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Abstract-A model of industrial drying under varying external conditions is presented. The starting point 
was the integral equation 

which can he considered as the general mathematical model of a hydrodynamically linear chemical 
apparatus. A detailed and verified model of heat and mass transfer processes in a one-dimensional steady- 
state tunnel dryer is presented. A computer program, based on an integral equation approach without 
essential changes, is applied to the simulation of continuous dryers. The calculations prove that the 
developed model is suitable for the simulation of heat and mass transfer processes occurring in the dryer. 

INTRODUCTION 

Drying is a widely used operation in the chemical 
industry. A mathematical description of drying is 
useful for both sizing the apparatus and the simulation 
of the processes which is often necessary for the 
control and automation of a technological process. 
For the solution of these types of problems engineers 
may either use simple analytical expressions (Keey, 
1972; Sazhin, 1984; Pakowski and Mujumdar, 1987) 

and apply principles which were elaborated for the 
design and automation of a chemical apparatus using 
their own or others’ experimental data, or may de- 
scribe the operation of the apparatus by a system of 
differential equations containing the equations of 
motion, balances and sources with the appropriate 
boundary conditions. 

The simple analytical expressions are not satis- 
factory for the determination of drying operational 
units and processes (Romankov, 1987). The other 
method, based on the solution of differential equa- 
tions, has obvious advantages when a dryer with a 
given structure has to be analysed. Problems generally 
arise in the description of the flow, because the influ- 
ence of the presence of a solid phase and evaporation 
on stress and transfer coefficients is not known (Keey, 
1972). Simplifying assumptions are therefore intro- 
duced and their validity should be checked experimen- 
tally in every case. In the other case, even if one has the 
momentum, energy and mass balance equation sets 

representing a real drying process, a joint numerical 
solution of these-is impossible even at the present 
advanced level of mathematics and computing. That is 
why, instead of momentum balance equations, various 
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mixing models are generally used (Pakowski and 
Mujumdar, 1987; Sazhin, 1984). 

The mathematical model worked out by Virrig 
(1979) and Virag and Hal&z (1989) handles the al- 
gebraic, ordinary and partial differential equations 
uniformly by integral equations, and it can be consid- 
ered as a general form of the classical mixing models. 
The advantage of the algorithm and program elabor- 
ated on this basis is that they can be used relatively 
easily for modelling dryers of different types under 
simple physical conditions (N&met et al., 1987; Virrig et 
al., 1987). 

Moreover the successive improvement of the ap- 
plied drying model, and the more and more precise 
description of hydrodynamical conditions, may be 
done in the frame of the same equation and numerical 
solution. 

This article deals with the modelling of a one- 
dimensional steady-state dryer by demonstrating the 
effectiveness of the integral equation approach. At- 
tention will be paid to the simultaneous solution of the 
flow (mixing) and balance problems. 

LITERATURE 

The drying process consists of three simultaneous 
processes: conduction of heat and moisture in the bulk 
of the solid, heat and mass transfer through the 
solid-gas interface, and convection and conduction in 
the gas phase. The drying rate is limited by the rate of 
the slowest of these processes. In such a sense inter- 
nally or externally controlled (balance) processes 
can be distinguished (Sazhin, 1984; Pakowski and 
Mujumdar, 1987). The balance problem can be solved 
by the use of Dalton’s and Newton’s laws. For the 
calculation of the transfer coefficients there are a lot of 
dimensionless equations which are based on the re- 
sults of numerous experiments (Sherwood et al., 1975). 
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For the solution of the internal problem many empiri- 
cal and numerical procedures are ,available (Keey, 
1972; Romankov; 1987, Szentgyiirgyi and ervds, 
1985). Constant external ‘conditions are usually sup- 
posed throughout the calculation. In a real dryer this 
postulation is not valid due to the movement of the 
product and the flow of the drying gas as can be 
illustrated by a simple counter-current dryer. In the 
studied tunnel dryer the drying process can be de- 
composed into the following three periods (Fig. 1): 

(1) The material to be dried enters the apparatus at 
a relatively low temperature and interacts with the 
warmer output drying gas of high relative humidity. 
As a result the gas is cooled down and its relative 
humidity is increased. The temperature of the materia1 
is lower than the dew-point temperature of the gas and 
part of the humidity is condensed. This is ac- 
companied by an increase in the temperature of the 
material and its surface is wetted by the condensed 
steam. 

