
Physica D 42 (1990) 1-11
North-Holland

EMERGENT COMPUTATION:
SELF-ORGANIZING, COLLECTIVE, AND COOPERATIVE PHENOMENA
IN NATURAL AND ARTIFICIAL COMPUTING NETWORKS

INTRODUCTION TO THE PROCEEDINGS OF THE NINTH ANNUAL CNI~ CONFERENCE

Stephanie FORREST
Center for Nonlinear Studies and Computing Dioision, MS-B258, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Parallel computing has typically emphasized
systems that can be explicitly decomposed into
independent subunits with minimal interactions.
For example, most parallel processing systems
achieve speedups by identifying code and data
segments that can be executed simultaneously.
Under this approach, interactions among the
various segments are managed directly, through
synchronization, and communication among com-
ponents is viewed as an inherent cost of computa-
tion. As a result, most extant parallel systems
require substantial amounts of overhead to man-
age and coordinate the activities of the various
processors, and they obtain speedups that are
considerably less than a linear function of the
number of processors.

An alternative approach exploits the interac-
tions among simultaneous computations to im-
prove efficiency, increase flexibility, or provide a
more natural representation. Researchers in sev-
eral fields have begun to explore computational
models in which the behavior of the entire system
is in some sense more than the sum of its parts.
These include connectionist models [46], classifier
systems [22], cellular automata [5, 7, 56], biological
models [11], artificial-life models [33], and the
study of cooperation in social systems with no
central authority [2]. In these systems interesting
global behavior emerges from many local interac-

0167-2789/90/$03.50 © Elsevier Science Publishers B.V.
(North-HoUand)

tions. When the emergent behavior is also a com-
putation, we refer to the system as an emergent
computation.

The distinction between standard and emergent
computations is analogous to the difference be-
tween linear and nonlinear systems. Emergent
computations arise from nonlinear systems while
standard computing practices focus on linear be-
haviors (see section 2.2). The idea that interactions
among simple deterministic elements can produce
interesting and complex global behaviors is well
accepted in the physical sciences. However, the
field of computing is oriented towards building
systems that accomplish specific tasks, and emer-
gent properties of complex systems are inherently
difficult to predict. Thus, it is not immediately
obvious how architectures (either hardware or
software) that have many interactions with often
unpredictable effects can be used effectively, and it
is for this reason that I have chosen to use the
term "emergent computation" instead of referring
more broadly to nonlinear properties of computa-
tional systems. The premise of emergent computa-
tion is that interesting and useful computational
systems can be constructed by exploiting interac-
tions among primitive components, and further,
that for some kinds of problems (e.g. modeling
intelligent behavior) it may be the only feasible
method.

2 S. Forrest/Emergent computation: An introduction

To date, there has been no unified attempt to
specify carefully what constitutes an emergent
computation or to determine what properties are
required of the supporting architectures that gen-
erate them. This volume contains the Proceedings
of a recent Conference held at Los Alamos Na-
tional Laboratory devoted to these questions.
Emergent computation is potentially relevant to
several areas, including adaptive systems, parallel
processing, and cognitive and biological modeling,
and the Proceedings reflects this diversity, with
contributions from physicists, computer scientists,
biologists, psychologists, and philosophers. The
Proceedings are thus intended for an interdisci-
plinary audience. Each paper addresses this by
providing introductory explanations beyond that
required for a field-specific publication. In this
introduction I hope to stimulate discussion of
emergent computation beyond the scope of the
actual conference. First, a definition is proposed
and several detailed examples are presented. Then
several common themes are highlighted, and the
contents is briefly reviewed.

1. What is emergent computation?

It is increasingly common to describe physical
phenomena in terms of their information process-
ing properties [57, 58]. However, we wish to distin-
guish emergent computation from the general
emergent properties of complex phenomena. We
do this by requiring that both the explicit and the
emergent levels of a system be computations. For
example, a Rayleigh-Brnard convecting flow, in
which the dynamics of the fluid particles follow a
chaotic path, would not necessarily be considered
a form of emergent computation.

The requirements for emergent computation are
quite similar to those proposed by Hofstadter in
his paper on subcognition [19]. He stresses that
information which is absent at lower levels can
exist at the level of collective activities. This is the
essence of the following constituents of emergent

computation:
(i) A collection of agents, each following ex-

plicit instructions;
(ii) Interactions among the agents (according to

the instructions), which form implicit global pat-
terns at the macroscopic level i.e. epiphenomena;

(iii) A natural interpretation of the epiphenom-
ena as computations.

