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Abstract

FLOTRAN is a ground water ¯ow and transport model developed in the past few years which takes advantage of recent ad-

vances in numerical methodology. FLOTRAN solves the governing equations for ¯ow and contaminant transport using Godunov-

mixed methods, in which a higher-order Godunov method is used to approximate the advective ¯ux, and a mixed ®nite element

method is used for the dispersive transport. A mixed ®nite element method is also used to solve the ¯ow equation. As part of the

development of this new model, we have tested it against known analytical and numerical solutions to the equations approximated

by the model. In this work, we have tested FLOTRAN against 1-D and 2-D analytical solutions, Galya's 3-D horizontal plane

source solution, two radial semi-analytical solutions, and two numerical models, BIOPLUME II and MT3D. We have also tested

FLOTRAN on a hypothetical partially saturated ¯ow problem. FLOTRAN performed well on these tests, generally matching

analytical solutions to within a few percent, and matching as well as or better than the other numerical models in most

cases. Ó 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Numerical models; 3-D models; Ground water; Hydrodynamics; Pollutants; Transport

1. Introduction

Recent advances in numerical methodology have led
to the development of a 3-D ground water ¯ow and
contaminant transport model called FLOTRAN. The
numerical methods used in FLOTRAN [5,6,8] provide
excellent mass balance characteristics, fast solution
times, and ¯exibility in choosing modeling conditions,
such as grid de®nition (uniform and variable grid
spacing), boundary conditions (constant head or con-
stant ¯ux for ¯ow, in¯ow and out¯ow/no-¯ow for
transport), and wells (injection, extraction, and moni-
toring wells). In addition, FLOTRAN incorporates
linear sorption, biodegradation (via Monod or fast
equilibrium kinetics), and ®rst-order decay into its so-

lution of the ground water contaminant transport
equations, and can model multiple components, allow-
ing the user to simulate several contaminants in one
model run.

FLOTRAN uses a mixed ®nite element method for
¯ow on structured rectangular grids. This method con-
serves mass elementwise (for steady ¯ow) and provides
second-order accurate velocities at the edges of the
rectangular elements [24]. By comparison, the well-
known FEMWATER [28] and MODFLOW [17] ¯ow
models are based on a standard piecewise linear Galer-
kin ®nite element approximation for head. This ap-
proach is not elementwise conservative, and velocities
are at best ®rst-order accurate.

For transport, FLOTRAN uses a higher-order
Godunov method for advection combined with a mixed
®nite element method for di�usion. This method is also
based on elementwise conservation, and captures sharp
fronts stably with a modest amount of numerical di�u-
sion. In contrast, the well-known model BIOPLUME II
[19], uses a method of characteristics, in particular the
USGS method of characteristics (MOC) model [16].
While its popularity indicates the con®dence that
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BIOPLUME II has among environmental professionals,
it is susceptible to mass balance errors, and is limited by
its two-dimensionality.

MT3D and RT3D [4,29]) are also popular transport
codes and are based on particle tracking, which advects
mass contained in particles through the ¯ow ®eld. Par-
ticle tracking codes generally model advective transport
well, however the way in which dispersion is incorpo-
rated is computationally expensive, since dispersion is
modeled explicitly, and gives rise to mass balance errors,
since concentrations must be averaged onto a grid. Wells
and variable thickness aquifers can also cause mass
balance errors in particle tracking codes.

BIOPLUME II, MODFLOW, and MT3D have been
used widely for modeling contamination extent, and for
evaluating remediation options. These codes, while still
useful, have some drawbacks. Numerical methodology
has advanced since they were written. Presented herein is
a new numerical ground water ¯ow and contaminant
transport model, which is robust, stable, and computa-
tionally e�cient. The purpose of this paper is to describe
FLOTRAN, and to present some of the testing the
transport portion of the code has undergone. We also
present one case involving unsaturated ¯ow and trans-
port. In Section 2, we outline the numerical methods
used in FLOTRAN. In Section 3, we discuss our ap-
proach for testing the model, and in Section 4, we pre-
sent results for several tests. Finally, we end with some
conclusions and plans for future work.

2. Description of FLOTRAN

FLOTRAN solves Richard's equation for ¯ow in
unsaturated conditions, which reduces to the standard
¯ow equation for con®ned/saturated conditions, com-
bined with a system of advection±di�usion-reaction
equations describing contaminant transport. It assumes
a 3-D, logically rectangular domain, but allows for fairly
general geometries by using smooth mappings between
the logically rectangular domain and a rectangular
computational domain. Therefore, the algorithms used
in the method are described in the context of brick-
shaped elements.

