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1. Introduction

The degree of difficulty in solving a global optimization problem is
dependent on certain characteristics, related in general to the dimensionality
of the problem and the characteristics of the objective function [see, for
example, Dixon and Szegö (Refs. 1 and 2) and Torn and Zilinskas (Ref. 3)].
Our experience with practical global optimization problems, particularly in
the field of hydrologie model calibration [Sorooshian et al. (Ref. 4), Gupta
and Sorooshian (Refs. 5 and 6), and Duan, Sorooshian, and Gupta (Ref. 7)]
indicates that there are five major characteristics that complicate the solution
process:

(1) There may be several major regions of attraction into which a
search strategy may converge.

(2) Each major region of attraction may contain numerous (possibly
uncountable) local minima (stationary points where the first
derivatives are zero and the Hessian matrices are positive definite
or positive semidefinite). These local optima may occur both close
to and at various distances from the best solution.

(3) The objective function surface in the multiparameter space may
not be smooth and may not even be continuous. The derivatives
may be discontinuous and may vary in an unpredictable manner
through the parameter space.

(4) The parameters may exhibit varying degrees of sensitivity and a
great deal of interaction and compensation. Much of the inter-
action can be highly nonlinear.

(5) The response surface near the true solution is often nonconvex.

An optimization problem containing all five of the features mentioned
above can be particularly difficult to solve. The task, therefore, is to construct
an algorithm that is capable of dealing with these various difficulties. We
present here a new global optimization strategy, entitled the1 shuffled complex
evolution (SCE) method, which promises to be effective and efficient for a
broad class of problems.

The SCE method is based on a synthesis of four concepts that have
proved successful for global optimization:

(a) combination of random and deterministic approaches; see Dixon
and Szcgö (Ref. 2), Gomulka (Ref. 8), Torn and Zilinskas
(Ref. 3);

(b) the concept of clustering; see Becker and Lago (Ref. 9), Torn
(Ref. 10), and Rinnooy-Kan and Timmer (Ref. 11);
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(c) the concept of a systematic evolution of a complex of points span-
ning the space, in the direction of global improvement; see Price
(Refs. 12-14);

(d) the concept of competitive evolution; see Holland (Ref. 15).

In the interest of brevity, only a brief discussion of these concepts is presented
here. The first concept is very important. The use of deterministic strategies
allows the SCE algorithm to make effective use of response surface informa-
tion to guide the search, while the inclusion of random elements helps to
make the algorithm flexible and robust. The search begins with a randomly
selected complex of points spanning the entire feasible space Sì. A large
enough number of points will help ensure that the complex contains informa-
tion regarding the number, location, and size of the major regions of attrac-
tion. The implementation of an implicit clustering strategy helps to
concentrate the search in the most promising of the regions identified by the
initial complex. The use of a systematic complex evolution strategy helps to
ensure that the search is relatively robust and is guided by the structure of
the objective function. The robustness is a result of the fact that the complex
structure is able to cope very well with rough, insensitive, and highly noncon-
vex objective function surfaces and is relatively unaffected by the small local
minima that are encountered enroute to the global solution. Further, no
derivative information is required. The implementation of a strategy of com-
petitive evolution has been shown by Holland (Ref. 15) to be useful in
improving global convergence efficiency.

The controlled random search (CRS) method of Price (Refs. 12-14)
was used as a starting point for the SCE method, since it incorporates some
of the concepts mentioned above, while being easy to implement and modify.
Price proposed and tested three versions of the CRS strategy (CRS1, CRS2,
CRS3). The CRS methods possess several properties that are desirable for
effective and efficient global optimization. However, they also have certain
weaknesses. The CRS1 strategy treats each region of the sampled area in a
nonpreferential manner, and convergence can be slow. On the other hand,
the CRS2 and CRS3 strategies place their major emphasis on the best point
in the current sample, so that the search can easily become biased toward
the region of a local minimum. Also, the strategy of always replacing the
current worst point in the population by each newly generated point causes
the population to shrink into a small region very quickly. Tests that we have
conducted show that there is a good possibility that the population will
begin to contain repeated points, therefore becoming degenerate and causing
the search to terminate prematurely. To minimize this possibility, the sample
size has to be sufficiently large. In the SCE method, this latter problem does
not arise.
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2. Shuffled Complex Evolution Method

The shuffled complex evolution (SCE) strategy combines the strengths
of the CRS algorithms with the concept of competitive evolution (Holland,
Ref. 15) and the newly developed concept of complex shuffling. The SCE
strategy is presented below and is illustrated in Fig. 1.