The term "explicit instructions" refers to a
primitive level of computation, also called
"micro-structure", "low-level instructions", "local
programs", "concrete structure", and "component
subsystems". In a typical case, such as cellular
automaton, each cell acts as an agent executing
the instructions in its state-transition table. How-
ever, in some cases the coding for an instruction
may not be distinguished from the agent that
executes it. The important point is that the explicit
instructions are at a different (and lower) level
than the phenomena of interest. The level of an
instruction is determined by the entity that pro-
cesses it. For example, if the low-level instructions
were machine code, they would be executed by
hardware, while higher-level instructions would be
interpreted by "virtual machines" simulated by
the lower-level machine code instructions. The
higher-level instructions would be implicit, al-
though not necessarily the product of interactions
(see section 2.2 on superposition).

There is a tension between low-level explicit
computations and the patterns of their interaction,
and the interaction among the levels is important.
Global patterns may influence the behavior of the
lower-level local instructions, that is, there may be
feedback between the levels. Patterns that are
interpretable as computations process informa-
tion, which distinguishes emergent computation
from the interesting global properties of many
complex systems such as the Rayleigh-Brnard
experiment mentioned earlier.

Central to the definition is the question of to
what extent the patterns are "in the eye of the
beholder", or interpreted, and to what extent they
are inherent in the phenomena itself. This issue
arises because the phenomena of interest are im-

S. Forrest / Emergent computation: An introduction 3

plicit rather than explicit. Note that to a lesser
extent the interpretation problem also exists in
standard computation. The difference is that in
emergent computations there is no one address (or
set of addresses) where one can read out an an-
swer. Thus, the time for interpretation is likely to
be much lower for standard computations than
emergent ones. Currently, many emergent compu-
tations are interpreted by the perceptual system of
the person running the experiment. Thus, when
conducting a cellular automaton experiment, re-
searchers typically rely on graphics-based simula-
tions to reveal the phenomena of interest. While
quantitative measures can be developed in some
cases to interpret the results, scientific visualiza-
tion techniques are an integral part of most cur-
rent emergent computations.

According to the Church-Turing thesis, a Tur-
ing machine can both implement any definable
computation and simulate any set of explicit in-
structions we might choose as the basis of an
emergent computation [23]. Thus, the concept of
emergent computation cannot contribute magical
computational properties. Rather, we are advocat-
ing a way of thinking about the design of compu-
tational systems that could potentially lead to
radically different architectures which are more
robust and efficient than current designs #1.

A related question is whether or not emergent
computations can be implemented in more tradi-
tional ways (i.e. can the emergent patterns be
encoded as a set of explicit instructions instead of
indirectly as implicit patterns?). While in some
cases it may be possible to encode the emergent
patterns directly in some language or machine,
there are several advantages to an emergent-com-
putation approach, including efficiency, flexibility,
representation, and grounding. First, implement-
ing computations indirectly as emergent patterns
may provide implementation efficiencies because
of the need for less control over the different

~lEven if in principle emergent computations can be simu-
lated by a Turing machine, interpreting the resulting patterns
as computations is likely to be so difficult as to be infeasible.

components (e.g. processes). As mentioned earlier,
a high proportion of computing time is devoted to
managing interactions among processes. Other
kinds of efficiencies may also be realized, includ-
ing efficiencies of cost through the use of multiple
cheap components, efficient uses of programmer
time, and raw computational speed through the
use of massive parallelism. Second, flexibility is
important for systems that must interact with
complex and dynamic environments, e.g. intelli-
gent systems. For these systems, it is impossible to
get enough flexibility from explicit instructions;
for realistic environments, it is just not possible to
program in all contingencies ahead of time. There-
fore, the flexibility must appear at the emergent
level. The interaction between the instructions and
the environment (or between emergent properties
of the instructions and the environment) is impor-
tant, and there are global patterns (symbols, etc.)
associated with this instruction-environment in-
teraction. Third, the advantage in representation
arises in systems for which it is difficult to articu-
late a formal description of the emergent level.
Several authors have argued for the impossibility
of such an undertaking for systems of sufficient
complexity such as weather patterns and living
systems [19, 33, 35, 48]. In these circumstances,
emergent systems may provide the most natural
model. Finally, the grounding issue arises if the
emergent patterns are intended as real phenomena
or models of real phenomena (as in cognitive
modeling). In this circumstance, the intended in-
terpretation of a purely formal model (e.g. sym-
bolic models of artificial intelligence) becomes
problematic since the model is not connected to
(grounded in) the domain of interest (by e.g. a
sensory interface). Emergent-computation models
can address this problem by using low-level ex-
plicit instructions that are directly connected to
the domain. Harnad's paper discusses the ground-
ing problem in detail [17].

At the architectural level, there are two criteria
that capture the spirit of emergent computation:
efficacy and efficiency. The criterion of computa-
tional efficacy is met by systems in which each

4 S. Forrest/Emergent computation: An introduction

computational unit has limited processing power
(e.g. a finite state machine) and in which the
collective system is computationally more power-
ful (e.g. a Turing machine). The criterion of com-
putational efficiency can be met by parallel models
that are capable of linear or better than linear
speedups relative to the number of processors
used to solve the problem. (Other criteria can be
imagined that are less strict. For example, it may
be reasonable to construct systems in which not
all of the processors are used all of the time. In
these cases, the dimensions of time and number of
processors might be combined to obtain a reason-
able definition somewhat different from that men-
tioned above.) Previous work on computational
systems with interesting collective/emergent prop-
erties has generally focused on some variant of the
first of these criteria and ignored the second.

