development are that, first, a 
Lagrangian viewpoint is adopted and, second, a time-dependent weight is inclu 
in the discrete representation of the pdf. Particle weights evolve to account for 
change in fluid mass or volume represented by a particle as it moves in t 
Cartesian coordinates. This evolution renders the discrete representation consistent 
with the modeled pdf equation. The algorithm described above for general 
orthogonal coordinates reduces in a straightforward way to the algorithm described 
in Section II for Cartesian systems. 

IV. APPLICATION TO SELF-SIMILAR FREE SHEAR Ftows 

We now consider three specific flows. These serve to make the general treatment 
given so far more concrete, as well as to provide a means of solving the modeled 
pdf evolution equation for three important turbulent free shear flows. Coordinate 
system transformations for these flows appear in the Appendix. All of the flows con- 
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sidered are of uniform density, so that it is not necessary to carry the scalar 
evolution equation: the solved for pdf is the joint pdf of the velocitiesf(V; %, t). The 
numerical algorithm is outlined briefly, and some remarks are made concerning the 
earlier pseudo-Cartesian algorithms used in Refs. [12, 131. 

These self-similar flows spread linearly with x [26], so that in each case, statistics 
of suitably scaled velocity components are independent of radial distance from the 
virtual origin of the flow. (Strictly speaking, self-similarity of the governing 
equations is only possible in the limit as the Reynolds number approaches infinity, 
so that viscosity has a negligible direct effect on the mean flow [27]. However, it is 
customary in the turbulence literature to refer to flows where suitably normalized 
profiles of mean quantities become independent of the streamwise coordinate as 
“self-similar” or “self-preserving,” and we shall do the same here.) 

IV.l. Sebf-Similar Plane Mixing Layer 

The two-dimensional mixing region between two uniform parallel irrotational 
streams is sketched in Fig. 1. A convenient coordinate system in which to study this 
flow is the cylindrical system shown there. It can be demonstrated analytically that 
for any value of the velocity ratio V, = UJU,, the equations of the mean motion 
for this flow admit a self-preserving solution where the statistics of the velocities are 
independent of r; this self-preserving solution is observed to exist in experiments as 
well [26]. 

We adopt the coordinates % = {r, 8, z}, D = (U,., Ug, U,}, where U,, U,, and Uz 
are the physical components of the velocity in the r, 8, and z directions, respec- 
tively. Thus the stretching factor is unity (,a = 1, Eq. (55)). The relevant joint pdf is 
f( V,, V,, Vz; r, 8, z, t). This flow is statistically homogeneous in the z direction so 
thatfis independent of z; self-similarity implies that fis independent of r as well. In 
the notation of Section III, the particle evolution equations are 

W-4 

Wb) 

(95c) 

FIG. 1. The turbulent plane mixing layer. 
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ir,* = U;=Jr* + Jr*) (95d) 

06*= -uyJg*/Y*$~B*r (95e) 

+A,*, PW 

where the A* terms are the transformed mean pressure gradient and modeled terms 
(Eqs. (22) and (25)). Since J, = l/r is independent of 19, we simply take /z = I; 
Eqs. (82) and (87) then show that particle weights must evolve by 

tP = - U,* w*/r*. 

IV.2. Self- Similar Plane Jet 

Figure 2 depicts a turbulent jet issuing from a two-dimensional slot into stagnant 
surroundings. Analysis and experiment reveal that this flow becomes self-preserving 
sufficiently downstream of the slot [26]. We again adopt the cylindrical coordinate 
system used for the self-similar plane mixing layer. Here, however, it is the statistics 
of U: = r ‘I2 U,, Vk = r’i2U_e, and Vz = r”‘U, that are independent of r in the self- 
similar regime, so that U = U’ = ( U:, U@, K} is the most convenient choice of 
velocity components. Thus p = r ‘I2 here The joint pdff( V:, VO, Vl- ; r, 8, z, t) is then . 
independent of z through statistical homogeneity and independent of r via self- 
similarity. Taking ,I = 1 again, the transformed particle equations read 

FIG. 2. The turbulent plane jet. 
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and 