Step 0. Initialize. Select/>£ 1 and » i^« +1, where/?=number of com-
plexes and m = number of points in each complex. Compute the sample
size s=pxnt.

Input: n-dimension, p-number of complexes
m«number of points in each complex

Compute: sample size s-pxm

Sample s points at random In Q.
Compute the function value at each point

Sort the s points In order of increasing
function value. Store them in D.

Partition 0 Into p complexes of m points
l,e.,D«(A>,k.1 p}

Evolve each complex A \

i r

k - 1 , ... ,p
CCE algorithm
(see Figure 2)

Replace A k , k - 1 m. into D

Convergence criteria
satisfied ?

Fig. 1. Flow chart of the shuffled complex evolution (SCE) method.
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Step 1. Generate Sample. Sample s points xx,..., x, in the feasible
space fìc W. Compute the function value/ at each point x,. In the absence
of prior information, use a uniform sampling distribution.

Step 2. Rank Points. Sort the s points in order of increasing function
value. Store them in an array D= {x/tf¡, i = 1 , . . . , s}, so that /= 1 represents
the point with the smallest function value.

Step 3. Partition into Complexes. Partition D into p complexes
A1,..., A", each containing m points, such that:

^ = ixj> fj \XJ =xk+p(j-t)> fj =

Step 4. Evolve Each Complex. Evolve each complex Ak, k = l,... ,p
according to the competitive complex evolution (CCE) algorithm outlined
separately.

Step 5. Shuffle Complexes. Replace A\...,AP into D, such that D=
{Ak, k= 1,... ,/?}. Sort D in order of increasing function value.

Step 6. Check Convergence. If the convergence criteria are satisfied,
stop; otherwise, return to Step 3.

The competitive complex evolution (CCE) algorithm required for the
evolution of each complex in Step 4 of the SCE method is presented below
and is illustrated in Fig. 2.

Step 0. Initialize. Select q, a, and /?, where 2<.q<,m, at.\t and ß^l.

Step I. Assign Weights. Assign a triangular probability distribution
to Ak; i.e.,

The point x\ has the highest probability, pt =2/m+ 1. The point xt, has the
lowest probability, pm=2/m(m+1).

Step 2. Select Parents. Randomly choose q distinct points U\,..., uq

from Ak according to the probability distribution specified above (the q
points define a subcomplex). Store them in array B= {u,, v,t / = ! , . . . , q},
where v¡ is the function value associated with point Uj. Store in L the loca-
tions of Ak which are used to construct B.
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Given dimension n, compltx A, and number
of point» m In A. select q, a, Í , where
2 < > q < - m . a > . 1 .P». 1.S« 1 - 1 .

Assign i triangular probability distribution to A:

Select q point* from A according to
pi .Store them In 8 and thair relativ«
pothlontlnAlnL. Sat j - 1 .

Sort B and L In ordir of Increasing function
valu«. Computi tht cantrold of ut,.., un
and let u« ba the word point In B.

I Compute r » 2g • u« (reflection step). I

No
Generale a point z at
random In H. Set r • Z.

Generate a point z at
random in H. Compute
tí Setuo-Z and M L

Replace B Into A according lo L
and tort A In order of Increasing
function value.

Yes I
1 Return to SCE

Fig. 2. Flow chart of the competitive complex evolution (CCE) strategy.
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Step 3. Generate Offspring.

(a) Sort B and L so that the q points are arranged in order of increas-
ing function value. Compute the centroid g using the expression:

(b) Compute the new point r=2^-w ? (reflection step).
(c) If r is within Í2, compute the function value/ and go to Step (d);

else, compute the smallest hypercube HczW that contains Ak,
randomly generate a point z within H, compute f., set r=z, and
set fr=fr (mutation step).

