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Parallel computing has typically emphasized 
systems that can be explicitly decomposed into 
independent subunits with minimal interactions. 
For example, most parallel processing systems 
achieve speedups by identifying code and data 
segments that can be executed simultaneously. 
Under this approach, interactions among the 
various segments are managed directly, through 
synchronization, and communication among com- 
ponents is viewed as an inherent cost of computa- 
tion. As a result, most extant parallel systems 
require substantial amounts of overhead to man- 
age and coordinate the activities of the various 
processors, and they obtain speedups that are 
considerably less than a linear function of the 
number of processors. 

An alternative approach exploits the interac- 
tions among simultaneous computations to im- 
prove efficiency, increase flexibility, or provide a 
more natural representation. Researchers in sev- 
eral fields have begun to explore computational 
models in which the behavior of the entire system 
is in some sense more than the sum of its parts. 
These include connectionist models [46], classifier 
systems [22], cellular automata [5, 7, 56], biological 
models [11], artificial-life models [33], and the 
study of cooperation in social systems with no 
central authority [2]. In these systems interesting 
global behavior emerges from many local interac- 
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tions. When the emergent behavior is also a com- 
putation, we refer to the system as an emergent 
computation. 

The distinction between standard and emergent 
computations is analogous to the difference be- 
tween linear and nonlinear systems. Emergent 
computations arise from nonlinear systems while 
standard computing practices focus on linear be- 
haviors (see section 2.2). The idea that interactions 
among simple deterministic elements can produce 
interesting and complex global behaviors is well 
accepted in the physical sciences. However, the 
field of computing is oriented towards building 
systems that accomplish specific tasks, and emer- 
gent properties of complex systems are inherently 
difficult to predict. Thus, it is not immediately 
obvious how architectures (either hardware or 
software) that have many interactions with often 
unpredictable effects can be used effectively, and it 
is for this reason that I have chosen to use the 
term "emergent computation" instead of referring 
more broadly to nonlinear properties of computa- 
tional systems. The premise of emergent computa- 
tion is that interesting and useful computational 
systems can be constructed by exploiting interac- 
tions among primitive components, and further, 
that for some kinds of problems (e.g. modeling 
intelligent behavior) it may be the only feasible 
method. 
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To date, there has been no unified attempt to 
specify carefully what constitutes an emergent 
computation or to determine what properties are 
required of the supporting architectures that gen- 
erate them. This volume contains the Proceedings 
of a recent Conference held at Los Alamos Na- 
tional Laboratory devoted to these questions. 
Emergent computation is potentially relevant to 
several areas, including adaptive systems, parallel 
processing, and cognitive and biological modeling, 
and the Proceedings reflects this diversity, with 
contributions from physicists, computer scientists, 
biologists, psychologists, and philosophers. The 
Proceedings are thus intended for an interdisci- 
plinary audience. Each paper addresses this by 
providing introductory explanations beyond that 
required for a field-specific publication. In this 
introduction I hope to stimulate discussion of 
emergent computation beyond the scope of the 
actual conference. First, a definition is proposed 
and several detailed examples are presented. Then 
several common themes are highlighted, and the 
contents is briefly reviewed. 

1. What is emergent computation? 

It is increasingly common to describe physical 
phenomena in terms of their information process- 
ing properties [57, 58]. However, we wish to distin- 
guish emergent computation from the general 
emergent properties of complex phenomena. We 
do this by requiring that both the explicit and the 
emergent levels of a system be computations. For 
example, a Rayleigh-Brnard convecting flow, in 
which the dynamics of the fluid particles follow a 
chaotic path, would not necessarily be considered 
a form of emergent computation. 