FLOTRAN solves the governing ¯ow equation using
the mixed ®nite element method for spatial discretiza-
tion and fully implicit time discretization. The ¯ow
equation is of the form

oh�W�
ot
� Ss

oh
ot
�r � v � q; �1�

where v is the Darcy velocity, q represents sources and
sinks, Ss the speci®c storage, h the moisture content, h
the hydraulic head, and W � hÿ z is the pressure head.
The mixed ®nite element method applied to ¯ow equa-
tions has been described in numerous papers; the version

employed to solve (1) is de®ned in the context of linear
elliptic equations in [1]. In this method, hydraulic head
and Darcy velocity are simultaneously approximated,
with hydraulic head approximated by a constant in each
element. Numerical integration is used to reduce the ®-
nite element equations to a cell-centered ®nite di�erence
scheme in head variables only. Here we outline the
method for Richard's equation

Consider an element Bijk 2 R3 with Bijk �
�xiÿ1=2; xi�1=2� � �yjÿ1=2; yj�1=2� � �zkÿ1=2; zk�1=2�.

Let (xi, yj, zk) denote the midpoint of Bijk.
In the mixed ®nite element method of lowest order,

one approximates h and w by constants hijk and wijk on
Bijk, and v � �vx; vy ; vz� is approximated at the centers of
the faces. Integrating (1) over Bijk and in time from tn to
tn�1 and applying the divergence theorem we have

h wn�1
ijk

� �
ÿ h�wn

ijk�
tn�1 ÿ tn

� �Ss�ijk

hn�1
ijk ÿ hn

ijk

tn�1 ÿ tn
� vx;n�1

i�1=2;j;k ÿ vx;n�1
iÿ1=2;j;k

xi�1=2 ÿ xiÿ1=2

� vy;n�1
i;j�1=2;k ÿ vy;n�1

i;jÿ1=2;k

yj�1=2 ÿ yjÿ1=2

� vz;N�1
i;j;k�1=2 ÿ vz;N�1

i;j;kÿ1=2

zk�1=2 ÿ zkÿ1=2

� qn�1
ijk :

�2�
By Darcy's law v � ÿK�w�rh. When mapping from a

logically rectangular domain to a rectangular compu-
tational domain, it is possible to obtain a coe�cient K,
which is a full tensor. Therefore,

K �
Kxx Kxy Kxz

Kxy Kyy Kyz

Kxz Kyz Kzz

24 35:
De®ne ~vx

i�1=2;j;k � �hi�1;j;k ÿ hi;j;k�=�xi�1 ÿ xi�; with
similar de®nitions for ~vy

i;j�1=2;k and ~vz
i;j;k�1=2:

Then de®ne

vx
i�1=2;j;k � Kxx

i�1=2;j;k~vx
i�1=2;j;k �

1

4

X1

`�0

X1

m�0

�Kxy~vy�i�`;j�1=2ÿm;k

� 1

4

X1

`�0

X1

m�0

�Kxz~vz�i�`;j;k�1=2ÿm:

Substituting ~v into this equation, and substituting
into (2), we obtain a non-linear system of equations in
hn�1

i;j;k .
These equations are solved using a damped Newton

method with linesearch backtracking to aid convergence
from poor starting guesses [9]. The Jacobian equations
which arise at each Newton step are solved using a
preconditioned orthomin iterative procedure.

Flux boundary conditions v � n � g are handled by
setting the appropriate velocity vx; vy ; vz � g, depending
on which face the condition is prescribed. Dirichlet
boundary conditions h � hD are speci®ed through the
de®nition of ~v. Thus these conditions are speci®ed
weakly.
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For the case of saturated ¯ow, h � hs, it was shown in
[1] that v and h are approximated to second order ac-
curacy at the face centers and cell centers, respectively.
Recently, in [27], the mixed method applied to Richard's
equation was analyzed. Here the precise rate of con-
vergence is not known a priori because the smoothness
of solutions is not known.

The Darcy velocities and moisture content computed
from the ¯ow are used in the system of transport
equations for each contaminant species. These equa-
tions model the advection, di�usion, and chemical re-
actions of species in the system. Each equation is of the
form

ohc
ot
�r � �vcÿ Drc� � qĉ� g; �3�

where c is the contaminant concentration, D the di�u-
sion/dispersion tensor, and g incorporates chemical re-
actions; g may be a function of several species in the
system. At sources ĉ is speci®ed. At sinks ĉ � c.