2. Example problems

In this section, three concrete examples are pre-
sented to illustrate what sorts of problems emer-
gent computation can address and provide a
framework for interpreting the definition. The par-
allel processing example shows how emergent
computation can lead to efficiency improvements.
The section on programming languages establishes
the connection between emergent computation and
nonlinear systems. Finally, two search techniques
are compared to show how the emergent-computa-
tion approach to a problem differs from other
more conventional approaches.

2.1. Parallel processing

Consider the problem of designing a large com-
plex computational system to perform reliably and
efficiently. By "large complex" we mean that there
are many components and many interactions
among the components. The computational sys-
tem could be a complicated algorithm that we
would like to run in parallel, it could be dis-
tributed over many machines with possibly hetero-

geneous operating systems, or it could simply be a
large, evolving software package being modified
simultaneously by several different programmers.
In the following, we will focus on the paralleliza-
tion example, but similar arguments can be made
for the distributed systems and software engineer-
ing aspects of the problem.

The conventional approach to such a problem
looks for code a n d / o r data segments that can be
executed independently, and hence simultane-
ously. With this view, it is important to minimize
the interactions among the various components.
Synchronization strategies are defined to manage
communication among the independent compo-
nents. The controlling program knows about all
possible interactions and manages them directly.
Thus, interactions are viewed as costs to be mini-
mized. As mentioned earlier, most extant parallel
systems consume substantial amounts of overhead
managing and coordinating the activities of their
processors. This is because the flow of data and
control rarely match exactly the interconnection
topology of the parallel machine. Potential
speedups are also limited by inherently sequential
components within a computation, a phenomenon
quantified by Amdahl's law [1]. For these reasons,
the speedups that are achieved by most parallel
systems are considerably less than a linear func-
tion of the number of processors.

Emergent computation suggests a view of paral-
lelism in which the interactions among compo-
nents lead to problem solutions with potentially
better than linear performance. For example, a
system that performs explicit search at the con-
crete architecture level, but is implicitly searching
a much larger space (see section 2.3) meets this
criterion.

The claim that superlinear speedups are in prin-
ciple possible is controversial. The standard coun-
terargument is as follows: if a process P runs in t
time on n processors, then there exists a sequen-
tial machine that can simulate P in at most (klnt)
d - k 2 time steps, where k 1 and k 2 a r e constants,
so the speedup is only by a factor of n. This
counterargument ignores the time required to in-

S. Forrest // Emergent computation: An introduction 5

terpret the results. If the result of the computation
is a global pattern (e.g. a pattern of states in a
cellular automaton distributed across several time
steps), then the procedure for recognizing that
same pattern on a sequential machine might re-
quire as much computation as the original compu-
tation.

Even allowing for the theoretical possibility of
superlinear speedups, one might question whether
or not it is feasible to actually construct such a
system. The following simple example illustrates
how interactions among components can provably
help the efficiency of a computation. In formal
models of parallel computation, there are various
assumptions about what happens when two inde-
pendent processors try to write to the same loca-
tion in global memory simultaneously. Some of
these assumptions forbid any interaction between
the two simultaneous writes: for example, one
processor is allowed to dominate and write suc-
cessfully while the other processor is forced to
wait (an "Exclusive Write"). Others exploit the
interaction: for example, one version of the "Con-
current Write" model prevents both processor~
from writing but records the collision as a "?" in
the memory cell, destroying the previous contents.
The Concurrent Write model turns out to be prov-
ably stronger than the Exclusive Write in the sense
that certain parallel algorithms can be imple-
mented more efficiently with Concurrent Write
than they can with Exclusive Write (for example,
computing certain kinds of disjunction [24]). The
trick is that if the interaction is recorded as a "?"
then both processors that tried to write can in-
spect that memory cell and determine that there
was a collision. This information can be exploited
in certain circumstances to produce more efficient
algorithms. Thus, in the Concurrent Write model,
write collisions (interactions) are shown to be a
useful form of computation, leading to perfor-
mance improvements, even if the collisions them-
selves do not result in transmitted values reaching
their destination. This small example meets the
criterion of "computing by interaction", although
the interactions are recorded explicitly rather than

implicitly, as we would expect in a truly emergent
computation.

Generally, we expect the emergent-computation
approach to parallelism to have the following fea-
tures: (1) no central authority to control the over-
all flow of computation, (2) autonomous agents
that can communicate with some subset of the
other agents directly, (3) global cooperation (see
section 3) that emerges as the result of many local
interactions, (4) learning and adaptation replacing
direct programmed control, and (5) the dynamic
behavior of the system taking precedence over
static data structures.