(2) Inside the dryer the temperature of the material 
is appropriately high and the partial pressure of the 
surface water is higher than that of the steam in the 
drying gas. Therefore the surface water starts to 
evaporate, and the temperature changes only slightly, 
being about the wet-bulb temperature. 

(3) The evaporation front penetrates inside the 
material to be dried and it is heated up. 

These three periods are similar to the well-known 
heating, const&nt-rate and falling-rate periods (Keey, 
1972; Luikov, 1968; Sazhin, 1984) occurring in the case 
of drying under constant external conditions. in a 
counter-current dryer, however, the decrease in the 
drying rate is not inevitable in the third period (it is 
nearly constant in the present example), as the loss of 
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vapour partial pressure above the material to be dried 
(or the increase in internal resistance to heat and mass 
transfer) is compensated by the decrease in the hu- 
midity and increase in the temperature of the gas 
around it. Moreover the constant drying rate period 
emerges in those cases as well, when the humidity of 
the input material is below the critical value, because 
of the usual condensation at the input. 

To investigate these effects one is concerned with 
the simultaneous solution of the flow (mixing) and 
balance problems. For this the following fundamental 
equations are used (Luikov, 1968; Sazhin, 1984): 

Newton’s law describing the energy transfer: 

J, = aS( t, - t,). 

Dalton’s law for the mass transfer: 

(1) 

The equations of state: 

(1) the specific internal energy of the material to be 
dried: 

u=c~t,+x,c,t, (3) 

(2) the specific enthalpy of the drying medium: 

h = c,t, + XgC,Eg + rxg. (4) 

The balance equations: 
(1) the mass balance: 

(2) considering the heat transfer through the walls 
of the dryer: 

J, = k&i (fe - tch) (6) 
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Fig. 1. Drymg periods in the tunnel dryer. 
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(3) the energy balances: 

(7) 

and 

The heat and mass transfer coefficients were calculated 
from the dimensionless equations. In the case of 
simultaneous heat and mass transfer for flat surface 
solid-gas systems the following equation was 
suggested by Sherwood et al. (1975) for the calculation 
of the transfer coefficient: 

j, =j, = 0.037Re0-’ (8000 < Re < 300,000) (9) 

or, the way it is usually written in the literature on 
drying: 

P 
Sh =; = 0.037Sc”= R&‘-8- 

p--P, 
(10) 

and 

Nu = T = 0.037 Pro.33 Re’-*. (11) 

In the case of the simulation of a tunnel dryer these 
equations were used to calculate the Q and fi heat and 
mass transfer coefficients. 

Beside these equations the following relationships 
will be used: 

The connection between the water partial pressure 
of vapour in the drying gas and its humidity: 

ps=PA. 
Ml+ xI 

(12) 

When air is used for drying MI = 18.016/29.964 
= 0.6220. 

The saturation pressure was estimated by Antoine’s 
equation (Reid et al., 1977): 

p,=exp[23.196-3816.44/(T,-446.13)]. (13) 

As is known, Newton’s [eq. (l)] and Dalton’s law 
[eq. (211 can only be applied for stationary processes, 
i.e. for the period with a constant drying rate, and they 
do not apply in this form for the third period with a 
decreasing drying rate (Luikov, 1968). After some 
modifications according to Lebedev (1955) (Luikov, 
1968) it can be applied in this period. According to the 
experimental data of Lebedev it is satisfactory to 
estimate the transfer coeffjcient from the following 
empirical equation: 

a2 xnl a -= 
[ 1 
- 

ci (XnA,, 
(14) 

Here (T does not depend on the method and circum- 
stances of drying. For various materials the exponent 
takes different values. It characterizes the bond be- 
tween the water and the material, and the difference 
between the actual and the geometric evaporation 
surface. 

The mathematical modelling of the flows in the 
dryer is based on the integral equation approach 
developed by Vir&g (VirBg and Hal&z, 1989) for the 
uniform mathematical treatment of the unit oper- 
ations of linear flow. 