Eq. (3) is solved numerically using a time-splitting
approach. Given an approximation C(t) to c(t) at some
time t, the approximation advances to time t � dt by
advecting and di�using C(t), which gives an interme-
diate solution �C�t � dt�, then incorporating reactions
using �C�t � dt� as initial conditions. This ultimately
gives C�t � dt� � c�t � dt�. This type of splitting has
been analyzed in [25], and has been adopted and
modi®ed by a number of other researchers [21]. The
advantages of this approach are that the advection and
di�usion of each component can be performed sepa-
rately (and in parallel if desired), advection±di�usion
and reactions can be modeled using appropriately sized
time steps, and di�erent reaction models can be easily
incorporated.

Advection and di�usion/dispersion are modeled using
the Godunov-Mixed Method, outlined and analyzed by
Dawson [6,7]. In the version of this scheme used in
FLOTRAN, a second-order accurate Godunov proce-
dure is used to approximate the advective ¯ux, and a
mixed ®nite element method, similar to that used for the
¯ow equation, is used to incorporate di�usion/disper-
sion. The resulting scheme is a cell-centered ®nite dif-
ference method for contaminant concentrations. The
advective ¯ux is incorporated explicitly in time, while
the di�usion/dispersion step is implicit. By modeling
advection explicitly and di�usion implicitly, a symmet-
ric, diagonally dominant and positive de®nite system of
equations at each time-step is obtained. This system is
easily solved using Jacobi preconditioned conjugate
gradient. Although contaminant concentrations are only
approximated by constants in each cell, the Godunov-
Mixed Method is second order accurate in space and
®rst-order accurate in time at the center of each element.
This has been observed both theoretically and compu-
tationally.

Let Cijk be the approximation to c on Bijk, and let
F � �F x; F y ; F z� � ÿDrc. Integrating (3) over Bijk and
from tn to tn�1,

hn�1
ijk Cn�1

ijk ÿ hn
ijkCn

ijk

tn�1 ÿ tn
� vx;n�1

i�1=2;j;kCn�1=2

i�1=2;j;k ÿ vx;n�1
iÿ1=2;j;kCn�1=2

iÿ1=2;j;k

xi�1=2 ÿ xiÿ1=2

� F x;n�1
i�1=2;j;k � F x;n�1

iÿ1=2;j;k

xi�1=2 ÿ xiÿ1=2

� similar terms in y and z � qn�1
ijk Ĉn�1

ijk ;

where Ĉ is speci®ed if q > 0 and Ĉ � C if q < 0.
A variant of the higher-order Godunov method de-

scribed in [2] is used to calculate the ¯ux term Cn�1=2

i�1=2;j;k.
Ignoring di�usion (which is usually small relative to
advection), consider the advection equation

o�hc�
ot
�r � �vc� � 0

or

oc
ot

h� oh
ot

c� vx oc
ox
� c

ovx

ox
� o�vyc�

oy
� o�vzc�

oz
� 0:

By Taylor series

cn�1=2

i�1=2;j;k � cn
ijk �

Dt
2

oc
ot
� Dx

2

oc
ox

� cn
ijk ÿ

Dt
2

1

h
oh
ot

c
�

� vx oc
ox

� c
ovx

ox
� o�vyc�

oy
� o�vzc�

oz

�
� Dx

2

oc
ox
;

�4�

where the last two terms are approximated at �xi; yj; zk�
and tn.

The term oc=ox� �ijk is approximated using a ``slope-
limiting'' procedure. If Cn

ijk is a local maximum or
minimum (compared to all cells which share an edge or
vertex with Bijk) then we simply set Cn�1=2

i�1=2;j;k � Cn
ijk.

Otherwise we compute

min
Ci�1;j;k ÿ Ci;j;k

����
xi�1 ÿ xi

;
Ci;j;k ÿ Ciÿ1;j;k

����
xi ÿ xiÿ1

� �
and approximate oc=ox� �ijk by the minimum multiplied
by the appropriate sign. Let oxCn

ijk denote this approxi-
mation.

The transverse ¯ux terms vyc and vzc in (4) are com-
puted by ®rst-order upwinding.

Let

~ci;j�1=2;k �
ci;j;k; vy

i;j�1=2;k > 0;

ci;j�1;k; vy
i;jÿ1=2;k < 0:

(
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Then

Cn�1=2

i�1=2;j;k � Cn
ijk ÿ

Dt
2

1

hn
ijk

hn�1
ijk ÿ hn

ijk

tn�1 ÿ tn
Cn

ijk

"
� vx;n

ijk oxCn
ijk

� Cn
ijk

vx;n
i�1=2;j;k ÿ vx;n

iÿ1=2;j;k

xi�1=2 ÿ xiÿ1=2

� �
� �vy ~c�ni;j�1=2;k ÿ �vy~c�ni;jÿ1=2;k

yj�1=2 ÿ yjÿ1=2

 !