2.2. Programming languages and the superposition
principle

Emergent computation arises from interaction
among separate components. There are several
ways in which the standard approach to program-
ming-language design minimizes the potential for
emergent computation. This example explores the
connection between emergent computation and
nonlinear systems.

The notation, or syntax, used to express com-
puter programs is for the most part context free.
Roughly, this means that legal programs are re-
quired to be written in such a way that the legality
(whether or not the program is syntactically cor-
rect) of any one part of the program can be
determined independently of the other parts. While
this is a very powerful property (among other
things, it makes it possible to build efficient com-
pilers), emergent computations are almost cer-
tainly not context free since they arise from inter-
actions among components. However, the low-level
instructions that generate emergent computations
may well be context free.

The semantics of programming languages can
be described by any of several different standard
mathematical models [52]. These models describe
how the syntax should be interpreted, that is, what
a program means (more specifically, what func-
tion it computes). The meaning of a program
helps determine the set of low-level machine in-

6 S. Forrest / Emergent computation: An introduction

structions that are executed when a program runs.
The standard approaches to programming-lan-
guage semantics discourage emergent computa-
tion. For example, in the denotational semantics
approach [52], the meaning of a program is deter-
mined by composing the meanings of its con-
stituents. The meaning of an arithmetic expression
A + B might be written as follows: (read [expres-
sion] as "the meaning of expression")#2:

[A • B]I = [A] + [B].

Thus, the meaning of A is isolated from B, and
can be computed independently of it. Similar
expressions can be written for all the common
programming constructs, including assignment
statements, conditional statements, and loops. By
contrast, we expect that in an emergent compu-
tation there would be interactions between
components that would not interact in standard
computation.

This compositional approach to programming-
language semantics is analogous to the superposi-
tion principle in physics, which states that for
homogeneous linear differential equations, the sum
of any two solutions is itself a solution. Systems
that obey the superposition principle are linear
and thus incapable of generating complicated be-
haviors associated with nonlinear systems such as
chaos, solitons, and self-organization. Similarly in
the domain of programming languages, the ability
to define the meaning of context-free programs in
terms of their constituent parts indicates that there
are few if any interactions between the meaning of
one part and the meaning of another. In these
sorts of languages and models, the goal is to
minimize side effects that could lead to inadver-
tent interactions (e.g. changing the value of a
global variable)- once again, emergent computa-
tion is primarily computation by side effect. The
analogy between the superposition principle in
physics and the compositional approach of deno-
rational semantics suggests that something like the

distinction between linear and nonlinear models in
physics exists in computational systems. Note,
however, that it is possible to write programs in
context-free languages that have nonlinear behav-
iors when executed, e.g. a simple logistic map, just
as it may be possible to write the low-level instruc-
tions for an emergent-computation system in a
context-free language.

While nonlinear computational systems are
more difficult to engineer than linear ones, they
are capable of much richer behavior. The role of
enzymes in catalysis provides a nice example of
how nonlinear effects can arise from simple re-
combinations of compounds [10]. More generally,
consider the problem of recombination in adap-
tive systems. If one can detect combinations that
yield effects not anticipated by superposition, then
those combinations can be exploited in various
ways that are not available in a model based on
principles of superposition.

A final example of how the principle of super-
position pervades standard programming lan-
guages is provided by the Church-Rosser theorem
[9]. The h calculus defines a formal representation
for functions and is closely related to the Lisp
programming 'language. In the ~ calculus, various
substitution and conversion rules are defined for
reducing ~ expressions to normal form. The
Church-Rosser theorem (technically, one of its
corollaries) shows that no ~ expression can be
converted to two different normal forms (for ex-
ample, by applying reductions in different order).
This is another example of how computer science
gets a lot of leverage out of systems that have
something like the principle of superposition. Since
nonlinear systems often have the property that
operations applied in different orders have differ-
ent effects, emergent computations will not in
general have nice simplification rules like the
Church-Rosser theorem.

2.3. Search

#2Two different plus symbols, are used to distinguish be-
tween the symbol plus (O) and the operation that implements
it (+).

The problem of searching a large space of possi-
bilities for an acceptable solution, a particular

S. Forrest // Emergent computation: An introduction 7

datum, or an optimal value is one of the most
basic operations performed by a computer. Intelli-
gent systems are often described in terms of their
capabilities for "intelligent" search-that is the
ability to search an intractably large space for
an acceptable solution, using knowledge-based
heuristics, previous experience, etc. The various
techniques of intelligent search provide a sharp
contrast between emergent computation and tradi-
tional approaches to computation. A classical ap-
proach to the problem of search is that of an early
artificial intelligence program, the general problem
solver (GPS) [39], while the emergent-computation
approach is illustrated by the genetic algorithm
[20].