Instead of the well-known second-order partial 
differential equation 

one starts from the integral equation 

P(z>~)=K(z>o)z,+ j;K@>Y){JCP(Y>rll 

d 
- ~P(X z) 

> 
dy 

which can be considered as the general mathematical 
model of a linear one-dimensional apparatus. 

The integral equation approach can only be applied 
if the following conditions are satisfied (Virhg and 
HalAsz, 1988): 

(1) The state of the system is uniquely represented 
by the density distribution of the characteristic exten- 
sive parameters. 

(2) To every constant input of the system there 
belongs an asymptotically stable equilibrium state. 

(3) The stream Bow of the system is linear. In a 
usual representation of the differential equation this 
means that the coefficients in the momentum balance 
equations are independent of the density of the other 
extensive parameters. In other words this means that 
the velocity space is independent of the transfer pro- 
cesses. The fulfillment of this and the next criteria is 
necessary in the application of all mixing models. 

(4) The system is time-invariant. This means that 
the velocity distribution and the transfer coefficients 
depend only on the change of time but not on its 
absolute value. This, however, does not mean that the 
processes should be steady-state. 

The parameter K(z, y) in eq. (16) is the kernel 
function characteristic for the flow circumstances. 
From a mathematical point of view it is the Green 
function of the boundary-value problem (15). 

According to the above-mentioned conditions an 
asymptotically stable stationary state corresponds to 
every constant input of the system. In this stationary 

64.4 = K(z, 0) I, + J K(z, v)fb(uU dy. (17) 
0 

Let the Jcp(y)] input be particularly chosen as 
6( y - z,), a delta distribution centered at point .zO. This 
will describe the system where at site z, a point-like 
source of unit intensity exists. On the basis of eq. (16) 

j 

1. 
p(z) = K(z, 0) I, + J% Y)a(y--z,)dy 

0 

=; + K(z, z,) (18) 
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i.e. 

P(Z) - Jw, ov, = K(z, 2,). (191 
Therefore the kernel function K(z, zO) characteristic 
for the flow circumstances of the system has a well- 
defined physical meaning: it will give the extensive- 
density change at point L in the stationary state of the 
system when a source of unit intensity exists at point 
z,. This fact can be used for a direct measurement of 
the kernel function. 

If a special form of the kernel function K(z, Y) is 
substituted into eq. (16) one of the usual mixing 
models is obtained (VirCtg and Hal&z, 1989). If, for 
example: 

K(r,Y)=l (O<z,y<L) (20) w 

is substituted into eq. (16), the ordinary differential 
equation characteristic for the perfectly mixed system 
is obtained. 

The kernel function for the plug-flow system is 

I 
1 

K(z, Y)= w 
if O<y<z<L 

(21) 

(0 if O<z<y<L. 

(This corresponds to a first-order partial differential 
equation.) 

The kernel function of a diffusion model giving a 
second-order partial differential equation is 

wz, Y) = 

{ 

1 
- if O<y<z<L 
W 

Pe+ - Y, (22) 
lp 
-e L if O<z<Y<L. 
W 

The source function f(y) in eq. (16) represents real 
sources in homogeneous phases, and between hetero- 
geneous phases it characterizes the transport of exten- 
sives. 

FUNDAMENTAL POSTULATES 

It is assumed that the drying process is uniquely 
characterized by the following extensive parameters: 

the mass of the material to be dried and its moisture 
content, the internal energy of the solid, the mass of 
the dry drying gas and its vapour content, and the 
enthalpy of the wet gas. 

The sources will describe the muss and energy 
transfer between the material and the drying gas and 
the energy transfer between the gas and the wall of the 
dryer. When an extensive quantity input occurs not 
only at both ends of the dryer but at intermediate 
points too, these will be considered as sources at the 
appropriate sites. 

During the drying the mass of bone-dry material and 
of absolutely dry drying gas can be considered con- 
stant. These substances are therefore looked upon as 
inert carriers and calculations are made from specific 
data. 

Density changes in the absolutely dry part of the 
material as a function of temperature and moisture 
content (i.e. as a function of distance) can be neglected. 