� �vz~c�ni;j;k�1=2 ÿ �vz~c�ni;j;kÿ1=2

zk�1=2 ÿ zkÿ1=2

 !#
� Dx

2
oxCn

ijk:

The di�usive ¯ux F x
i�1=2;j;k is de®ned similarly to

vx
i�1=2;j;k with K replaced by D and h replaced by C.

FLOTRAN handles in¯ow and out¯ow/no-¯ow
boundary conditions for transport. At an in¯ow
boundary �v � n < 0� we assume �vcÿ Drc� � n � vcI � n,
where cI is speci®ed. FLOTRAN enforces this condition
(for example, at an x boundary face) by setting

vx;n
i�1=2;j;kCn�1=2

i�1=2;j;k � F x;n�1
i�1=2;j;k � vx;n

i�1=2;j;kcI :

At out¯ow/no-¯ow boundaries (where v � n P 0), we
assume �Drc� � n � 0. This is easily enforced through
the ¯ux approximation F.

3. Model testing

Testing ground water models assures that the models
may be relied upon to closely approximate the ground
water ¯ow and transport equations. However, literature
on model testing methodologies is sparse. Huyakorn et
al. [15] designed and implemented several tests for nu-
merical models. He then demonstrated the use of these
tests on SEFTRAN, a 2-D model which uses ®nite-ele-
ment approximations to the ¯ow and transport equa-
tions. This testing methodology uses a three-level
approach: analytical solutions, heterogeneous/aniso-
tropic tests, and ®eld validation tests. In his report,
Huyakorn presents the model scenario, the analytical
form of the solution, and tabulated analytical solutions
for the speci®c test case. These tests form the basis of the
International Ground Water Modeling Center's rec-
ommendations for model testing [22]. Aside from the
Huyakorn report, most model testing information in the
literature is limited to speci®c tests applied to speci®c
models for narrow purposes (e.g., [10,23]).

The testing performed on FLOTRAN [13] includes
four tests against 1-, 2-, and 3-D analytical solutions,
two tests against semi-analytical solutions with radial
¯ow ®elds, a comparison with results from the BIOP-
LUME II code on a hypothetical site, and a test in-
volving ¯ow and transport in a partially saturated
region.

The four analytical tests include (A.1) a 1-D constant
concentration simulation, two tests with a uniform 2-D
¯ow ®eld, (A.2) a constant injection of contaminant,
and (A.3) a slug of contaminant, and (A.4) 3-D ¯ow of
contaminant from a horizontal plane source (including a
comparison to MT3D and the horizontal plane source
solution for the same scenario). The two semi-analytical
tests with radial ¯ow ®elds are (B.1) injection/recovery
from a single injection well, and (B.2) injection/recovery
from two di�erent wells.

Huyakorn relied upon visual comparisons for deter-
mining whether the model matched the analytical solu-
tion. In order to give a quantitative measure of how
FLOTRAN matches the analytical solutions, we com-
puted various error measures to quantify the di�erence
between the analytical solution and the model.

4. Description of testing

4.1. Tests with analytical solutions

The ®rst four analytical tests are based on methods
developed to test SEFTRAN [15]. These tests are all
based on well known solutions to the advection±dis-
persion equation in simple situations. The last test is
based on the 3-D horizontal plane source solution [11].
Table 1 shows the major grid and variable choices for
the ®rst four analytical solution tests.

4.1.1. Test A.1: 1-D continuous source
Test A.1 is a simulation of 1-D transport in a semi-

in®nite column with a constant concentration boundary
condition. Flow is assumed to be unidirectional and
contaminant is assumed to be introduced as a constant
concentration (C0) along the entire upgradient bound-
ary. The analytical solution [18] is

C
C0

� 0:5 erfc
xÿ vt

2
�����
Dt
p

� ��
� exp

vx
D

� �
erfc

x� vt

2
�����
Dt
p

� ��
;

�5�
where v is the interstitial velocity of the ground water, a is
the dispersivity, and D � av is the dispersion coe�cient.

Four subcases were simulated, and are characterized
by the cell Peclet number �Pe � Dx=a�, as given in
Table 2. Computed values of C=C0 are plotted in Fig. 1
at elapsed times of 25 and 50 days and are compared to
the analytical solutions using Eq. (5). The `average ab-
solute errors' for each case are also shown in Table 2 for
the simulation results at 25 and 50 days. The average
absolute error over a region is given by

1

�i2 ÿ i1�1��j2 ÿ j1�1��k2 ÿ k1�1�
Xi2

i�i1

Xj2

j�j1

Xk2

k�k1

Cijk ÿ cijk

�� ��
C0

:

�6�
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In this case, since the problem is 1-D i1� 1, i2�Nx,
j1� j2� k1� k2� 1. Thus (6) is equivalent to the L1

norm of the error, scaled by the length of the domain
and the injected concentration.