GPS uses means-ends analysis to search a state
space to find some predetermined goal state. GPS
works by defining subgoals part way between the
start state and the goal state, and then solving
each of the subgoals independently (and recur-
sively). Under this approach, the domain of prob-
lem solving is viewed as "nearly decomposable"
[50], meaning that for the most part each subgoal
can be solved without knowledge of the other
subgoals in the system. The overall approach taken
by GPS is still prevalent in artificial intelligence,
the recent work on SOAR [31] being a good
example.

In contrast, genetic algorithms [14, 20] show
how emergent computation can be used to search
large spaces. There are two levels of the algorithm,
explicit and implicit. At the mechanistic or explicit
level, a genetic algorithm consists of:

(i) A population of randomly chosen bit strings:
P c {0,1) t, representing an initial set of guesses,
where 1 is a fixed positive integer denoting the
length in bits of a guess;

(ii) A fitness function: F: guesses-~ R, where
R denotes the real numbers;

(iii) A scheme for differentially reproducing the
population based on fitness, such that more copies
are made of more fit individuals and fewer or no
copies of less fit ones;

(iv) A set of "genetic" operators (e.g. mutation,
crossover, and inversion) that modify individuals

to produce new guesses;
(v) Iteration for many generations of the cycle:

evaluation of fitness, differential reproduction, and
application of operators. Over time, the popula-
tion will become more like the successful individu-
als of previous generations and less like the unsuc-
cessful ones.

At the virtual, or implicit, level, we can interpret
the genetic algorithm as searching a higher-order
space of patterns, the space of hyperplanes in
(0,1) I. When one individual is evaluated by the
fitness function, many different hyperplanes are
being sampled simultaneously-the so-called im-
plicit parallelism of the genetic algorithm. For
example, evaluating the string 000 provides infor-
mation about the following hyperplanes*3:

000, 00#, 0#0 , #00, 0 # # , # 0 # , # #0 , # # # .

Populations undergoing reproduction and
cross-over (with some other special conditions) are
guaranteed exponentially increasing samples of the
observed best schemata (a property described in
refs. [14, 20]). Thus, performance improvements
provably arise from the collective properties of the
individuals in the population over time. The popu-
lation serves as a distributed database that implic-
itly contains recoverable information about the
multitudes of hyperplanes (because each individ-
ual serves in the sample set of many hyperplanes).
Put another way, the population reflects the ongo-
ing statistics of the search over time.

Several aspects of emergent computation are
illustrated by this example. The algorithm is very
flexible, allowing it to track changes in the envi-
ronment. Since the statistical record of the search
is distributed across the population of individuals,
interpretation is an issue if there is a need to
recover the statistics explicitly. Normally it is
sufficient to look at a few typical individuals or to

#3The # symbol means "don ' t care". Thus, # 0 0 denotes
the pattern, or schema, which requires that the second 2 bits be
set to 0 and will accept a 0 or a 1 in the first bit position. The
space of possible schemata is the space of hyperplanes in
{0,1 }((See ref. [14] for an introduction to both the mechanism
and theory of the genetic algorithm.)

8 S. Forrest /Emergent computation: A n introduction

treat the best individual seen as the "answer" to
the problem. The potential efficiency of emergent
computation is also demonstrated through the use
of implicit parallelism. There is a price, however.
While the algorithm is highly efficient, it achieves
its efficiency through sampling. This means that
there is some loss of accuracy (see Greening's
paper in these Proceedings [15] for a careful treat-
ment of this issue).

3. Themes of emergent computation

Three important and overlapping themes of
systems that exhibit emergent computation are
self-organization, collective phenomena, and
cooperative behavior. Here, we use the term self-
organization to mean the spontaneous emergence
of order from an initially random system, but see
ref, [40] for a detailed formulation of self-organi-
zation. Collective phenomena are those in which
there are many agents, many interactions among
the agents, and an emphasis on global patterns. A
third component of emergent computation is the
notion of cooperative behavior, i.e. that the whole
is somehow more than the sum of the parts. In
this section, these three themes are illustrated in
the context of several examples.

One of the most compelling examples comes
from nature in the form of ant colonies. The
actions of any individual ant are quite limited and
apparently random, but the collective organization
and behavior of the colony is highly sophisticated,
including such activities as mass communication
and nest building [53, 54]. In the absence of any
centralized control, the collective entity (the
colony) can "decide" (the decision itself is emer-
gent) when, where, and how to build a nes t - self-
organizing, collective, and cooperative behavior in
the extreme. Clearly, many of the activities in an
ant colony involve information-processing, such as
laying trails from the nest to potential food sites,
communicating the quality and quantity of food
at a particular site, etc. By making an analogy

between the cells in a cellular automaton and

individual ants, Langton has described computa-
tional models that emulate some of the important
information-processing aspects of ant colonies [32].

Kauffman's article in these Proceedings [28] ex-
plores self-organizing behavior in simple randomly
connected networks of Boolean function. These
networks spontaneously organize themselves into
regular structures of "frozen components" that
are impervious to fluctuating states in the rest of
the network. The tendency of a network to exhibit
this and other self-organizing behaviors is related
to various structural properties of the network and
more generally to the problem of adaptation.