The $0~ Zineariry of the drying gas means that its 
flow rate and density arc supposed to be constant 
along the length of the apparatus. This is the crudest 
physical approximation made to unify the mathemat- 
ical model although a density change in the drying gas 
as a function of temperature is obvious along the 
dryer. 

It is also postulated that the rate of energy and mass 
transfer is determined by the processes occurring in 
the boundary layer of the solid and gas phase. So a 
solution of the mentioned internal problem can be 

ignored. 

As a consequence of this a lumped-parameter de- 
scription is applied in the calculation-in other words, 
the temperature and moisture content inside the prod- 
uct is supposed to be constant and equal to the 
appropriate integral mean value. 

It is supposed that the heat and mass transfer is 
described by eqs (1) and (2) where the heat and mass 
transfer coefficients can be calculated from the empiri- 
cal equations for the Nusselt and Sherwood numbers. 

SIMPLIFYING ASSUMPTIONS 

The dryer will be considered to be one-dimensional, 

which means that the drying medium and the product 
flow parallel to the length of the apparatus, and in the 
planes perpendicular to it the temperature and the 
moisture content are equal and correspond to the 
integral mean values. This simplification is in fact not 
required by the applied mathematical theory but the 
modelling becomes easier. 

The operation of most continuous dryers is steady- 

state so for the sake of simplicity of numerical pro- 
cedures one will be concerned only with the steady- 
state drying. 

The temperatures of the product carrier mechanism 
and that of the product are identical. 

The vapour ‘pressure over the product will be 
replaced by the saturation pressure corresponding to 
the temperature of the product. To making allowances 
for deviations occurring during the falling-rate period 
modifications (15) will be used. 

In eq. (10) it is supposed that P/(P-p& z 1. 
Further assumptions made in the simple illustrative 

example for modelling of the tunnel dryer are the 

following: 

(1) Obviously, the product is not mixed and the 
kernel function of the movement is characterized by 
eq. (21). The mixing ofthe drying gas is described by the 

diflusion model (22). 
(2) In the simulation the heat and muss transfer 

coeflcients will be considered constant along the dryer. 

Since the thermal parameters of the wall of the dryer 
are not known the heat transfer coefficient will be 
estimated as k,=5 x 1O-3 kW/m’/K. 

For ceramic tiles the exponent in eq. (14), cr = 2.9, 
will be taken (Luikov, 1968). 
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THE SYSTEM OF INTEGRAL EQUAT3ONS 

On the basis of the above assumptions the general 
integral eq. (16) will be simplified considerably. For 
density of the characteristic extensive parameters of 
the system the following integral equation can be 
written: 

(i= 1, 2, 3, 4, 5, 6). (23) 

Divide both sides of eq. (23) by the density of the inert 
carrier p,,(z) at point 2: 

PAZ) 1, 1 L 1 
-+ 

PAZ) =wiP~i(~) s Ki(-? Y)- 
0 P,,(Z) 

Rearranging: 

x XCAy)ldy. (24) 

x Fi[x(y)] dy (i = 1, 2, 3, 4). (25) 

The number of the equations to be solved will be 
decreased from six to four because of the use of specific 
parameters. Due to the postulated constant value of 
the density of the carriers 

P,,(O) = P,,(Y) = P&Z) (26) 

P,,(O) = P,,(Y) = P,,(Z). (27) 

Consequently, eq. (25) can be written as 

s 

L 

xi(z) = xio + Ki(z, y)FiCx(~)l dy U = f, 2, 3,4). 
0 

(28) 

The energy density and humidity of the product and 
the drying media flow together and one *can dis- 
tinguish only two kernel functions: one for the flow of 
the material to be dried: 

K,(z, Y> = K, (z. Y) = K,(z, Y) 

and another for the drying gas: 

K,(z, Y) = K,k y) = fL(z, y). 