(d) If/<y^, replace w, by r, go to Step (f); else, compute c=(g+u9)/
2 und/e (contraction step).

(e) lífe<fq, replace uq by c, go to Step (f); else, randomly generate
a point z within H and compute f¡ (mutation step). Replace uq

by z.
(f ) Repeat Steps (a) through (e) a times, where a ^ I is a user-speci-

fied parameter.

Step 4. Replace Parents by Offspring. Replace B into Ak using the
original locations stored in L. Sort Ak in order of increasing function value.

Step 5. Iterate. Repeat Steps (1) through (4) ß times, where ß^l is
a user-specified parameter which determines how many offspring should be
generated (how far each complex should evolve).

The philosophy behind the SCE approach is to treat the global search as
a process of natural evolution. The sampled points (s in number) constitute a
population. The population is partitioned into several communities (com-
plexes), each of which is permitted to evolve independently (i.e., search the
space in different directions). After a certain number of generations, the
communities are forced to mix, and new communities are formed through
a process of shuffling. This procedure enhances survivability by a sharing
of the information (about the search space) gained independently by each
community.

Each member of a community (complex) is a potential parent with the
ability to participate in a process of reproduction. A subcomplex selected
from the complex is like a pair of parents, except that a subcomplex may
consist of more than two members. To ensure that the evolution process is
competitive, we require that the probability that better parents contribute
to the generation of offspring is higher than that of worse parents. The use
of a triangular probability distribution ensures this competitiveness. Neider
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and Mead's (Ref. 16) procedure is applied to each subcomplex to generate
most of the offspring. This strategy uses the information contained in the
subcomplex to direct the evolution in an improvement direction. In addition,
offspring are introduced at random locations of the feasible space under
certain conditions in order to ensure that the process of evolution does not
get trapped by unpromising regions. This is somewhat analogous to muta-
tion in response to stress that can occur in biological evolution. Each muta-
tion also helps to increase the amount of information stored in the sample.
Finally, each new offspring replaces the worst point of the current subcom-
plex, rather than the worst point of the entire population. This ensures that
every parent gets at least one chance to contribute to the reproduction
process before being replaced or discarded. Thus, none of the information
contained in the sample is ignored.

The SCE method is designed to improve on the best features of the
CRS method (i.e., global sampling, complex evolution), by incorporating
within it the powerful concepts of competitive evolution and complex
shuffling. Both competitive evolution and complex shuffling help to ensure
that the information contained in the sample is efficiently and thoroughly
exploited. They also help to ensure that the information set does not become
degenerate. These properties lead us to expect that the SCE method will
have better global convergence properties over a broader range of problems.
In other words, given a prespecified number of function evaluations (fixed
level of efficiency), the SCE method should have a higher probability of
succeeding in its objective of finding the global optimum.

3. SCE1 Algorithm

The SCE I algorithm is a version of the SCE strategy in which the entire
sample s is allocated to only one complex (m=s). It contains no shuffling
procedure. The number of offspring ß that can be generated before checking
for convergence is the same as the complex size m. The procedure differs
from CRS2 primarily in the manner in which the complex is evolved
(described above). The size of each subcomplex selected for generation of
an offspring is n+1, the standard size for a simplex specified by Neider and
Mead (Ref. 16) and also used in the CRS procedures. The value of the
parameter a was set equal to 1 (only one step evolution of each simplex was
permitted) to match the CRS procedure. The primary variable to be selected
in this method is the sample size s.

4. SCE2 Algorithm

In the SCE2 algorithm, the size of a complex m is chosen to be equal
to 2«+1, where n is the dimension of the problem. The number of offspring
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ß that can be generated by each independenüy evolving complex between
two consecutive shuffles is the same as the complex size (2n +1). The size of
each subcomplex selected for generation of an offspring is n+1, the standard
size for a simplex specified by Neider and Mead (Ref. 16) and also used in
the CRS procedure. The value of the parameter a was set equal to 1 (only
one step evolution of each simplex was permitted) to match the CRS pro-
cedure. The primary variable to be selected in this method is the number of
complexes p.