Not all examples of emergent computation are
beneficial. The Internet (a nationwide network for
exchanging electronic mail) was designed so that
messages would be routed somewhat randomly
(there are usually many different routes that a
message may take between two Internet hosts).
The intent is for message traffic to be evenly
distributed across the various hosts. However, in
some circumstances the messages have been found
to self-organize into a higher-level structure, called
a token-passing ring, so that all of the messages
collect at one node, and then are passed along to
the next node in the ring [26]. In this case, the
self-organization is highly detrimental to the over-
all performance of the network. The behavior
raises the question of what, if any, low-level proto-
cols could reliably prevent harmful self-organizing
behavior in a system like the Internet.

In a computational setting, there are at least
two quite different types of cooperation: (1) pro-
gram correctness, and (2) resource allocation. In
this context, program correctness means that a
collection of independent instructions evolves
(more accurately, coevolves) over time in such a
way that their interactions result in the desired
global behavior. That is, the adaption takes place
at the instruction level, but the behavior of inter-
est is at the collective level. If the collective in-
structions (a program) learn the correct behavior,
we say that they are cooperating. Holland's classi-
fier systems (see papers in these Proceedings) are a

S. Forrest / Emergent computation: A n introduction 9

good example of this sense of cooperation. The
second meaning of cooperation occurs when some
shared resource on a local area network (e.g., CPU
time, printers, network access, etc.) is allocated
efficiently among a set of distributed processes.
The Huberman and Kephart et al. papers in this
volume [24, 30] discuss how robust resource-alloc-
ation strategies can emerge in distributed systems.

4. Review of contents

This introduction has described one view of
emergent computation. The conference produced
several themes and topics of its own. In particular,
the themes of design (how to construct such sys-
tems), learning and the importance of preexisting
structure, the role of parallelism, and the tension
between cooperative and competitive models of
interaction are central to many of the papers in
the Proceedings. Emergent-computation systems
can be constructed either by adapting each indi-
vidual component independently or by tinkering
with all of the components as a group. Wilson's
paper [55] addresses this issue of local- versus
system-level design. Learning is clearly central to
emergent computation, since it provides the most
natural way to control such a system. Several
papers in the Proceedings (Baird, Banzhaf and
Haken, Hansen, Omohundro, Schaffer et al. [3, 4,
16, 41, 47]) focus on specific learning issues, and
many others use learning as an integral part of
their system. The role of parallelism in emergent
computation is often assumed. However, Machlin
and Stout's paper [36] challenges that assumption,
and Greening's paper [15] explores the conse-
quences of using parallelism efficiently.

The papers have been grouped roughly into the
following subject areas: (1) artificial networks,
(2) learning and adaptation, and (3) biological net-
works. Thus, all of the papers on biological
networks are grouped together, although they
emphasize different aspects of problems of emer-
gent computation.

There is a wide range of papers concerned with
emergent behavior and computing. Langton's pa-
per [34] illustrates the importance of phase tran-
sitions to emergent computation. Huberman [24],
Kephart et al. [30], and Maxion [37] discuss emer-
gent behaviors in computing networks. Machlin
and Stout's paper [36] illustrates how very simple
Turing machines can exhibit interesting and com-
plex behavior. Palmore and Herring's paper [42]
provides an example of the connection between
emergent computation and real computing proce-
dures (computer arithmetic). Rasmussen's paper
[44] uses a simple model of computer memory to
show how cooperative "life-like" structures can
emerge under various conditions. Finally,
Kauffman's paper [28] explores the self-organiz-
ing properties of simple Boolean networks.

The adaptive systems aspect of emergent com-
putation is a dominant theme in the Proceedings,
and Farmer's paper [10] relates various models of
learning through the common thread of adaptive
dynamics. Papers on classifier systems and genetic
algorithms range from proposals for new mecha-
nisms (Holland [21]) to methods for analyzing
classifier system behavior (Compiani et al. [8] and
Forrest and Miller [12]), to bridges between ge-
netic algorithms and neural networks (Schaffer
et al. [47] and Wilson [55]). Two papers (Hillis
[18], Ikegami and Kaneko [25]) explore how inter-
actions between hosts and parasites can improve
the global behavior of an evolutionary system.
Banzhaf and Haken's [4], Hanson's [16], Kanter's
[27], and Churchland's [6] papers describe connec-
tionist models of learning; Greening's paper [15]
discusses parallel simulated annealing techniques;
Omohundro [41] examines geometric learning al-
gorithms. Papers on the emergence of symbolic
reasoning systems from subsymbolic components
include Mitchell and Hofstadter [38] (models of
analogy-making) and Harnad [17] (connectionism
and the symbol-grounding problem).