The requirements for emergent computation are 
quite similar to those proposed by Hofstadter in 
his paper on subcognition [19]. He stresses that 
information which is absent at lower levels can 
exist at the level of collective activities. This is the 
essence of the following constituents of emergent 

computation: 
(i) A collection of agents, each following ex- 

plicit instructions; 
(ii) Interactions among the agents (according to 

the instructions), which form implicit global pat- 
terns at the macroscopic level i.e. epiphenomena; 

(iii) A natural interpretation of the epiphenom- 
ena as computations. 

The term "explicit instructions" refers to a 
primitive level of computation, also called 
"micro-structure", "low-level instructions", "local 
programs", "concrete structure", and "component 
subsystems". In a typical case, such as cellular 
automaton, each cell acts as an agent executing 
the instructions in its state-transition table. How- 
ever, in some cases the coding for an instruction 
may not be distinguished from the agent that 
executes it. The important point is that the explicit 
instructions are at a different (and lower) level 
than the phenomena of interest. The level of an 
instruction is determined by the entity that pro- 
cesses it. For example, if the low-level instructions 
were machine code, they would be executed by 
hardware, while higher-level instructions would be 
interpreted by "virtual machines" simulated by 
the lower-level machine code instructions. The 
higher-level instructions would be implicit, al- 
though not necessarily the product of interactions 
(see section 2.2 on superposition). 

There is a tension between low-level explicit 
computations and the patterns of their interaction, 
and the interaction among the levels is important. 
Global patterns may influence the behavior of the 
lower-level local instructions, that is, there may be 
feedback between the levels. Patterns that are 
interpretable as computations process informa- 
tion, which distinguishes emergent computation 
from the interesting global properties of many 
complex systems such as the Rayleigh-Brnard 
experiment mentioned earlier. 

Central to the definition is the question of to 
what extent the patterns are "in the eye of the 
beholder", or interpreted, and to what extent they 
are inherent in the phenomena itself. This issue 
arises because the phenomena of interest are im- 
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plicit rather than explicit. Note that to a lesser 
extent the interpretation problem also exists in 
standard computation. The difference is that in 
emergent computations there is no one address (or 
set of addresses) where one can read out an an- 
swer. Thus, the time for interpretation is likely to 
be much lower for standard computations than 
emergent ones. Currently, many emergent compu- 
tations are interpreted by the perceptual system of 
the person running the experiment. Thus, when 
conducting a cellular automaton experiment, re- 
searchers typically rely on graphics-based simula- 
tions to reveal the phenomena of interest. While 
quantitative measures can be developed in some 
cases to interpret the results, scientific visualiza- 
tion techniques are an integral part of most cur- 
rent emergent computations. 

According to the Church-Turing thesis, a Tur- 
ing machine can both implement any definable 
computation and simulate any set of explicit in- 
structions we might choose as the basis of an 
emergent computation [23]. Thus, the concept of 
emergent computation cannot contribute magical 
computational properties. Rather, we are advocat- 
ing a way of thinking about the design of compu- 
tational systems that could potentially lead to 
radically different architectures which are more 
robust and efficient than current designs #1. 

A related question is whether or not emergent 
computations can be implemented in more tradi- 
tional ways (i.e. can the emergent patterns be 
encoded as a set of explicit instructions instead of 
indirectly as implicit patterns?). While in some 
cases it may be possible to encode the emergent 
patterns directly in some language or machine, 
there are several advantages to an emergent-com- 
putation approach, including efficiency, flexibility, 
representation, and grounding. First, implement- 
ing computations indirectly as emergent patterns 
may provide implementation efficiencies because 
of the need for less control over the different 

~lEven if in principle emergent computations can be simu- 
lated by a Turing machine, interpreting the resulting patterns 
as computations is likely to be so difficult as to be infeasible. 