4.1.2. Test A.2: uniform 2-D ¯ow, continuous injection
Test A.2 involves continuous injection of contami-

nant into a well located in an otherwise uniform 2-D
aquifer. The solution for this problem assumes that the
contaminant is introduced as a mass ¯ux at a point
source [26]. The model will simulate these conditions by
assigning a low ¯ow rate and high concentration at the
well located at the point source, thus keeping the radial
¯ow to a minimum.

Three grids were used in this simulation, so that the
sensitivity to mesh size could be determined. The grid
choices are labeled coarse, medium, and ®ne. All grid
and simulation parameters are given in Table 1, while
Table 3 shows the cell Peclet numbers and average ab-
solute errors. Dimensionless variables used in the plots
are calculated according to the following formulas: di-
mensionless distance along the x-axis, xD � x=�2aL�;
along the y-axis, yD � y=�2aL�; and dimensionless con-
centration CD � 2p

����������
aLaT

p �vC=QC0�, where m is the
background seepage velocity, Q is the injection rate, aL

and aT are the longitudinal and transverse dispersivities,
respectively, and C and C0 are the `present' and initial
concentrations, respectively.

Results of the simulation are shown in Figs. 2±4 for
the coarse, medium, and ®ne meshes, respectively.
Snapshots of concentrations are taken at times of 500,
1000, 2000, and 2800 days. The analytical solution is

Table 3

Test A.2, subcases and results

Grid size X Peclet number

(non-dimensional)

Y Peclet number

(non-dimensional)

Average absolute

errors (% of C0)

Coarse 8.4 14.0 8.0

Medium 2.8 7.0 2.5

Fine 2.8 3.5 0.5

Table 1

Major grid and aquifer parameters for Tests A.1±A.4

Simulation parameter Problem A.1 1-D constant

concentration source

Problem A.2 2-D constant

point source

(Fine, Med., Coarse)

Problem A.3 2-D slug

point source

Problem A.4 horizontal

plane source (HPS)

Nx 40 39, 39, 13 49 32

Ny 2 20, 10, 5 11 21

Nz 2 2 2 15

Dx (m) 5 60, 60, 180 Variable Variable

Dy (m) 10 15, 30, 60 5 5

Porosity, h 0.25 0.35 0.35 0.38

Dz (m) 10 33.5 5 2

Conductivity, Kx (cm/s) 0.01157 0.0186 0.1 0.005

Conductivity, Ky (cm/s) 0.01157 0.0186 0.1 0.005

Dispersivity, aL (m) 5.0, 2.0, 0.2, 0.0 21.3 4 5

Dispersivity, aT (m) ) 4.3 1 0.5

Gradient, oh/ol 0.01 0.01 0.0231 0.0096

Injection rate, Q (m3/s) N/A 0.0983 N/A 0.8 (m/yr) in®ltration

Initial Conc., C0 (mg/l) 1.0 5000 0.4 100.0

Fig. 1. Test A.1, one-dimensional continuous source ± FLOTRAN vs.

analytical solution. Results are shown for t� 25 days and t� 50 days.

Table 2

Test A.1, subcases and results

Peclet number

(non-dimensional)

Dispersivity

(m)

Average absolute errors

(% of C0)

25 days 50 days

2 5 0.32 0.22

5 2 0.32 0.16

50 0.2 0.92 0.42

1 0.0 0.0 0.0

A.W. Holder et al. / Advances in Water Resources 23 (2000) 517±530 521



plotted for comparison. The analytical solution for this
test is tabulated in [15]. As expected, the ®ne mesh shows
the best agreement between analytical and numerical
solutions. The error reported in Table 3 is the average

absolute error along the centerline of the plume, aver-
aged over all four times. That is, the error was computed
using (6), summing over elements in the center of the
plume. As seen in the table, decreasing the grid size, and
therefore, the Peclet number, increases the accuracy of
this simulation signi®cantly.

FLOTRAN computes the concentration in the cells
as an average over the total mass in the cell divided by
the volume of the cell, so in a situation like this, large
cells a�ect the concentration by averaging in what
should be clean water with the contaminated water.
Using this computational method allows FLOTRAN to
maintain cell by cell mass balance, but may a�ect the
concentrations near a source due to the averaging of
clean water with contaminated water in a single cell.
This e�ect may be observed in Fig. 2 (coarse mesh).
Near the source, the numerical concentration for the
coarse mesh is less than one half the analytical concen-
tration. Moreover, the solution is smeared upstream due
to the fact that the source was treated as an injection
well. Farther away and a later times, however, the
concentrations approach the analytical solution con-
centrations. Both the medium and ®ne meshes give
better performance, with the ®ne mesh matching the
analytical solution very well, both visually, and using
the average absolute error.