Several papers describe emergent computations
in different biological systems, ranging from the
cortex to the cytoskeleton. Reeke and Sporns [45]
discuss perceptual and motor systems. Two papers

10 s. Forrest /Emergent computation: A n introduction

(B a i r d [3] a n d Siegel [49]) focus on the cor tex ,

K e e l e r ' s p a p e r [29] e x a m i n e s ce rebe l l a r func t ion ,

a n d G e o r g e et al. [13] cons ide r v is ion. F ina l ly ,

R a s m u s s e n e t al. [43] p re sen t a c o n n e c t i o n i s t m o d e l

o f the cy to ske l e ton .

Acknowledgements

I a m g ra t e fu l to D o y n e F a r m e r , J o h n H o l l a n d ,

M e l a n i e Mi t che l l , and Q u e n t i n S tou t for the i r

c a r e fu l r e a d i n g of the m a n u s c r i p t and m a n y he lp-

ful sugges t ions . Chr i s L a n g t o n and I have had

m a n y p r o d u c t i v e d iscuss ions o f these ideas o v e r

the years .

References

[1] G.M. Amdahl, Validity of the single processor approach
to achieving large-scale computing capabilities, AFIPS
Conf. Proc. (1967) 483-485.

[2] R. Axelrod, An evolutionary approach to norms, Am.
Political Sci. Rev. (1986) 80.

[3] B. Baird, Bifurcation and learning in oscillating neutral
network models of cortex, Physica D 42 (1990) 365-384,
these Proceedings.

[4] W. Banzhaf and H. Haken, An energy function for spe-
cialization, Physica D 42 (1990) 257-264, these Proceed-
ings.

[5] A.W. Burks, ed., Essays on Cellular Automata (University
of Illinois Press, Urbana, IL, 1970).

[6] P.M. Churchland, On the nature of explanation: a PDP
approach, Physica D 42 (1990) 281-292, these Proceed-
ings.

[7] E.F. Codd, Cellular Automata (Academic Press, New
York, 1968).

[8] M. Compiani, D. Montanari and R. Serra, Learning and
bucket brigade dynamics in classifier systems, Physica D
42 (1990) 202-212, these Proceedings.

[9] H.B. Curry and R. Feys, Combinatory Logic, Vol. I
(North-Holland, Amsterdam, 1968).

[10] J.D. Farmer, A Rosetta Stone for connectionism, Physica
D 42 (1990) 153-187, these Proceedings.

[11] J.D. Farmer, N.H. Packard and A.S. Perelson, The im-
mune system, adaption, and machine learning, Physica D
22 (1986) 187-204.

[12] S. Forrest and J. Miller, Emergent behaviors of classifier
systems, Physica D 42 (1990) 213-227, these Proceedings.

[13] J.S. George, C.J. Aine and E.R. Flynn, Neuromagnetic
studies of human vision: noninvasive characterization of
functional architecture, Physica D 42 (1990) 411-427,
these Proceedings.

[14] D.E. Goldberg, Genetic Algorithms in Search Optimiza-
tion, and Machine Learning (Addison-Wesley, Reading,
MA, 1989).

[15] D.R. Greening, Parallel simulated annealing techniques,
Physica D 42 (1990) 293-306, these Proceedings.

[16] S.J. Hanson, A stochastic version of the delta rule, Phys-
ica D 42 (1990) 265-272, these Proceedings.

[17] S. Harnad, The symbol grounding problem, Physica D 42
(1990) 335-346, these Proceedings.

[18] W.D. Hillis, Co-evolving parasites improve simulated evo-
lution as an optimization procedure, Physica D 42 (1990)
228-234, these Proceedings.

[19] D.R. Hofstadter, Artificial intelligence: subcognition as
computation, Technical Report 132, Indiana University,
Bloomington, IN (1982).

[20] J.H. Holland, Adaption in Natural and Artificial Systems
(University of Michigan Press, Ann Arbor, MI, 1975).

[21] J.H. Holland, Concerning the emergence of tag-mediated
lookahead in classifier systems, Physica D 42 (1990)
188-201, these Proceedings.

[22] J.H. Holland, K.J. Holyoak, R.E. Nisbett and P. Thagard,
Induction: Processes of Inference, Learning, and Discov-
ery (MIT Press, Cambridge, MA, 1986).

[23] J.E. Hopcroft and J.D. Ullman, Introduction to Au-
tomata. Theory, Languages, and Computation (Addison-
Wesley, Reading, MA, 1979).

[24] B.A. Huberman, The performance of cooperative pro-
cesses, Physica D 42 (1990) 38-47, these Proceedings.

[25] T. Ikegami and K. Kaneko, Computer symbiosis-emer-
gence of symbiotic behavior through evolution, Physica D
42 (1990) 235-243, these Proceedings.

[26] V. Jacobson, personal communication.
[27] I. Kanter, Synchronous or asynchronous parallel dynam-

ics - Which is more different, Physica D 42 (199) 273-280,
these Proceedings.