IV.3. Self-Similar Axisymmetric Jet 

An axisymmetric turbulent jet issuing from a nozzle of diameter D into stagnant 
surroundings is shown in Fig. 3. We select the spherical coordinate system 
x = {r, 4, I!?} for the treatment of this flow (Fig. 3). Then analysis and experiment 
show that the flow achieves a self-preserving state where the statistics of 
U=U’= (rU,, rU,, rUB) become independent of r [26], so that p =r here. The 
joint pdf f(v:, Vi, &; r, 4, 8, t) is then independent of 8 (axisymmetry) and 
independent of r (self-similarity). We again write the transformed particle position 
and velocity equations in the notation of Section III, 

j1* = qj* = UT/r*2, (994 
il* = i* = Ui*/r*, Wb) 

if = tb = Uh*/(P2 sin b*), (99c) 

Ij:“=(U:*2+U;*2+U;I*)/r*2+~,*, W’d) 

07 = Uh*‘j(r *2tand*)+A$, We) 

riA* = - Ui*UA*j(P2 tan ~5*) + dg, PW 

and taking I = sin 4 (i.e., proportional to J;’ = r2sin 4 with r fixed at an arbitrary 
value), particle weights evolve by 

G* = - lJ:*w*/r*2+ (100) 

IV.4. Solution Algorithm 

Each of the three self-similar flows has been reduced to a statistically one-dimen- 
sional problem in physical space by an appropriate choice of coordinate system. 

FIG. 3. The turbulent axisymmetric jet. 
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Particles exist in the four-dimensional state space { y, pi ) 8,, 8, ), where y denotes 
the single retained physical coordinate. Since the radial particle positions are not 
carried in the calculation, we may solve at any convenient radius; we choose I = 1. 
The y space is divided into K equally spaced cells of width Ay, the kth being cen- 
tered at yk. Particles are initially distributed uniformly in y and the initial w 
ul* of particles within each cell are proportional to “Z(yk) (Eq. (90)). For the 
in cylindrical coordinates ( y = e), all cells have equal volume (jL(yk) = 1) wh 
the spherical coordinates (y = $), the volume of each cell is proportional to 
A(yk) = sin(y,). Initial particle velocities are (almost) arbitrary since we are 
interested only in the statistically stationary self-preserving solution. Profiles of 
mean velocities, the components of the covariance matrix (Reynolds stresses) as 
functions of y, and other statistics of interest are extracted using the splines men- 
tioned in Section III. We march in time using a discretized form of the particle 
evolution equations (a first-order scheme for the Langevin model was described in 
Section II) until self-preservation is achieved, that is, until normalized profiles of 
mean quantities become independent of time. 

TV.5. Pseudo-Cartesian Algorithms 

It was mentioned in Section I that the flows treated in Refs. [12, 131 were, 
respectively, in cylindrical and spherical coordinates. Pope and Correa [ 121 solve 
for an axisymmetric jet diffusion flame while Pope and Cheng [13] studie 
spherically symmetric premixed flame. Yet in both cases, an essentially Cartesian 
solution algorithm was used. Each particle was initially assigned a weight 
tional to the mass of fluid that it represents, and the weights then remain 

The essential difference between these two flows and the flows discussed 
this section is the orientation of the directions of homogeneity. For the jet division 
flame, a cylindrical coordinate system is adopted with the flow axis in the z direc- 
tion and statistical homogeneity in the 8 direction (see Fig. 1). We then have y1 = r, 
y2 = Z, and zr = 0. Physical components of the velocities are used, so that p = 1. 
With /z = J.;’ = r, Eqs. (82) and (87) show that +* =O. For the spherical di~~si~~ 
flame, there is statistical homogeneity in 4 and 8 (see Fig. 3). We again use the 
physical velocity components: y, = Y, z1 = QI,z2=t3, and p= 1. Here .h=<;’ 
Eqs. (82) and (87) yield G* = - Uifw*/(r* tan d*). However, the margma 
the 4 velocity, f( vs; r, t), is symmetric about I’4 = 0; weighted averages (Eq. (94)) 
are then independent of the evolution of w* due to U$, so it is legitimate to simply 
set k” = 0. These pseudo-Cartesian algorithms are discussed further in Ref. [14]. 

V. NUMERICAL TESTS 

The results of two types of numerical tests are reported. First, the spreading rate 
of the self-similar plane mixing layer is calculated using three numerical algorithms. 
The first is the new self-similar algorithm developed in Section IV, and the other 
two are the Cartesian algorithms developed in Ref. [14]. A comparison of these 



334 HAWORTH AND POPE 

three methods of calculation serves both to validate the new approach introduced 
in this paper and to expose the limitations of the other techniques. Second, the 
statistical error as a function of the number of particles N is calculated and com- 
pared to standard error estimates, demonstrating convergence of the Monte Carlo 
algorithm. 