The analytical solution assumes a point source, with
no disturbance of the ¯ow ®eld. In order to capture this
e�ect numerically with an injection well, the grid cells
need to be small enough so that the injection rate in the
well's grid cell causes the entire cell to be mostly con-
taminated after the ®rst time step. Thus, the cell Peclet
number should be as low as possible, in both the lon-
gitudinal and transverse directions. From this series of
tests, it appears that a cell Peclet number of 3 or lower is
su�cient.

The mass conservation properties of FLOTRAN are
well demonstrated by this example. For the `coarse' grid
case described above, mass balance information was
analyzed. A mass balance was manually calculated by
summing the total mass in the model domain after each
time step, and comparing to the expected mass injected
at the well. After the ®rst time step (100 days), the mass
balance error was 2� 10ÿ6 %, and after ten time steps
(1000 days), the mass balance error was 5� 10ÿ6 %.

4.1.3. Test A.3: uniform 2-D ¯ow, slug of contaminant
Test A.3, like Test A.2, tests advection and dispersion

in a uniform ¯ow ®eld, however the source of contam-
ination is changed to a slug of contaminant, instead of a
continuing source. This accomplishes two goals: (1) it
tests the ability of FLOTRAN to trace a slug as it ¯ows
downgradient, and as it disperses in two dimensions,
and (2) it tests its ability to simulate a case in which the
longitudinal and transverse dispersivities are di�erent
[15].

Fig. 4. Test A.2, point source in two-dimensional uniform ¯ow ®eld ±

FLOTRAN vs. analytical solution. Fine mesh.

Fig. 2. Test A.2, point source in two-dimensional uniform ¯ow ®eld ±

FLOTRAN vs. analytical solution. Coarse mesh.

Fig. 3. Test A.2, point source in two-dimensional uniform ¯ow ®eld ±

FLOTRAN vs. analytical solution. Medium mesh.
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SautyÕs solution [20] is tabulated in [15]. In this sce-
nario, the contaminant is introduced into the system at
x � y � 0 and allowed to ¯ow downstream. This simu-
lation is symmetrical about the x-axis and can be run on
half of the domain, simulating only the +y direction.
The grid is variable, with smaller cells �Dx � 5 m) near
the release point, and larger cells �Dx � 10 m) down-
stream. The remaining parameters are given in Table 1.
The cell Peclet numbers for this test are 1.25 near the
source in the longitudinal direction, 2.5 downstream
from the release point in the longitudinal direction, and
5 in the transverse direction. The Peclet numbers near
the release point are both close to the value of 3 rec-
ommended earlier, with the average Peclet number being
almost exactly 3.

The analytical solution is compared to the numerical
solution given by FLOTRAN in Fig. 5. At t �3:96 days,
the numerical solution di�ers slightly from the analytical
solution, especially at the center of mass of the solute
plume. At the two later times, there is very good
agreement between the analytical and numerical solu-
tions. This behavior is expected, since the analytical
solution assumes a point source, and the numerical so-
lution requires a ®nite (25 m2) source. In such a case,
one would expect the solutions to agree better at later
time steps. The errors calculated for this simulation are
the average absolute errors along the centerline of the
plume divided by the maximum concentration at a given
time. For t � 3:96, 10.59 and 16.59 days, the calculated
errors are 0.86%, 0.68% and 0.48%, respectively.

4.1.4. Test A.4: HPS solution
The Horizontal Plane Source solution solves for the

concentration in a 3-D aquifer of either ®nite or in®nite
vertical extent due to in®ltration of contaminated water
through a horizontal plane at the water table [11]. The
HPS code calculates the concentration at one point in
space and time, and was modi®ed to loop over space and

time to give results for the complete 3-D aquifer at all
time steps. For this comparison, eight observation
points were selected, near the source, far from the
source, along the centerline of the plume, and near the
edge of the `land®ll', near the water table, and away
from the water table. Fig. 6 depicts a conceptual model
for the simulation, including locations of the land®ll and
observation points. The grid setup and other simulation
parameters are given in Table 1. A non-uniform grid
was selected for the FLOTRAN simulation. The sce-
nario was also set up in MT3D for comparison.

Fig. 7 shows the vertical concentration pro®les along
the centerline of the plumes for HPS, FLOTRAN, and
MT3D. The contamination extends downstream from
the land®ll and is symmetric perpendicular to the di-
rection of ¯ow. The concentration is highest near the
source, and the contaminant stays near the water table,
with the 1.0 mg/l contour extending about 15 m down.
The three models produced very similar results, as can

Fig. 5. Test A.3, slug of contaminant in uniform two-dimensional

aquifer±FLOTRAN vs. analytical solution.