components (e.g. processes). As mentioned earlier, 
a high proportion of computing time is devoted to 
managing interactions among processes. Other 
kinds of efficiencies may also be realized, includ- 
ing efficiencies of cost through the use of multiple 
cheap components, efficient uses of programmer 
time, and raw computational speed through the 
use of massive parallelism. Second, flexibility is 
important for systems that must interact with 
complex and dynamic environments, e.g. intelli- 
gent systems. For these systems, it is impossible to 
get enough flexibility from explicit instructions; 
for realistic environments, it is just not possible to 
program in all contingencies ahead of time. There- 
fore, the flexibility must appear at the emergent 
level. The interaction between the instructions and 
the environment (or between emergent properties 
of the instructions and the environment) is impor- 
tant, and there are global patterns (symbols, etc.) 
associated with this instruction-environment in- 
teraction. Third, the advantage in representation 
arises in systems for which it is difficult to articu- 
late a formal description of the emergent level. 
Several authors have argued for the impossibility 
of such an undertaking for systems of sufficient 
complexity such as weather patterns and living 
systems [19, 33, 35, 48]. In these circumstances, 
emergent systems may provide the most natural 
model. Finally, the grounding issue arises if the 
emergent patterns are intended as real phenomena 
or models of real phenomena (as in cognitive 
modeling). In this circumstance, the intended in- 
terpretation of a purely formal model (e.g. sym- 
bolic models of artificial intelligence) becomes 
problematic since the model is not connected to 
(grounded in) the domain of interest (by e.g. a 
sensory interface). Emergent-computation models 
can address this problem by using low-level ex- 
plicit instructions that are directly connected to 
the domain. Harnad's paper discusses the ground- 
ing problem in detail [17]. 

At the architectural level, there are two criteria 
that capture the spirit of emergent computation: 
efficacy and efficiency. The criterion of computa- 
tional efficacy is met by systems in which each 
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computational unit has limited processing power 
(e.g. a finite state machine) and in which the 
collective system is computationally more power- 
ful (e.g. a Turing machine). The criterion of com- 
putational efficiency can be met by parallel models 
that are capable of linear or better than linear 
speedups relative to the number of processors 
used to solve the problem. (Other criteria can be 
imagined that are less strict. For example, it may 
be reasonable to construct systems in which not 
all of the processors are used all of the time. In 
these cases, the dimensions of time and number of 
processors might be combined to obtain a reason- 
able definition somewhat different from that men- 
tioned above.) Previous work on computational 
systems with interesting collective/emergent prop- 
erties has generally focused on some variant of the 
first of these criteria and ignored the second. 

2. Example problems 

In this section, three concrete examples are pre- 
sented to illustrate what sorts of problems emer- 
gent computation can address and provide a 
framework for interpreting the definition. The par- 
allel processing example shows how emergent 
computation can lead to efficiency improvements. 
The section on programming languages establishes 
the connection between emergent computation and 
nonlinear systems. Finally, two search techniques 
are compared to show how the emergent-computa- 
tion approach to a problem differs from other 
more conventional approaches. 

2.1. Parallel processing 

Consider the problem of designing a large com- 
plex computational system to perform reliably and 
efficiently. By "large complex" we mean that there 
are many components and many interactions 
among the components. The computational sys- 
tem could be a complicated algorithm that we 
would like to run in parallel, it could be dis- 
tributed over many machines with possibly hetero- 

geneous operating systems, or it could simply be a 
large, evolving software package being modified 
simultaneously by several different programmers. 
In the following, we will focus on the paralleliza- 
tion example, but similar arguments can be made 
for the distributed systems and software engineer- 
ing aspects of the problem. 

The conventional approach to such a problem 
looks for code a n d / o r  data segments that can be 
executed independently, and hence simultane- 
ously. With this view, it is important to minimize 
the interactions among the various components. 
Synchronization strategies are defined to manage 
communication among the independent compo- 
nents. The controlling program knows about all 
possible interactions and manages them directly. 
Thus, interactions are viewed as costs to be mini- 
mized. As mentioned earlier, most extant parallel 
systems consume substantial amounts of overhead 
managing and coordinating the activities of their 
processors. This is because the flow of data and 
control rarely match exactly the interconnection 
topology of the parallel machine. Potential 
speedups are also limited by inherently sequential 
components within a computation, a phenomenon 
quantified by Amdahl's law [1]. For  these reasons, 
the speedups that are achieved by most parallel 
systems are considerably less than a linear func- 
tion of the number of processors. 