These computations are intended as numerical tests only, not as a modeling 
study of the plane mixing layer: no comparisons with experimental data are 
presented. A modeling study of self-similar turbulent free shear flows using the ideas 
developed in this paper may be found in Ref. [28]. 

V. 1. Comparison of Algorithms 

We now let x = {x, y, z} and U = {U,, U,, UZ}, A characteristic velocity dif- 
ference dU for the plane mixing layer is 

AlJr UH - U,, (101) 

(see Fig. 1) and we define a characteristic width 6 in terms of the points on the 
mean velocity profile where the mean velocity is UL + 0.2( UH - U,) and 
U, + 0.8( U, - U,). Denoting these points by y,,, and y,,, respectively, the width 6 
is defined to be 

6 = Yo.2 - YO.8. (102) 

A similarity coordinate q for the mxing layer can be defined as 

yI = Y - Yo.5 ---= Y-Yo.5 

6 Yo.2 -Yes’ 
(103) 

where y,, is defined analogously with yo,2 and y,,. Self-similarity implies that 
profiles of any one-point statistic of the Eulerian velocity field (normalized by AU) 
become a function of q only, independent of x. It can be shown that for the self- 
similar plane mixing layer, the spreading rate S is a constant, where S is given by 
WI 

S = d6/dx. 

An important parameter is the velocity ratio V, defined by 

(104) 

v, f UJU,. (105) 

Since 0 d U, < U,, V, takes on values between zero and one, inclusive. 
The three solution techniques are designated as method 1, method 2, and 

method 3. Method 1 is the self-similar algorithm developed in Section IV; it is valid 
for all V,. Method 2 is a boundary-layer algorithm that was presented in Ref. [14]; 
it is limited to higher values of V,. The final technique, method 3, is the time- 
dependent algorithm developed in Ref. [ 141 and described at the end of Section II; 
it is restricted to the limiting case V, -+ 1. 
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In method 1, we solve in a cylindrical coordinate system and march the solution 
in time until self-similarity is achieved. Since the turbulent plane mixing layer is self- 
similar for any value of the velocity ratio VR, this method is equally valid for all 

velocity ratios. 
Method 2 treats the mixing layer as a statistically stationary two-dimensional 

flow using the boundary-layer algorithm developed in Ref. [14], This is a 
modification of the basic Cartesian algorithm described in Section II; each particle 
represents a fixed axial momentum of fluid rather than a fixed mass. The streamwise 
step dx = dx(“) . is the same for all particles y1= l,..., N, and the particle time steps 
h(“) are given by Ax = U, h cn) (n). Beginning from (almost) arbitrary initial conditions, 
the solution is marched downstream until self-similarity is attained. Clearly, this 
method is applicable only to cases where the flow is predominately in the x direc- 
tion: there must be a negligible probability of U, cn) being less than or equal to zero 
so that the time step h (n) for each particle remains positive. We expect, then, that as 
UJA U approaches zero ( V, -+ 0), this algorithm breaks down. There are 
additional approximations in method 2, beyond the scope of the current discussion, 
that are analogous to the usual boundary-layer assumptions for thin free s 
flows [26]. These approximations become negligible in the limit V, t 1. 7% 
expect this boundary-layer algorithm to be valid for high velocity ratios, 
become increasingly inaccurate as the velocity ratio decreases to zero. 

Method 3 is the one-dimensional version of the time-dependent Cartesian scheme 
described in Section II. Only y variations in statistics are accounted for, so we are 
essentially solving for the temporally growing plane turbulent region of infinite 
extent in the x and z directions separating the two uniform free streams. This is not 
physically the same problem as the spatially developing plane mixing layer of Fig. 1. 
However, in the limit AU/UH -+ 0 ( V, -+ 1 ), an analogy can be drawn between the 
spatially developing plane mixing layer and this temporally growing layer, w 
the equivalent “time” for the spatially developing flow is t= x/U,. Thus, it is 
legitimate to interpret this time-dependent solution as representing a plane rn~xi~~ 
layer in the limit V, = 1. The solution is again marched in time until the self-sim~Ia~ 
solution is reached. 