(29) 

(30) 

The interpretation of the sources on the basis of 
eqs (5), (7) and (8) is 

F 1: = 3,/G, - r(J,/G,) (31) 

F,: = - J,,jG,,, (32) 

F,: = - J,jG, - J,/G, + WJG,) (33) 

F,: = - F, (G,/G,). (34) 

In the energy balance [eq. (7)] used for the calculation 
of sources, the term describing the heating of the 
product carrier mechanism is omitted, because it was 
lumped into the internal-energy term for the sake of 
simplicity. According to the original assumptions the 
temperatures of the transport device and the product 
are identical, and for the heating up the following 
equation can be written: 

(Gem cm + G&f= 
Gcmcrm + G&n 

GIlI 
G-2. (35) 

Therefore in eq. (3) the specific heat capacity is 
modified: 

+ _ Gcm~cmt+ Cmcm 
c,: - 

Gm ’ (36) 

SIMULATION OF A CONTINUOUS TUNNEL DRYER 

In the typology of integral equations the system of 
eqs (28) is called the Hammerstein-type of equations 
where the kernel and the source functions are separ- 
able, the source function is not linear in terms of the x 
variable, and the limits of integration are constant. 
For the solution of these equations a new and stable 
algorithm and program were worked out by Hal&z 
and Vir&g (1982). 

For the illustration of the efficiency of the model 
and the program the heat and mass transfer processes 
were simulated in a dryer used in the ceramic industry. 
The dryer operates in the China Factory of Budapest 
and it is shown in Fig. 2. The size of the tunnel is 32 
x 1.14 x 1.97 m and it can be considered as one- 

dimensional. 
The product: tiles (0.151 x 0.151 x 0.05 m), packed 

on carriages in 8 x 5 columns is moved through the 
tunnel counter-currently to the drying gas. Strictly 

6.C5 a.75 

___- WeI 
c;;-;lr;.,-m,,,, material 

l- 9.30 I 7.50 
in 

32m ’ 

Fig. 2. Scheme of the tunnel dryer. 
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speaking the movement is not continuous-in 2 h one 
carriage of wet tile is introduced and one dry carriage 
leaves the tunnel-but the feed may be considered as 
quasi-continuous and the whole process as quasi- 
stationary. 

The product is not mixed and its kernel function is 
represented by eq. (21). Mixing in the drying gas can 
be described by the diffusion model (22). The flow of 
the drying media in the tunnel is ensured in such a way 
that four input and discharge parts can be dis- 
tinguished. Pe can be estimated as 8. 

Dimensionless parameters occurring in eqs (10) and 
(11) were calculated for t, = 60°C and t, = 100°C. The 
air velocity, w, is 2 m/s and the typical dimension is the 
length of the tiles. 

Physical parameters according to Nevenkin and 
Nachev (1982) are P= 101 x lo3 Pa, and x = 0.02 
kg/kg (Table 1). 

Longitudinal temperature and humidity distribu- 
tions for the drying gas were measured in the dryer. 
Measuring holes on the wall and doors of the dryer 
were used for sampling. Humidity measurements were 
made by an ULTRAKUST Hygrophil 4455 hy- 
grometer. It displays the wet- and dry-bulb tempera- 
tures as well as the value of the relative humidity. 

Using this information the absolute humidity was 
taken from Nevenkin and Nachev (1982). The relative 
humidities correspond best to the values taken at a 
pressure of 101 kPa. By means of installed instruments 
the operation of the dryer was measured for 76 h 
(Fig. 3). 

The input data corresponding to the experiments 
were the following: 

S=420mZ t 90 = 165°C 

S,=100m2 xgO = 0.007 kg/kg 

C:= 1.5 kJ/kg/K W, = 2000 kg/h 

t mo = 17°C Pe=8 

x,, = 0.055 kg/kg fi=O.O15 m/s 

x,, = 0.130 kg/kg x=0.014 kW/m’/“C 

W,,, = 790 kg/h k, = 5 x iO-3 kW/m*/“C. 

The simulation program is very sensitive to the critical 
humidity value occurring in eq. (14). This depends not 
only on the properties of the material but also on the 
type of drying process. By using the experimental data 
this parameter was fitted by simulation experiments. 
Further calculations were made using the value ob- 
tained (0.130). 