5. Design of the Comparative Performance Study

A set of eight test problems was selected (see Table I). The first seven
of these are well-established test problems from the literature. The eighth is
a research version of the National Weather Service flood forecasting model
[Gupta and Sorooshian (Ref. 5)J, which is known to contain all five of the
problem characteristics described in Section 1 [Duan, Sorooshian, and
Gupta (Ref. 7)]. Each function was adjusted so that the globally optimal
function value is 0.0, and the function value elsewhere in the feasible space
is positive. In each case, any point with a function value less than 10~3 is
guaranteed to lie in a very small region around the global optimum. The
mathematical representations of these test problems are presented in the
Appendix.

Four global optimization algorithms were tested and compared on each
of the eight test problems. These are CRS2, SCE1, SCE2, and MSX, a
multistart algorithm using the local-search simplex procedure of Neider and
Mead (Ref. 16). Each optimization algorithm was tested by running 100
trials of the procedure on each test function. Each trial began with an
independent randomly generated sample s of points selected uniformly from
the feasible space. The stopping criteria are as follows. In each case, a trial
was deemed a success as soon as the best function value in the sample became

Table 1. Test problems used in this study.
Problem
number

I
2
3
4
5
6
7
g

Function name

Goldstein-Price function
Roscnbrock function
Six-hump camelback function
Rastrigin function
Shekel function
Hartman function
Griewank function
SIXPAR hydrologie model

Dimension

2
2
2
2
4
6

10
6

Number of
optima

4
1
6

>50
10
4

>1000
Uncountable
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less than IO"3. However, if the trial reached 25,000 function evaluations, or
if sample parameter convergence occurred (the region spanned by the sample
converged down to within 10~12 of the parameter range in each direction)
without reducing the best function value below 10~\ the trial was deemed
a failure. Two statistics were recorded. The first statistic is the number of
failures (NF) out of the 100 trials. Dividing NF by 100 gives an approxima-
tion of the probability of failure and, therefore, measures the effectiveness
(robustness) of the algorithm. The second statistic is the average number of
function evaluations (AFE) for the successes (i.e., the failures are not
included). This gives an approximate idea of the efficiency of the algorithm.
An jcy-plot of one statistic against the other gives an idea of the trade-off
between efficiency and effectiveness inherent in probabilistic algorithms. Low
values of both statistics indicate an effective and efficient algorithm.

6. Results of the Comparative Performance Study

The two statistics NF and AFE were computed for increasing sample
sizes s for the CRS2 and SCE1 algorithms, for increasing numbers of com-
plexes p for the SCE2 algorithm, and for increasing numbers of restarts for
the M SX algorithm. The results are presented in Tables 2a-2h and plotted
in Figs. 3a-3h. Each plot contains four curves. The dash-dot line indicates
the MSX algorithm; the dotted line indicates the CRS2 algorithm; the

Table 2a. Results for the Goldstein-Price function.

Starts

1
2
3
4
5

Starts

1

MSX

NF

25
10
2
I
1

MSX

NF

0

AFE

10
116
180
243
307

Points

10
IS
20
25

Table 2b.

AFE

102

Points

10
15
20
25

CRS2

NF

17
7
5
0

AFE

32
167
207
250

Results for

CRS2

NF

36
8
3
0

AFE

207
252
278
324

Points

10
15
20
25

SCE1

NF

1
1
1
0

AFE

159
159
278
332

SCE2

Complexes NF

2 1
3 1
4 0

t
1

the Rosenbrock function.

Points

10

SCE1

NF

0

AFE

287

SCE2

Complexes NF

2 0

AFE

163
231
311

AFE

281
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Table 2c. Results for the six-hump camel back function.

511

Starts

1
2

Starts

MSX

NF

5
0

MSX

NF

AFE

32
75

AFE

Points

10
15
20

CRS2

NF

10
2
0

AFE

78
102
124

Table 2d. Results

Points

CRS2

NF AFE

SCEl

Points NF

10 0

AFE

95

SCE2

Complexes NF

2 0

for the Rastrigin function.