Emergent computation suggests a view of paral- 
lelism in which the interactions among compo- 
nents lead to problem solutions with potentially 
better than linear performance. For example, a 
system that performs explicit search at the con- 
crete architecture level, but is implicitly searching 
a much larger space (see section 2.3) meets this 
criterion. 

The claim that superlinear speedups are in prin- 
ciple possible is controversial. The standard coun- 
terargument is as follows: if a process P runs in t 
time on n processors, then there exists a sequen- 
tial machine that can simulate P in at most (klnt) 
d - k  2 time steps, where k 1 and k 2 a r e  constants, 
so the speedup is only by a factor of n. This 
counterargument ignores the time required to in- 



S. Forrest // Emergent computation: An introduction 5 

terpret the results. If the result of the computation 
is a global pattern (e.g. a pattern of states in a 
cellular automaton distributed across several time 
steps), then the procedure for recognizing that 
same pattern on a sequential machine might re- 
quire as much computation as the original compu- 
tation. 

Even allowing for the theoretical possibility of 
superlinear speedups, one might question whether 
or not it is feasible to actually construct such a 
system. The following simple example illustrates 
how interactions among components can provably 
help the efficiency of a computation. In formal 
models of parallel computation, there are various 
assumptions about what happens when two inde- 
pendent processors try to write to the same loca- 
tion in global memory simultaneously. Some of 
these assumptions forbid any interaction between 
the two simultaneous writes: for example, one 
processor is allowed to dominate and write suc- 
cessfully while the other processor is forced to 
wait (an "Exclusive Write"). Others exploit the 
interaction: for example, one version of the "Con- 
current Write" model prevents both processor~ 
from writing but records the collision as a "?" in 
the memory cell, destroying the previous contents. 
The Concurrent Write model turns out to be prov- 
ably stronger than the Exclusive Write in the sense 
that certain parallel algorithms can be imple- 
mented more efficiently with Concurrent Write 
than they can with Exclusive Write (for example, 
computing certain kinds of disjunction [24]). The 
trick is that if the interaction is recorded as a "?" 
then both processors that tried to write can in- 
spect that memory cell and determine that there 
was a collision. This information can be exploited 
in certain circumstances to produce more efficient 
algorithms. Thus, in the Concurrent Write model, 
write collisions (interactions) are shown to be a 
useful form of computation, leading to perfor- 
mance improvements, even if the collisions them- 
selves do not result in transmitted values reaching 
their destination. This small example meets the 
criterion of "computing by interaction", although 
the interactions are recorded explicitly rather than 

implicitly, as we would expect in a truly emergent 
computation. 

Generally, we expect the emergent-computation 
approach to parallelism to have the following fea- 
tures: (1) no central authority to control the over- 
all flow of computation, (2) autonomous agents 
that can communicate with some subset of the 
other agents directly, (3) global cooperation (see 
section 3) that emerges as the result of many local 
interactions, (4) learning and adaptation replacing 
direct programmed control, and (5) the dynamic 
behavior of the system taking precedence over 
static data structures. 

2.2. Programming languages and the superposition 
principle 

Emergent computation arises from interaction 
among separate components. There are several 
ways in which the standard approach to program- 
ming-language design minimizes the potential for 
emergent computation. This example explores the 
connection between emergent computation and 
nonlinear systems. 

The notation, or syntax, used to express com- 
puter programs is for the most part context free. 
Roughly, this means that legal programs are re- 
quired to be written in such a way that the legality 
(whether or not the program is syntactically cor- 
rect) of any one part of the program can be 
determined independently of the other parts. While 
this is a very powerful property (among other 
things, it makes it possible to build efficient com- 
pilers), emergent computations are almost cer- 
tainly not context free since they arise from inter- 
actions among components. However, the low-level 
instructions that generate emergent computations 
may well be context free. 