For all of these comparison runs, the first-order accurate time discretizati~~ of 
the Langevin model is used (Eqs. (33) and (34) for methods 2 and 3, Eqs. (95a), 
(95d), (95e), (95f), and (96) for method 1). The turbulent time scale z of Eq. (29) is 
taken to be uniform across the flow and is related to the mean flow scales simply by 

where we take z* = 10. Since mean quantities change on a time scale that is of order 
z, the numerical time step is fixed by the condition that the particle time steps be a 
small fraction of z. It was verified that the discretization error due to the nonzero 
time step was negligible compared to the statistical error due to finite N for the runs 
reported here. Approximately 50,000 particles were used for each run. In the 
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numerical calculations, the velocity ratio is varied by keeping dU fixed and 
changing U, and U, to get the desired velocity ratio (methods 1 and 2 only). Thus, 
we can only approach (but never attain) a velocity ratio of unity for methods 1 and 
2. Also, we can only approach a velocity ratio of zero for method 2, since UL can- 
not be equal to zero in this algorithm. It is expected that method 1 should give 
correct results for all velocity ratios 0 ,< V, < 1; method 2 should be valid at high 
velocity ratios, with departures from method 1 growing as the velocity ratio 
decreases; and, the results of methods 1 and 2 should approach those of method 3 
as the velocity ratio approaches unity. 

For method 2, velocity ratios of 0.90, 0.80, 0.65, 0.50, 0.33, 0.25, 0.20, 0.14, 0.10, 
and 0.05 were studied; for method 1, these velocity ratios as well as I’, = 0 (U, = 0) 
were included. To compare the spreading rate for the time dependent calculation 
(method 3) with those of the other two algorithms on an equal footing, it is 
necessary to use the equivalent “time” mentioned earlier. A normalized spreading 
rate for the time dependent calculation (method 3) is defined by 

(107) 

and for the spatial calculations (methods 1 and 2), the comparable measure of the 
spreading is 

(108) 

Calculated spreading rates S, for methods 1 and 2, normalized by S, of method 3, 
are plotted as a function of velocity ratio in Fig. 4. As expected, methods 1 and 2 
agree for high values of the velocity ratio and diverge at lower velocity ratios as 
method 2 becomes less and less accurate. For V, 30.3, the spreading rates 
calculated by these two methods are within 10% of each other. At V, = 0.2, the dif- 
ference is significant, with method 2 giving a spreading rate about 25% lower than 
method 1. For velocity ratios of 0.25 and lower, the spreading rate calculated by 
method 2 actually decreases as V, approaches zero. Both methods 1 and 2 appear 
to converge to the calculated spreading rate of method 3 as V, -+ 1. 

Similar results are obtained using models other than the Langevin equation, but 
the precise velocity ratio at which the boundary-layer algorithm breaks down is dif- 
ferent in each case. In the axisymmetric jet diffusion flame of Ref. [12], the particle 
interaction models described in Ref. [ 141 were used, together with models that take 
explicit account of intermittency [7] (that is, the observation that at a fixed point 
in laboratory coordinates, the flow alternates between turbulent and nonturbulent 
as the interface separating the turbulent region from the outer irrotational flow 
moves through that point). Figure 5 shows calculated speading rates vs velocity 
ratio for the plane mixing layer using these models. It may be seen that the 
spreading rates calculated by methods 1 and 2 now agree to within 15% for velocity 
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FIG. 4. Calculated spreading rate S, normalized by S, of method 3 vs. velocity ratio for the tur- 
bulent plane mixing layer using the Langevin model. 0, SX/S, by method 1; q , SX/ST by method 2. 
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FIG. 5. Calculated spreading rate S, normalized by ST of method 3 vs velocity ratio for the tur- 
bulent plane mixing layer using particle interaction models with intermittency. O1 S,/ST by method 1; 
a, SX/S, by method 2. 
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ratios as low as V, = 0.05, and the spreading rate calculated by method 2 con- 
tinuous to increase with decreasing velocity ratio as V, -+ 0. In the jet diffusion 
flame of Ref. [ 121, the intitial velocity ratio is VR % 0.05 and rapidly increases as the 
flow evolves. Hence, it is likely that for this flow, the error resulting from the use of 
the boundary-layer algorithm is within acceptable bounds. 