Table 1. Values of the dimensionless numbers and transfer coefficients 

Number Equation Value at 60°C Value at 100°C 

Re WlPlP 16,064 14,541 
SC ?zD 0.553 0.553 
Pr 0.668 0.616 
Sh 0.037 SI?~ Re’.’ 65.07 64.96 
Nu 0.037 Pro-- Rr’ a 69.17 67.33 

B Sh D/l 0.0146 0.01795 
(x Nu &‘l 0.0137 0.0150 

I Gas temperature 
0 Measured mean 

- Calculated 

flue tuat ion 

value 

Fig. 3. Temperature fluctuation of the gas in the dryer. 
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RESULTS AND DlSCUSSlON 

Applying the above-described model numerical ex- 
periments were carried out for the simulation of the 
tunnel dryer. The goal was to investigate the appli- 
cation possibilities, to study the accuracy of the simu- 
lation, and the effect of the input parameters. 

The calculated and measured values are compared 
in Fig 4. For the measurement of the humidity distribu- 
tion the measured value at the first point is much 
higher than the calculated one. Tt is very likely caused 
by the uncertainty of the 100°C humidity data. Fig- 
ure 3 shows the 76-h temperature fluctuation of the 
dryer and the results of the simulation. As can be seen 

by the supposition of the steady-state mode of oper- 
ation the mean value was obtained. 

In order to study the effect of the input, data values 
were changed by 25% and numerical experiments 
were carried out. 

Results indicate that these small changes in the 
transfer coefficients and the surface influence the dis- 
tribution of the temperature and humidity only negli- 
gibly (Fig. 5). The deviation of Sh and Nu amounts to 
0.1 and 2.7%, respectively, along the length of the 
dryer. Consequently, the postulation of constant 
values for the transfer coefficients will not cause a 
significant error. For other dryers this may not be true. 

200 
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d 5 -43 li 20 25 30 
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Fig. 4. Comparison of the calculated and measured values. 
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Fig. 5. Effect of the mass transfer coefficient on the temperature and humidity distribution. 
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No theoretical difficulty emerges if a change in the 
transfer coefficients is taken into consideration_ In 
such a case, however, the program should also contain 
the empirical equations referring to the physical prop- 
erties of the drying gas. 

A change in the humidity of the drying media does 
not practically influence the temperature distribution; 
it merely leads to the translation of the humidity curve 
of the drying media and to a small change in the length 
of the first condensation period. 

As can be expected, the mass flow rate strongly 
affects the advancement of the drying. If a large 
amount of drying gas is used periods (I) and (2) can be 
neglected. In the case of a low mass flow rate for the 
drying gas the condensation period wili be longer, and 

a deep drying of the material and a decrease in the 
intensity of the drying will not occur (Fig. 6). A similar 
effect is caused by the mass flow rate of the product 
and the inlet temperature of the drying gas and the 
product. 

The need to solve the internal problem is avoided by 
the use of the Lebedev correction (14). The choice of 
this model is not based on physical considerations. Its 
main advantage is its simplicity. When it is used in 
numerical experiments the results are satisfactory. It 
should be noted, however, that under changing ex- 
ternal circumstances the “critical” water content oc- 
curring in eq. (14) cannot be defined in a consistent 
way. This parameter was determined by a fitting 
procedure. The change in this parameter (Fig. 7) influ- 
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A__------------______ 
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;?;;000002 

/o 0 ---___ x ‘x t + +_. 0, 
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2.m 

Fig. 6. Effect of the mass flow rate of drying gas on the temperature and humidity distribution. 
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Fig. 7. Effect of the critical water content on the temperature and humidity distribution. 
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ences the course of the drying process heavily-a 
higher critical water content makes the distribution 
curve straighter and decreases the slope (i.e. the inten- 
sity of the drying). If, however, the input humidity is 
essentially higher than the critical value the program 
tends to be divergent because correction (14) gives a 
far too large mass transfer coefficient. In this case the 
program should be corrected in a way that no correc- 
tion is applied over the critical water content. Other, 
more realistic models may also be used in a particular 
problem [if, for example, in eq. (13) the pressure 
change over the drying material is known as a function 
of the temperature and humidity]. For a stable nu- 
merical solution the derivatives of these relationships 
should be continuous according to the x and u 
variables. 