The semantics of programming languages can 
be described by any of several different standard 
mathematical models [52]. These models describe 
how the syntax should be interpreted, that is, what 
a program means (more specifically, what func- 
tion it computes). The meaning of a program 
helps determine the set of low-level machine in- 
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structions that are executed when a program runs. 
The standard approaches to programming-lan- 
guage semantics discourage emergent computa- 
tion. For example, in the denotational semantics 
approach [52], the meaning of a program is deter- 
mined by composing the meanings of its con- 
stituents. The meaning of an arithmetic expression 
A + B might be written as follows: (read [expres- 
sion] as "the meaning of expression")#2: 

[A • B]I = [A] + [B]. 

Thus, the meaning of A is isolated from B, and 
can be computed independently of it. Similar 
expressions can be written for all the common 
programming constructs, including assignment 
statements, conditional statements, and loops. By 
contrast, we expect that in an emergent compu- 
tation there would be interactions between 
components that would not interact in standard 
computation. 

This compositional approach to programming- 
language semantics is analogous to the superposi- 
tion principle in physics, which states that for 
homogeneous linear differential equations, the sum 
of any two solutions is itself a solution. Systems 
that obey the superposition principle are linear 
and thus incapable of generating complicated be- 
haviors associated with nonlinear systems such as 
chaos, solitons, and self-organization. Similarly in 
the domain of programming languages, the ability 
to define the meaning of context-free programs in 
terms of their constituent parts indicates that there 
are few if any interactions between the meaning of 
one part and the meaning of another. In these 
sorts of languages and models, the goal is to 
minimize side effects that could lead to inadver- 
tent interactions (e.g. changing the value of a 
global variable)- once again, emergent computa- 
tion is primarily computation by side effect. The 
analogy between the superposition principle in 
physics and the compositional approach of deno- 
rational semantics suggests that something like the 

distinction between linear and nonlinear models in 
physics exists in computational systems. Note, 
however, that it is possible to write programs in 
context-free languages that have nonlinear behav- 
iors when executed, e.g. a simple logistic map, just 
as it may be possible to write the low-level instruc- 
tions for an emergent-computation system in a 
context-free language. 

While nonlinear computational systems are 
more difficult to engineer than linear ones, they 
are capable of much richer behavior. The role of 
enzymes in catalysis provides a nice example of 
how nonlinear effects can arise from simple re- 
combinations of compounds [10]. More generally, 
consider the problem of recombination in adap- 
tive systems. If one can detect combinations that 
yield effects not anticipated by superposition, then 
those combinations can be exploited in various 
ways that are not available in a model based on 
principles of superposition. 

A final example of how the principle of super- 
position pervades standard programming lan- 
guages is provided by the Church-Rosser theorem 
[9]. The h calculus defines a formal representation 
for functions and is closely related to the Lisp 
programming 'language. In the ~ calculus, various 
substitution and conversion rules are defined for 
reducing ~ expressions to normal form. The 
Church-Rosser theorem (technically, one of its 
corollaries) shows that no ~ expression can be 
converted to two different normal forms (for ex- 
ample, by applying reductions in different order). 
This is another example of how computer science 
gets a lot of leverage out of systems that have 
something like the principle of superposition. Since 
nonlinear systems often have the property that 
operations applied in different orders have differ- 
ent effects, emergent computations will not in 
general have nice simplification rules like the 
Church-Rosser theorem. 

2.3. Search 

#2Two different plus symbols, are used to distinguish be- 
tween the symbol plus (O) and the operation that implements 
it (+).  