V.2. Statistical Error 

The statistical error in a Monte Carlo calculation is the error due to the number 
of particles iV being finite. We consider just one quantity from the method 3 Monte 
Carlo calculations of the plane mixing layer, namely q = (uu )/A U2 at q = 0. Here u 
and o are the fluctuating components of the streamwise and cross-stream velocities, 
respectively: u E U, - ( U,. ) and v s U, - ( U, ). In turbulence, ( uv ) is the 
Reynolds shear stress, an important quantity in free shear flows. The profile of 
( UV) goes to zero at both edges of the mixing layer and has a peak near q = 0; this 
quantity is thus a sensitive indicator of the statistical error in the computations. A 
calculated time series of ( uv)/AU2 at q = 0 appears in Fig. 6, where only every 
tenth time step is shown, for clarity. As expected, there is a transient period as the 
computations approach self-similarity followed by a stationary regime of random 
statistical fluctuations about a constant mean. 

To quantify the statistical error, we need to study (uv) on different time steps on 
different runs. Hence, we define q!‘)(N) to be the value of (uv)/AU2 from the 
Monte Carlo calculation (with N particles) at q = 0, on the ith step for the rth run. 

I I t I I I I I I 

O.0 loo 200 300 400 500 600 700 a00 900 1000 

FIG. 6. Calculated time series of the normalized shear stress at q = 0 for the plane mixing layer, 
method 3, N = 50,000. 
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It is necessary to distinguish between two types of error (see Ref. KU]): the bias EsSv 
is the difference between the mean of q!‘)(N) and (q), 

b,= M”(N)) - (4); 

the sampling error .a,,, is the standard deviation of q!‘)(N), 

~$3 var(qj’)(N)}. 

The quantity Ed is a measure of the uncertainty in approximating (q!‘)(N)) 
value on a single time step of a single run, qj’)(N). 

Both the mean and the variance of q!‘)(N) can only be estimated from the 
numerical solution. Averaging over T time steps (starting from step il) in the 
statistically stationary self-similar regime is equivalent to ensemble averaging over 
several (less than T) independent realizations. The time average for a single run is 
denoted by (q”‘(N) ) T, 

(q”‘(N)) 2 i1iT q”‘(N). 
T-T,=,l i 

(111 

The average of (q”‘(N))r over R runs, (q(N)).., is an estimate of (q!‘)(N)): 

(41”(N) > = (q(N) > T,R =-L R .tl (q”‘(N))T~ 

We use MN)h as an approximation of (q!‘)(N)) to estimate the bias 
(Eq. (109)). To ensure the adequacy of this approximation, we need an estimate of 
the uncertainty in (q(N) > T,R. For this estimate, we consider the time average over 
each run to be an independent sample. It then follows that the quantity E~,~, 
defined by 

G,,R = R(;m 1) f, ((q”‘(N)) =- (q(N) > r,,& 

is the uncertainty in approximating (qj’)(N) ) as (q(N)) T,R. 
In Fig. 7, we plot ( q(N))T,IP vs N-“2 for different values of N, 12,500, 25, 

50,000, and 100,000, along with error bars corresponding to Is,, (Eq. (113)). Id 
all cases, T = 300 and R is chosen so that E~,~ is about the same for each N, that is, 
so that the quantity N. R is fixed: the number of runs for each of the above values 
of N is R= 48, 24, 12, and 6. The points labeled CV-CV were computed using 
cross-validated least-squares cubic splines with smoothing for mean quantities {see 
Refs. [ 14, 2.51). Bias is evident, that is, (q(N)) T,R is not independent of N. Two 
earlier Monte Carlo studies of turbulent flows reported no bias in one case 1171 
and only a very small bias for small N in the other [29]. In both of these previous 
calculations, only the pdf of the compositions was treated by a Monte Carlo 

581/72/2-S 
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FIG. 7. Expectations of the average of (uv)/AUz at q = 0 over T time steps and R runs vs N-‘/2. 
Error bars show plus and minus the uncertainty E=,~. Four sets of calculations use different techniques 
for extracting means from the numerical solution: 0 CV-CV; W CV-LS; A LS-0’; 0 LS-LS. Percent 
error is relative to 0.0245. 

method. Ensemble averaging was used to extract mean quantties in Ref. [17] while 
in Ref. [29], cross-validated splines were used. 