Fig. 6. Test A.4, conceptual model of con®guration for horizontal

plane source simulation. The observation points are vertically below

the points along the top plane, with two elevations for each horizontal

point.

Fig. 7. Test A.4, HPS, FLOTRAN, and MT3D solutions along the

centerline of the plume.
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be seen in the ®gure. The largest di�erences are very near
the source, where FLOTRAN and MT3D both predict
higher concentrations than HPS; away from the source,
the contours for all three are very close. Galya [11] notes
that a multi-point source model tends to predict higher
concentrations near the source than the HPS model,
which assumes that the source is spread evenly over the
entire source. In his comparisons, the closest point is
located 20 m from the origin, or 14 m from the edge of
the land®ll. In this simulation, the closest point is 11.5 m
from the origin, and 1.5 m from the edge of the land®ll.
A small overprediction at that point is unavoidable.

In this simulation, FLOTRAN was dramatically
faster than either MT3D or HPS on a Sun Sparc 20 (100
MHz). For identical systems, using 21� 32� 15 grids,
and a 5 yr time span, MT3D and HPS took between 1.5
and 3 h to complete the simulation, where FLOTRAN
ran the simulation in about 10 min. The di�erence in run
times for the numerical codes (FLOTRAN and MT3D)
was largely due to the di�erence in time step size. The
time step FLOTRAN chose was larger because of the
implicit treatment of dispersion in the code. Treating

dispersion implicitly requires more computational e�ort
for each time step, but allows selection of larger time
steps by the code. Smaller time steps are required in
explicit codes such as MT3D to avoid numerical insta-
bility. HPS is limited by the fact that for each time T n,
the code must perform the numerical integration from
t � 0 to t � T n instead of t � T nÿ1 to t � T n. The code
for HPS was not designed to perform 3-D multi-time-
step calculations, and the modi®cations made by the
authors to allow these calculations are undoubtedly in-
e�cient.

Fig. 8 shows the concentration at four points as a
function of time. Three curves are presented for each
observation point, one for each model. The line types
shown in Fig. 8 correspond to the observation point
symbols in Fig. 6, with one line type for each observa-
tion point. HPS is represented by a clean line, FLO-
TRAN by a line with � marks on it, and MT3D by a
line with s marks on it. In Table 4, we have computed
the absolute error at each of the eight observation
points, averaged over time.

In general, the FLOTRAN solution is lower near the
source, and slightly higher far from the source than the
semi-analytical HPS solution. This behavior is consis-
tent with the presence of numerical dispersion, present
in all numerical models to some extent, which reduces
peak concentrations in accordance with the `total' dis-
persion, which is equal to the modeled dispersion plus
the numerical dispersion.

4.2. Tests with semi-analytical solutions for radial ¯ow
®elds

The next two tests were performed to compare
against testing performed on the MOC code which is the
basis for BIOPLUME II [10]. In his paper, El-Kadi
voiced a concern that MOC was being used to model
scenarios which were too stressful for the code. In par-
ticular, he simulated two cases with radial ¯ow around
one or two wells, with very large �900� 900 ft2) cells,
small grids �9� 9�, and relatively high pumping rates.
FLOTRAN has been tested in the same situations,

Fig. 8. Test A.4, HPS (no symbol) vs. FLOTRAN (�) and MT3D (s)

at 4 points in space. The linetypes correspond to the locations shown in

Fig. 6.

Table 4

Average absolute errors for the HPS vs. FLOTRAN Test

Symbol on Fig. 6 Distance from center of land®ll (m) FLOTRAN run avg abs di�

(mg/l)

MT3D test avg abs di�

(mg/l)x y z

50 0 1 0.231 0.607

50 32.5 1 0.080 0.335

50 0 15 0.066 0.028

50 32.5 5 0.023 0.041

11.5 0 5 0.219 0.173

11.5 32.5 5 0.107 0.228

11.5 0 1 2.012 1.243

11.5 32.5 15 0.019 0.010
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because it is almost certain that eventually it will also be
used in such stressful situations, and the user should be
aware of any problems which may arise from such use.