The problem of searching a large space of possi- 
bilities for an acceptable solution, a particular 
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datum, or an optimal value is one of the most 
basic operations performed by a computer. Intelli- 
gent systems are often described in terms of their 
capabilities for "intelligent" search-that is the 
ability to search an intractably large space for 
an acceptable solution, using knowledge-based 
heuristics, previous experience, etc. The various 
techniques of intelligent search provide a sharp 
contrast between emergent computation and tradi- 
tional approaches to computation. A classical ap- 
proach to the problem of search is that of an early 
artificial intelligence program, the general problem 
solver (GPS) [39], while the emergent-computation 
approach is illustrated by the genetic algorithm 
[20]. 

GPS uses means-ends analysis to search a state 
space to find some predetermined goal state. GPS 
works by defining subgoals part way between the 
start state and the goal state, and then solving 
each of the subgoals independently (and recur- 
sively). Under this approach, the domain of prob- 
lem solving is viewed as "nearly decomposable" 
[50], meaning that for the most part each subgoal 
can be solved without knowledge of the other 
subgoals in the system. The overall approach taken 
by GPS is still prevalent in artificial intelligence, 
the recent work on SOAR [31] being a good 
example. 

In contrast, genetic algorithms [14, 20] show 
how emergent computation can be used to search 
large spaces. There are two levels of the algorithm, 
explicit and implicit. At the mechanistic or explicit 
level, a genetic algorithm consists of: 

(i) A population of randomly chosen bit strings: 
P c {0,1) t, representing an initial set of guesses, 
where 1 is a fixed positive integer denoting the 
length in bits of a guess; 

(ii) A fitness function: F: guesses-~ R, where 
R denotes the real numbers; 

(iii) A scheme for differentially reproducing the 
population based on fitness, such that more copies 
are made of more fit individuals and fewer or no 
copies of less fit ones; 

(iv) A set of "genetic" operators (e.g. mutation, 
crossover, and inversion) that modify individuals 

to produce new guesses; 
(v) Iteration for many generations of the cycle: 

evaluation of fitness, differential reproduction, and 
application of operators. Over time, the popula- 
tion will become more like the successful individu- 
als of previous generations and less like the unsuc- 
cessful ones. 

At the virtual, or implicit, level, we can interpret 
the genetic algorithm as searching a higher-order 
space of patterns, the space of hyperplanes in 
(0,1) I. When one individual is evaluated by the 
fitness function, many different hyperplanes are 
being sampled simultaneously-the so-called im- 
plicit parallelism of the genetic algorithm. For 
example, evaluating the string 000 provides infor- 
mation about the following hyperplanes*3: 

000, 00#,  0#0 ,  #00,  0 #  # ,  # 0 # ,  # #0 ,  # # # .  

Populations undergoing reproduction and 
cross-over (with some other special conditions) are 
guaranteed exponentially increasing samples of the 
observed best schemata (a property described in 
refs. [14, 20]). Thus, performance improvements 
provably arise from the collective properties of the 
individuals in the population over time. The popu- 
lation serves as a distributed database that implic- 
itly contains recoverable information about the 
multitudes of hyperplanes (because each individ- 
ual serves in the sample set of many hyperplanes). 
Put another way, the population reflects the ongo- 
ing statistics of the search over time. 

Several aspects of emergent computation are 
illustrated by this example. The algorithm is very 
flexible, allowing it to track changes in the envi- 
ronment. Since the statistical record of the search 
is distributed across the population of individuals, 
interpretation is an issue if there is a need to 
recover the statistics explicitly. Normally it is 
sufficient to look at a few typical individuals or to 

#3The # symbol means "don ' t  care". Thus, # 0 0  denotes 
the pattern, or schema, which requires that the second 2 bits be 
set to 0 and will accept a 0 or a 1 in the first bit position. The 
space of possible schemata is the space of hyperplanes in 
{0,1 }( (See ref. [14] for an introduction to both the mechanism 
and theory of the genetic algorithm.) 
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treat the best individual seen as the "answer" to 
the problem. The potential efficiency of emergent 
computation is also demonstrated through the use 
of implicit parallelism. There is a price, however. 
While the algorithm is highly efficient, it achieves 
its efficiency through sampling. This means that 
there is some loss of accuracy (see Greening's 
paper in these Proceedings [15] for a careful treat- 
ment of this issue). 