There are two possible sources of bias in the present calculations. First, the cross- 
validated splines smooth the curvature of the mean profiles and hence tend to 
undershoot peaks [25]; the (uu) profile has a peak near 7 = 0 in this flow. Second, 
the splined mean quantities k and 0 (see Eqs. (27)-(29)) are fed back into the par- 
ticle equations for the Langevin model used here. 

To study this further, three additional sets of calculations were performed; these 
are labeled CV-LS, LS-CV, and LS-LS in Fig. 7. The first two letters in the label 
refer to the type of spline used internally in the calculations (that is, for k and 0 in 
Eq. (27)) and the last two letters refer to the type of spline used to extract the out- 
put (~0): CV denotes cross-validated splines with smoothing and LS stands for 
simple least-squares splines without cross-validation. It may be seen from Fig. 7 
that both sources of bias are smaller with the least squares splines than with the 
cross-validated splines. Most of the bias appears to be due to the feedback of 
splined mean quantities into the calculations. 

It is not obvious from Fig. 7 that all four sets of calculations converge to the 
same value of ( uv)/AU2 as N + a; however, there is no reason to expect that this 
is not the case. The converged value appears to be 0.0245 f 0.0003. If we adopt the 
value (q) = 0.0245, then Fig. 7 shows that the bias with N= 12,500 for CV-CV is 
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about 11% while for LS-LS, it is about 3%. The small remaining bias using LS-E 
is presumably due to the feedback of mean quantities into the particle equations. 

We now examine the sampling error. The uncertainty in approximating 
(g!‘)(N)) by a single time step of a single run, i.e., Ed of Eq. (110), is calculated by 

- (dN) > T.R 

It is expected that .aN will increase linearly with N-li2. Figure 8 shows the uncer- 
tainty Ed of Eq. (114) for each of the four sets of calculations. As expe E.&l 
increases approximately linearly with N- ‘I2 This figure illustrates that the s . ling 
error is smaller for the cross-validated splines than for the least-squares splines, 
consistent with the findings of Ref. [25]. 

In spite of their larger bias, the cross-validated splines are generally preferre 
because the sampling error may be smaller (Fig. 8) and is independent of the num- 
ber of basis functions used, by contrast to the least squares method [25]. (T~v~~ty 
basis functions were used in the present calculations.) This becomes especially 
important when derivatives of mean quantities are needed [25]. The quantity 
under consideration, ( uu ), provides a particularly demanding test for the cross- 
validated splines because of the peak in the vicinity of q = 0. Figures 7 and 8 
together provide evidence for convergence of the numerical solution, since bot 
bias and the uncertainty appear to go to zero as N approaches infinity. 
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0.00 
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100,000 50,000 25,000 > 
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alo 0. 0.002 0.004 0.006 0.008 0.010 
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FIG. 8. Uncertainty in estimating (m)/AU2 at q = 0 by its value at a single time step of one run vs 
NM112. Four sets of calculations use different techniques for extracting means from the numerical 
solution: 0 CV-CV: q CV-LS; a LS-CV; 0 LS-LS. Percent error is relative to 0.0245. 
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VI. CONCLUSIONS 

The pdf method and the Monte Carlo solution algorithm of Ref. [14] have been 
extended to non-Cartesian coordinate systems and applied to three self-similar tur- 
bulent free shear flows of practical interest. The results of numerical tests have been 
presented, comparing the new method with two earlier Cartesian algorithms for the 
self-similar plane mixing layer, and demonstrating convergence as the number of 
particles increases. As in the earlier work, the basis for the modeling and solution of 
the pdf evolution equation is a Lagrangian viewpoint, in which the bahavior of 
fluid particles is modeled and the trajectories of fluid particles in the 
velocity-composition-position state space are calculated. The key to the treatment 
of non-Cartesian coordinates is the inclusion of a time-dependent particle weight in 
the discrete representation of the pdf. This weight (divided by ,U,) is the mass of 
fluid represented by a particle; it evolves with time because, as the particle moves in 
the non-Cartesian coordinate system, the physical volume represented by the par- 
ticle changes. 

Non-Cartesian coordinate systems are usually invoked when the boundary con- 
ditions or some other physical features of a problem are stated most naturally in 
such a system. As implied in the selection of the sample problems, curvilinear coor- 
dinates are also useful when the dimensionality of the problem in physical space can 
be reduced by a suitable transformation, either because of statistical homogeneity in 
those directions or because of self-similarity. The number of computational words 
stored per particle may then be reduced, but at the expense of new terms in the par- 
ticle evolution equations and the addition of an evolution equation for particle 
weights. There may also be additional output overhead if it is necessary to trans- 
form the statistics of interest to a coordinate system that differs from the com- 
putational system. 