When certain materials (wood, ceramic) are dried 
the quality of the product is preserved only if the 
pressure and humidity gradients remain under certain 
limits. In such cases the solution of the internal 
problem is unavoidable. This problem can only be 
characterized by the use of the distributed parameters. 
The temperature and humidity distribution in the 
material can only be determined on this basis. Be- 
cause, for a given product, the maximal value of the 
internal gradient corresponds to a maximal drying 
rate in the simulation one is not concerned with this 
problem. It is supposed that this maximal allowed 
value of the drying rate is either numerically 
(SzentgyBrgyi and orviis, 1985) or experimentally 
known for a given product. The purpose was to adjust 
and control the operation of the dryer by simulation in 
such a way that the drying intensity should be near but 
not exceed the maximum allowed value. 

The basis of the integral equation modelling of 
drying is the kernel function describing the movement 
of drying gas and the material to be dried. The 
following two possibilities arise: in the case of a 
relatively simple motion (or in the case of new dryers) 
the kernel function is calculated analytically by the 
program. For this the mixing model of eqs (20H22) or 
other models are necessary. In the modelling of a 
tunnel dryer this possibility was chosen. The other 
alternative is based on the direct experimental deter- 
mination of the kernel function. According to eqs (18), 
(19) and (28) this can be made on the basis of the 
following equation: 

K,(z, z,) = Xi(Z) - xiO- (38) 

The dryer is divided into theoretical sections; each 
section is provided with a unit mass or energy source 
and the concentration or temperature changes corre- 
spondingly are measured in each section. 

An important condition for using the proposed 
method is the hydrodynamical linearity. This means 
that the kernel function must be determined before 
solving the equations, or-in other words-the trans- 
fer processes influence the velocity distribution only 
negligibly. This condition is not fulfilled for large 
temperature changes, because of isobar volume 

changes in the gas. In this case the kernel function 
must be determined iteratively. 

The calculations prove that the developed hydro- 
dynamically linear model is suitable for the simulation 
of the heat and mass transfer processes occurring in a 
dryer. In the modelling of a tunnel dryer the good 
agreement of the calculated and measured values 
proves the reality of the initial postulates. The numeri- 
cal solution is found after five-seven iterations. 
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NOTATION 

diffusivity of heat, m*/s 
isobar specific heat capacity, 
kJ/kg/K 
modified heat capacity, kJ/kg/K 

mass diffusivity of air-steam mix- 
ture, m*/s 
apparent diffusivity of axial mix- 
ing, m’/s 
source density, kg/m3/s or kW/m3 

( =&l{~Cxty)1J) sour= of the 

specific extensives, kg/s/kg carrier 
or kW/kg carrier 
mass of the absolute dry carrier, kg 
specific enthalpy of the drying 
medium, kJ/kg dry air 
specific input flow, kg/m’/s or 
kW/m’ 
energy transfer flux, kW 
mass transfer flux, kg/s 
c = (P/wxp$J?Sc2’3] (Colburn’s 
mass transfer coefficient) 
[ = (a/c,p~)Pr*/~] (Colburn’s heat 
transfer coefficient) 
kernel function, s/m 
heat transfer coefficient, kW/m2/K 
length of the dryer, m 
typical dimension, m 
ratio of the molar mass of the 
steam to the effective molar mass of 
the drying medium 
Nusselt number. 
total pressure, Pa 
partial pressure, Pa 
Peclet number 
Prandtl number 
universal gas constant, kJ/kg/K 
heat of evaporation, kJ/kg 
Reynolds number 
surface of transfer, mz 
Schmidt number 
Sherwood number 
absolute temperature, K 
temperature, “C 
specific internal energy of the prod- 
uct, kJ/kg dry basis 
mean velocity, m/s 
mass flow rate of the carrier enter- 
ing the dryer, kg/s 
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X 

xi 

Y 
,? 

Greek letters 

; 

&Y-Z,) 

R 

P 

CL 
c 

T 

._ .- 

Subscripts 

c 

ch 
cm 
CT 

d 

n 
i 

i 
I 

T. VlRAG ef cd. 

humidity, moisture kg/kg dry basis m solid material 
=x or the specific energy content, 0 inlet 
kJ/kg dry basis u vapour 
distance, m w water 
distance, m 
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