3. Themes of emergent computation 

Three important and overlapping themes of 
systems that exhibit emergent computation are 
self-organization, collective phenomena,  and 
cooperative behavior. Here, we use the term self- 
organization to mean the spontaneous emergence 
of order from an initially random system, but see 
ref, [40] for a detailed formulation of self-organi- 
zation. Collective phenomena are those in which 
there are many agents, many interactions among 
the agents, and an emphasis on global patterns. A 
third component of emergent computation is the 
notion of cooperative behavior, i.e. that the whole 
is somehow more than the sum of the parts. In 
this section, these three themes are illustrated in 
the context of several examples. 

One of the most compelling examples comes 
from nature in the form of ant colonies. The 
actions of any individual ant are quite limited and 
apparently random, but the collective organization 
and behavior of the colony is highly sophisticated, 
including such activities as mass communication 
and nest building [53, 54]. In the absence of any 
centralized control, the collective entity (the 
colony) can "decide" (the decision itself is emer- 
gent) when, where, and how to build a nes t -  self- 
organizing, collective, and cooperative behavior in 
the extreme. Clearly, many of the activities in an 
ant colony involve information-processing, such as 
laying trails from the nest to potential food sites, 
communicating the quality and quantity of food 
at a particular site, etc. By making an analogy 

between the cells in a cellular automaton and 

individual ants, Langton has described computa- 
tional models that emulate some of the important 
information-processing aspects of ant colonies [32]. 

Kauffman's article in these Proceedings [28] ex- 
plores self-organizing behavior in simple randomly 
connected networks of Boolean function. These 
networks spontaneously organize themselves into 
regular structures of "frozen components" that 
are impervious to fluctuating states in the rest of 
the network. The tendency of a network to exhibit 
this and other self-organizing behaviors is related 
to various structural properties of the network and 
more generally to the problem of adaptation. 

Not all examples of emergent computation are 
beneficial. The Internet (a nationwide network for 
exchanging electronic mail) was designed so that 
messages would be routed somewhat randomly 
(there are usually many different routes that a 
message may take between two Internet hosts). 
The intent is for message traffic to be evenly 
distributed across the various hosts. However, in 
some circumstances the messages have been found 
to self-organize into a higher-level structure, called 
a token-passing ring, so that all of the messages 
collect at one node, and then are passed along to 
the next node in the ring [26]. In this case, the 
self-organization is highly detrimental to the over- 
all performance of the network. The behavior 
raises the question of what, if any, low-level proto- 
cols could reliably prevent harmful self-organizing 
behavior in a system like the Internet. 

In a computational setting, there are at least 
two quite different types of cooperation: (1) pro- 
gram correctness, and (2) resource allocation. In 
this context, program correctness means that a 
collection of independent instructions evolves 
(more accurately, coevolves) over time in such a 
way that their interactions result in the desired 
global behavior. That is, the adaption takes place 
at the instruction level, but the behavior of inter- 
est is at the collective level. If the collective in- 
structions (a program) learn the correct behavior, 
we say that they are cooperating. Holland's classi- 
fier systems (see papers in these Proceedings) are a 
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good example of this sense of cooperation. The 
second meaning of cooperation occurs when some 
shared resource on a local area network (e.g., CPU 
time, printers, network access, etc.) is allocated 
efficiently among a set of distributed processes. 
The Huberman and Kephart et al. papers in this 
volume [24, 30] discuss how robust resource-alloc- 
ation strategies can emerge in distributed systems. 