SCEl

Points NF AFE

SCE2

Complexes NF

AFE

96

AFE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

89
80
66
61
56
50
45
38
36
32
31
28
24
22

40
118
189
260
333
408
483
552
623
693
760
830
904
972

10
15
20
25
30
40
50

92
57
31
12
5
1
3

184
248
315
387
466
564
699

10
15
20
25
30
40
50

50
36
21
12
5
0
2

179
267
342
432
530
697
864

2
3
4
5
6
7
8

51
29
25
10
3
1
I

163
263
378
475
545
644
752

21 1042

Table 2e. Results for the Shekel function.

MSX CRS2 SCEl SCE2

Stórts NF AFE Points NF AFE Points NF AFE ' Complexes NF AFE

i
2
3
4
5

59
39
19
7
4

¡54
359
584
786
994

iÔ
20
30
40
50
60
70
80
90
100

ÏÔÔ
64
22
16
12
10
6
4
5
4

489
651
767
920
1082
1207
1376
1518
1677

ÎÔ
20
30
40
50
60

3!
18
5
4

309
526
739
962

4 1183
0 1385

2!
6
8;
I
1
0

486
714
956
1150
1403
1600

dashed line indicates the SCEl algorithm; and the solid line indicates the
SCE2 algorithm. The MSX algorithm curve represents its performance for
increasing numbers of restarts. The CRS2 and SCEl algorithm curves rep-
resent their performance for increasing sample sizes. The SCE2 algorithm
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Table 2f. Results for the Hartman function.

Starts

1
2
3
4
5

MSX

NF

25
4
3
2
0

AFE

307
812
(258
1730
2204

Points

10
20
30
40
50
60
70
80
90
100
MO

CRS2

NF

100
98
81
45
31
31
29
23
21
21
22

AFE

404
646
901
999
940
1041
1157
1212
1332
1520

Points

10
20
30
40
50
60
70
80
90
100
110

SCEl

NF

54
36
44
50
45
41
48
44
46
51
40

AFE

334
354
433
525
612
693
801
879
994
1088
1186

;SCE2

Complexes N F

1
2
3
4
5
6
7
8
10
12
15

32
45
41
40
41
43
26
20
22
16
16

AFE

329
415
608
756
971
1125
1329
1603
1982
2306
2946

120 22 1627 120 40 1300 20 8 3984
150 26 1950 150 50 1587 25 4 4989
200 28 2634 200 46 2126
350 31 4608 350 30 3979
500 31 6944 500 18 6173

Table 2g. Results for the Griewank function.

MSX CRS2 SCEl SCE2

Suns NF AFE Points NF AFE Points NF AFE Complexes NF AFE

1 100 — 15
20
30
40
50
60
70
80
90
100
110
120
130
140
150
200

It
16
30
33
27
32
44
34
24
22
15
28
15
21
8
10

684
1029
1684
2430
3099
3698
4211
4564
5261
5580
6006
6652
6861
7376
7732
9131

15
20
30
40
50
60
70
80

100
91
45
11
31
1
1
0

—
1484
2242
2465
2601
2940
3230
3569

2
3
4

14
1
0

1977
2465
3070

curve represents its performance for increasing numbers of complexes. Note
that, in most of the plots, we see the expected behavior that effectiveness
increases (failures decrease) and efficiency decreases (average function evalu-
ations increase) as we increase the sample size s (or number of complexes
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Table 2h. Results for the SIXPAR function.

Starts

I
2
3
4
5
6
7
8
9

10

MSX

NF

65
56
51
46
40
29
19
11
8
7

AFE

903
1507
1764
1999
2292
3282
4259
5249
6263
7189

Points

30
40
50
60
90

120

CRS2

NF

93
51
li
5
4
4

AFE

1179
1673
2208
2000
2269
2745

Points

10
30
40
50
60
90

120

SCE1

NF

98
29
22
12
12
4
1

AFE

628
1107
1341
1611
1826
2570
.3293

:SCE2

Complexes NF

1
2
3
4
6
8

91
21
15
5
2
1

AFE

629
1104
1359
1697
2397
3133

or restarts), but that the trade-off is not linear. In some cases, a zero failure
rate was obtained with the initial set of trials and, therefore, further trials
were not necessary. These results appear as isolated points in Figs. 3b and
3c. Also, for the Griewank function, the MSX algorithm failed completely,
with a 100% failure rate on the initial start and, therefore, does not appear
on the plot. The important features of the results may be summarized as
follows:

(a) None of the algorithms is clearly superior on all the test problems.
(b) The MSX procedure is the least robust, with its performance

varying dramatically over the different functions. It performs
extremely well on the Rosenbrock, camelback, and Hartman
functions, fails on the Griewank function, and performs from
average to poorly on the remaining functions. As might be
expected, the conditions under which it performs well are those in
which the region (volume) of attraction of the global optimum is
relatively large. t

(c) The CRS2 procedure performs variably. On the Rosenbrock,
camelback, and Shekel functions, its performance is the worst
among the algorithms. On the Griewank and Hartman functions,
its performance does not improve in a consistent manner as the
sample size is increased. Strangely, these functions represent two
completely different surface characteristics. The Hartman function
has four major regions of attraction with no small local optima
in the major regions. The Griewank function has one major region
of attraction containing more than 1000 small local optima.

(d) The SCE1 and SCE2 procedures perform consistently well on all
eight test functions.



© 1998 INIST CNRS. Tous droits de propri&é intellectuelle réservés.Reproduction, représentation et diffusion interdites. Loi dû 1er'juillet 1992'

514 JOTA: VOL. 76, NO. 3, MARCH 1993

a) Goldstein-Price Function

50 100 150 200 250 300 350 400

b) RosenbrocV Function

u.
2

Fig. 3.

50 100 150 200 250 300 350 400

AFE
Effectiveness (NF) vs efficiency (AFE) pioto for the test functions.
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e) Six-Hump CamelbacJc Function

140

d) Rastrigin Function

"0 100 200 300 400 500 600 700 800 900 1000

AFE
Fig. 3 (continued). Effectiveness (NF) vs efficiency (AFE) plot» for the test functions.



©1998 IN^ST CNRS. Tous droits de propriété intellectuelle réservés.Reproduciion, représentation et diffusion interdites. Loi idu îér juïlletl992¿

516 JOTA: VOL. 76, NO. 3, MARCH 1993

e) Shekel Function

ti*

0 200 400 600 800 1000 1200 1400 1600 1800 2000

AFE

100

90

80

70

60

È 50

40

30

20

10

0

• A ' '

•

0 Hartman Function

•

•

•

— * ^ - - . . . .

0 1000 2000 3000 4000 5000 6000 7000

AFE
Fig. 3 (continued). Effectiveness (NF) vs efficiency (AFE) plots for the test functions..
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g) Griewank Function

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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h) SIXPAR model

500 1000 2500 3000 - 35001500 2000

AFE
Fig. 3 (continued). Effectiveness (NF) vs efficiency (AFE) plots for the test functions.
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(e) The SCE2 procedure is on the average the best algorithm. It per-
forms the best on the SIXPAR (watershed model) and Griewank
problems, is the only one of the complex evolution procedures
(CR.S2, SCE1, and SCE2) that appears to be reasonably effective
on the Hartman function, and performs relatively well on all the
others.

7. Discussion

Given a specific problem, there is likely to be a particular procedure
that is most effective and efficient at solving it. In general, however, one
often has little a priori knowledge about the structure of the response surface
and, therefore, a procedure that is robust and efficient is desirable (Dixon
and Szegö, Ref. 2). Viewed in this light, the SCE2 procedure clearly shows
promise, displaying consistent performance over the range of problems
tested. It should be pointed out that none of these test problems, except
perhaps the SIXPAR problem (where the SCE2 procedure is clearly the
best), rigorously tests the capabilities of the SCE strategy. Further studies
of the algorithm should include more difficult test problems, i.e., problems
which have all five of the characteristics that complicate global optimization
that are described in Section 1.