[28] S.A. Kauffman, Requirements for evolvability in complex
systems: orderly dynamics and frozen components, Phys-
ica D 42 (1990) 135-152, these Proceedings.

[29] J.D. Keeler, A dynamical systems view of cerebellar func-
tion, Physica D 42 (1990) 396-410, these Proceedings.

[30] J.O. Kephart, T. Hogg and B.A. Huberman, Collective
behavior of predictive agents, Physica D 42 (1990) 48-65,
these Proceedings.

[31] J.E. Laird, A. Newell and P.S. Rosenbloom, Soar: an
architecture for general intelligence, Artificial Intelligence
33 (1987) 64.

[32] C.G. Langton, Studying artificial life with cellular au-
tomata, Physica D 22 (1986) 120-149.

[33] C.G. Langton, ed., Artificial Life, Santa Fe Institute Stud-
ies in the Sciences of Complexity (Addison-Wesley, Read-
ing, MA, 1989).

[34] C.G. Langton, Computation at the edge of chaos: phase
transitions and emergent computation, Physica D 42
(1990) 12-37, these Proceedings.

[35] E.N. Lorenz, Deterministic nonperiodic flow, J. Atmos.
Sci. 20 (1963) 130-141.

[36] R. Machlin and Q.F. Stout, The complex behavior of
simple machines, Physica D 42 (1990) 85-98, these Pro-
ceedings.

S. Forrest / Emergent computation: A n introduction 11

[37] R.A. Maxion, Toward diagnosis as an emergent behavior
in a network ecosystem, Physica D 42 (1990) 66-84, these
Proceedings.

[38] M. Mitchell and D.R. Hofstadter, The emergence of
understanding in a computer model of concepts and
analogy-making, Physica D 42 (1990) 322-334, these Pro-
ceedings.

[39] A. Newell and H.A. Simon, A program that simulates
human thought, in: Computers and Thought, eds. E.A.
Feigenbaum and J. Feldman (McGraw-Hill, New York,
1963) 279-296.

[40] G. Nicolis and I. Prigogine, Self-Organization in
Nonequilibrium Systems (Wiley, New York, 1977).

[41] S.M. Omohundro, Geometric learning algorithms, Phys-
ica D 42 (1990) 307-321, these Proceedings.

[42] J. Palmore and C. Herring, Computer arithmetic, chaos
and fractals, Physica D 42 (1990) 99-110, these Proceed-
ings.

[43] S. Rasmussen, H. Karampurwala, R. Vaidyanath, K.S.
Jensen and S. Hameroff, Computational connectionism
with neutrons: a model of cytoskeletal automata subserv-
ing neural networks, Physica D 42 (1990) 428-449, these
Proceedings.

[44] S. Rasmussen, C. Knudsen, R. Feldberg and M.
Hindsholm, The Coreworld: emergence and evolution of
cooperative structures in a computational chemistry,
Physica D 42 (1990) 111-134, these Proceedings.

[45] G.N. Reeke Jr. and O. Sporns, Selectionist models of
perceptual and motor systems and implications for func-
tionalist theories of brain function, Physica D 42 (1990)
347-364, these Proceedings.

[46] D.E. Rumelhard, J. L. McClelland and the PDP Research

Group, Parallel Distributed Processing: Explorations in
the Microstructure of Cognition (MIT Press, Cambridge.
MA, 1986).

[47] J.D. Schaffer, R.A. Caruana and L.J. Eshelman, Using
genetic search to exploit the emergent behavior of neural
networks, Physica D 42 (1990) 244-248, these Proceed-
ings.

[48] R. Shaw, Strange attractors, chaotic behavior, and infor-
mation flow, Z. Naturforsch. 36a (1981) 80-112.

[49] R.M. Siegel, Non-linear dynamical system theory and
primary visual cortical processing, Physica D 42 (1990)
385-395, these Proceedings.

[50] H.A. Simon, The Sciences of the Artificial (MIT Press,
Cambridge, MA, 1969).

[51] Q. Stout, personal communication.
[52] J.E. Stoy, Denitational Semantics: The Scott-Strachey

Approach to Programming Language Theory (MIT Press,
Cambridge, MA, 1977).

[53] E.O. Wilson, The Social Insects (Belknap/Harvard Univ.
Press, Cambridge, MA, 1971).

[54] E.O. Wilson, Sociobiology (Belknap/Harvard Univ. Press,
Cambridge, MA, 1975).

[55] S.W. Wilson, Perceptron redux: emergence of structure,
Physica D 42 (1990) 249-256, these Proceedings.

[56] S. Wolfram, Universality and complexity in cellular au-
tomata, Physica D 10 (1984) 1-35.

[57] W.H. Zurek, Algorithmic randomness and physical en-
tropy, Phys. Rev. A 40 (1989) 4731-4751.

[58] W.H. Zurek, Thermodynamic cost of computation, algo-
rithm complexity and the information metric, Nature 341
(1989) 119-124.