4. Review of contents 

This introduction has described one view of 
emergent computation. The conference produced 
several themes and topics of its own. In particular, 
the themes of design (how to construct such sys- 
tems), learning and the importance of preexisting 
structure, the role of parallelism, and the tension 
between cooperative and competitive models of 
interaction are central to many of the papers in 
the Proceedings. Emergent-computation systems 
can be constructed either by adapting each indi- 
vidual component independently or by tinkering 
with all of the components as a group. Wilson's 
paper [55] addresses this issue of local- versus 
system-level design. Learning is clearly central to 
emergent computation, since it provides the most 
natural way to control such a system. Several 
papers in the Proceedings (Baird, Banzhaf and 
Haken, Hansen, Omohundro, Schaffer et al. [3, 4, 
16, 41, 47]) focus on specific learning issues, and 
many others use learning as an integral part of 
their system. The role of parallelism in emergent 
computation is often assumed. However, Machlin 
and Stout's paper [36] challenges that assumption, 
and Greening's paper [15] explores the conse- 
quences of using parallelism efficiently. 

The papers have been grouped roughly into the 
following subject areas: (1) artificial networks, 
(2) learning and adaptation, and (3) biological net- 
works. Thus, all of the papers on biological 
networks are grouped together, although they 
emphasize different aspects of problems of emer- 
gent computation. 

There is a wide range of papers concerned with 
emergent behavior and computing. Langton's pa- 
per [34] illustrates the importance of phase tran- 
sitions to emergent computation. Huberman [24], 
Kephart et al. [30], and Maxion [37] discuss emer- 
gent behaviors in computing networks. Machlin 
and Stout's paper [36] illustrates how very simple 
Turing machines can exhibit interesting and com- 
plex behavior. Palmore and Herring's paper [42] 
provides an example of the connection between 
emergent computation and real computing proce- 
dures (computer arithmetic). Rasmussen's paper 
[44] uses a simple model of computer memory to 
show how cooperative "life-like" structures can 
emerge under various conditions. Finally, 
Kauffman's paper [28] explores the self-organiz- 
ing properties of simple Boolean networks. 

The adaptive systems aspect of emergent com- 
putation is a dominant theme in the Proceedings, 
and Farmer's paper [10] relates various models of 
learning through the common thread of adaptive 
dynamics. Papers on classifier systems and genetic 
algorithms range from proposals for new mecha- 
nisms (Holland [21]) to methods for analyzing 
classifier system behavior (Compiani et al. [8] and 
Forrest and Miller [12]), to bridges between ge- 
netic algorithms and neural networks (Schaffer 
et al. [47] and Wilson [55]). Two papers (Hillis 
[18], Ikegami and Kaneko [25]) explore how inter- 
actions between hosts and parasites can improve 
the global behavior of an evolutionary system. 
Banzhaf and Haken's [4], Hanson's [16], Kanter's 
[27], and Churchland's [6] papers describe connec- 
tionist models of learning; Greening's paper [15] 
discusses parallel simulated annealing techniques; 
Omohundro [41] examines geometric learning al- 
gorithms. Papers on the emergence of symbolic 
reasoning systems from subsymbolic components 
include Mitchell and Hofstadter [38] (models of 
analogy-making) and Harnad [17] (connectionism 
and the symbol-grounding problem). 

Several papers describe emergent computations 
in different biological systems, ranging from the 
cortex to the cytoskeleton. Reeke and Sporns [45] 
discuss perceptual and motor systems. Two papers 
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( B a i r d  [3] a n d  Siegel  [49]) focus  on  the  cor tex ,  

K e e l e r ' s  p a p e r  [29] e x a m i n e s  ce rebe l l a r  func t ion ,  

a n d  G e o r g e  et  al. [13] cons ide r  v is ion.  F ina l ly ,  

R a s m u s s e n  e t  al. [43] p re sen t  a c o n n e c t i o n i s t  m o d e l  

o f  the  cy to ske l e ton .  
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