For the self-similar plane mixing layer treated in Section V, there is no difference 
in storage requirements between the boundary-layer algorithm and the self-similar 
algorithm for a given number of particles N; computational times are also com- 
parable. The main advantage of the new algorithm in this case is that the 
approximations implicit in the boundary-layer approach at low velocity ratios are 
avoided by working in the self-similar coordinate system. Without the new 
algorithm, proper treatment of low velocity ratio mixing layers and jets issuing into 
stagnant surroundings would require a fully two-dimensional scheme. 
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APPENDIX 

In this appendix, transformations from Cartesian to the general orthogonal eoor- 
dinate systems needed in the treatment of the flows of Section IV are summarized. 
The notation used is that introduced in Section III. For each transformation, a 
defining figure is referenced. Then X=X(~), h,,, (Eq. (51)), a, (Eq. (54)), ~(2) 
(Eq. (55)), C (Eq. (58)), and the Jacobians J,, J,, and J (Eqs. (60)-(62)) are 
reported. Cartesian position and velocity components are denoted by 

x,=x,x,=y,x,=z; u,= u,, u,= u,, u,= u;. (Al) 

Scale factors h,,, and components of C corresponding to the physical velocity 
components (11 = 1) for cylindrical and spherical coordinates may be found in 
Appendix 2 of Batchelor [24]. 

Cylindrical 

The cylindrical coordinate system is shown in Fig. 1. The turbulent plane rnxi~~ 
layer becomes self-similar in this coordinate system with statistics of the physical 
velocity components independent of radial distance r. Position and velocity coor- 
dinates are 

where U,, Ug, and Uz are the physical components of the velocity in the Y, 8, an 
directions, respectively. The transformation from Cartesian coordinates is 

x = r cos 0, y = r sin 8, z = z, fA3d 

scale factors h,,, are 

h, = 1, h2=r, h, = 1, 

and au of Eq. (54) are the components of the matrix 

sin 8 0 
cos0 0 

0 1 

The stretching factor ,u and components of C are 
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Cl=?, u* uo c2= -- 
r ’ c3=0. 

Jacobians of the transformation are 

J, = l/r, Ju= 1, J= l/r. (A8) 

Modified Cylindrical 

The x + t transformation is the same as for the cylindrical coordinate system just 
considered (Eqs. (A3)-(A5)), but now we take Y ‘I2 times the physical velocity com- 
ponents as the transformed velocity components (i.e., p = r’12). This is appropriate 
for the turbulent plane jet, where the statistics of {r1’2Ur, r’j21J,, r1’2Uz) are 
independent of r in the self-similar regime. We have, then 

649) 

The stretching factor ,U and the components of C become 

p = y112 9 (AlO) 

and 

c =u;‘+gJ:’ u; V@ 1 r3~2 2 c2= -2r3/2’ c3=g (All) 

The Jacobians are 

J, = l/r, J, = r312, J = y1i2. t-412) 

Modified Spherical 

For the self-similar axisymmetric jet, we use the spherical coordinate system of 
Fig. 3 together with the modified velocity components (rU,, rU,, rU,), where U,, 
U,, and U, are the physical velocity components in the r, 4, and 8 directions, 
respectively (,u = r). Statistics of these modified velocities are independent of r in the 
self-preserving regime. The transformed coordinates are 

b413) 
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The transformation in physical space is defined by 

x=rcos$b, y = Y cos 0 sin I$, z = r sin 0 sin f$, 

and 

h, = 1, h2=r, h, = r sin (5. 

Physical components of a vector transform by the matrix 

t 

cos 4 sin f$ cos 8 sin 4 sin 8 
-sin4 cosq5cos6 cosqSsin0 

0 -sin 8 cos e 

The stretching factor and the Ci are 

c JJ:‘+ q2-t u;” 
C,= 

u;’ u; vk, 
1 Y2 ’ Aii-J’ 

c,= --) 
Y’ tan I$ 

and the Jacobians are 

J, = l/( r2 sin q4), J, = r3, J = r/sin 4. 
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