8. Appendix: Test Functions

Goldstein-Price Function (n = 2):

x [30 + (2X, - 3x2)2(l 8 - 32x, +12*1 + 48x, - 36x, x2 + 27*i

The global minimum is equal to 0 and the minimum point is (0, —1). There
are four local minima in the region of interest. :

Rosenbrock Function (n = 2):

The minimum value is 0 and the minimum point is at (1, 1). There is only
one minimum in the region of interest.

Six-Hump Camelback Function (n = 2) :

f(x, ,x2) = l .036285+Ax] - 2.1 x\ + ( 1 ß)x\ + xtx2- 4x1+4x\
-\<.x2<.\.
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The function is symmetric about the origin and has three pairs of local
minima. The global minimum is 0 at (0.08983, -0.7126) and (-0.08983,
0.7126).

Rastrigin Function (n = 2):
x2) = 2+x2¡+xí-cos(l8xl)-cos(ÍSx2),

The global minimum is 0 at (0, 0). There are more than 50 local minima in
the region of interest, arranged in a lattice configuration.

Shekel Function (M=4) :

f(x) = 10.5364- £ =-!
,_, (x-a¡) (x-a¡) + c,

x = (x,,x2,X},x4)
r, ai=(an, aa, an, a*)7,

Ci>0, i=l,...,m,

O^XjilO, j=\ 4,

where a¡ and c¡, /= I m and m = 10, are specified in Table 2. The global
minimum is 0 at a point close to (4,4, 4,4). There are 10 local minima in
the region of interest.

Hartman Function (n = 6):

£ c.expUf a^Xj-p^
/-I L >-!

/Cx) = 3.32-X>ex
/ - i

•* \-*l » • • • » -*6/ »

a,=(aiì,...,al6)
T, c,>0, i=i 4,

O^xj^l, j=\ n,
where « = 6, and atJ, c¡, pi}, /= 1 , . . . , 4 and j=\,..., 6, are specified in
Tables 3 and 4. The global minimum is 0 at (0.201, 0.150, 0.477, 0.275,
0.311, 0.657). There are four local minima in the region of interest.

Table 3. Values of a, and c, for the Shekel function, f
/

1
2
3
4
5
6
7
8
9

10

a,.

4
|
8
6
3
2
5
8
6
7

on

4
1
8
6
7
9
5
1
2
3.6

"a

4
1
8
6
3
2
3
8
6
7

an

4
t
8
6
7
9
3
1
2
3.6

e$

0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.5
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Table 4. Values of a< and c, for the Hartman function.

/

1
2
3
4

i

1
2
3
4

au

10.00
0.05
3.00

17.00

Table

Pu

0.1312
0.2329
0.2348
0.4047

3.00
10.00
3.50
8.00

5. Values

Pu

0.1696
0.4135
0.1451
0.8828

an

17.00
17.00
1.70
0.05

of p, for

P»

0.5569
0.8307
0.3522
0.8732

3.50
0.10

10.00
10.00

Osi BU

1.70 8.00
8.00 14.00

17.00 8.00
0.10 14.00

the Hartman function.

Pv

0.0124
0.3736
0.2883
0.5743

Pa

0.8283
0.1004
0.3047
0.1091

Ci

1.0
1.2
3.0
3.2

Pu

0.5886
0.9991
0.6650
0.0381

Griewank Function (M = 10):

/M^ZT-ñcos
/-i a i-ì

-600 ^ x , ^ 600, i = l 10, if=600.

The global minimum is 0 and is at the origin. There are several thousand
local minima in the region of interest.

S1XPAR Hydrologie Model (« = 6). The SIXPAR model is a research
version of the SMA-NWSRFS model used by the U.S. National Weather
Service for flood forecasting. Rainfall data measured over a watershed are
telemetered to a central processing computer, where the SMA-NWSRFS
model is used to generate estimates of riverflow volume at specific down-
stream points. The model is highly nonlinear in the parameters, having
several threshold-type parameters and reservoir depletion-rate parameters
that must be estimated using historical data. A description of the model
appears in Gupta and Sorooshian (Ref. 5). A discussion of the difficulties
involved in the optimization of the model parameters appears in Duan,
Sorooshian, and Gupta (Ref. 7). The computer code and data are available
from the authors on request.
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