4.2.1. Test B.1: radial ¯ow: injection and subsequent
extraction from the same well

In this situation, contaminated water is injected into a
9� 9 aquifer for a time t1, then the ¯ow is reversed, and
water is removed from the aquifer. An analytical ex-
pression has been derived to approximate the concen-
tration in the well during this process [12]. The
expression reads

C
C0

� 1

2
erfc

(
ÿ V

16

3

a
R
�2

�,
ÿ V jV j1=2�

�1=2
)
; �7�

where

V � �2t1 ÿ t�=t1 �8�
and

R � �Qt1=phB�1=2
: �9�

In Eqs. (7)±(9), t is the time since the beginning of the
injection cycle and t1 is the time at which injection stops
and recovery begins. Therefore, V is not a physical
volume, but is a measure of how much of the injected
water remains in the subsurface at time t. When V � 0,
�t � 2t1�, the same amount of water has been removed
from the well in the recovery stage as was injected into
the well in the injection stage. Other variables are: Q, the
¯ow rate (assumed to be the same in injection and re-
covery), h, the porosity, and B, the (constant) thickness
of the aquifer.

Four subcases were simulated in this test case. The
subcases test di�erent dispersivities, injection times, and
¯ow rates. These parameters are given in Table 5, while
the parameters which are common to all of the subcases
are de®ned in Table 6. The four subcases were also
simulated with BIOPLUME II, recreating the work of
El-Kadi.

Fig. 9a and b illustrate the results of the experiments
B.1.a and B.1.b for the FLOTRAN and BIOPLUME II
(MOC) simulations. The other subcases had similar re-
sults, and are not shown. This ®gure consists of three
curves each, FLOTRAN, BIOPLUME II, and the
Gelhar and Collins solution for the test dispersivity, and
for a second dispersivity, to be discussed below.

The closeness of ®t between the analytical solution
and the numerical solution are measured in this case by

computing the absolute error at the injection/extraction
well at each time, and averaging over time. The errors
are given in Table 7 as a percent of the injection con-
centration. In spite of the severe stresses in this simu-
lation, the results are consistently within 10 to 15% of
the value given by the analytical solution.

4.2.2. Test B.2: radial ¯ow: injection well and extraction
well

The second case tested by El-Kadi [10] was a re-
charge/recovery doublet. In this case, on a similar grid

Table 5

Variable parameters for subcases B.1.a, B.1.b, B.1.c, and B.1.d.

Subcase aL (ft) t1 (y) Q (cfs)

B.1.a 100 2.5 1.0

B.1.b 100 1.0 1.0

B.1.c 0.001 2.5 1.0

B.1.d 100 2.5 0.5

Table 6

Common parameters for subcases B.1.a, B.1.b, B.1.c, and B.1.d.

Parameter Symbol Value

Hydraulic conductivity K 0.005 ft/s

Aquifer thickness B 20.0 ft

Porosity / 0.30

Ratio of longitudinal to transverse

dispersivity

aL/aT 1.0

Grid size in x direction Dx 900 ft

Grid size in y direction Dy 900 ft

Number of grid increments in x direction Nx 9

Number of grid increments in y direction Ny
a

Concentration of injected water C0 100.0%
a MOC requires an extra layer of grid cells outside a constant head

boundary. For this reason, there are 11 grid cells in the MOC mod-

eling, but only 9 in the FLOTRAN modeling.

Fig. 9. Test B.1, concentration breakthrough curves in injection/ex-

traction well ± FLOTRAN vs. BIOPLUME II.

Table 7

Simulation B.1, average absolute errors for FLOTRAN and BIOP-

LUME II for injection/extraction from a single well

Test Compared to Gelhar/Collins

FLOTRAN (% of C0) BIOPLUME II (% of C0)

B.1.a 6.6 3.4

B.1.b 5.0 6.6

B.1.c 12.9 6.9

B.1.d 7.4 6.7
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there is an injection well 2700 ft (3 cells) from a recovery
well pumping at the same ¯ow rate. Javandel et al. [30]
coded a semi-analytical solution to the purely advective
transport in this situation. The model, called RESSQ,
calculates the velocity ®eld in a domain de®ned by in-
jection and production wells, and tracks the contami-
nant front away from the injection well along a ®xed
number of streamlines emanating from the injection
well. The concentration in the recovery well is deter-
mined by averaging contaminant concentrations among
the streamlines entering the well. When the contaminant
front reaches the recovery well along a given streamline
the concentration at the well immediately jumps to its
new value. The number of streamlines modeled deter-
mines the smoothness of the resulting breakthrough
curve.

The recharge/recovery doublet was simulated on a
9� 10 MOC grid, and therefore on a 9� 8 FLOTRAN
grid, since the extra layer of cells was not required (see
Table 6, footnote). Fig. 10 shows the MOC setup for the
simulation. The FLOTRAN setup is identical, with
minor changes along the boundaries to account for the
di�erences in boundary conditions between the two
models. Other input parameters are the same as in Table
5, except that Qin � Qout � 1:0 cfs.

The resulting concentration breakthrough curves are
shown in Fig. 11. Two features are evident from the ®rst
runs: (1) The solution given by FLOTRAN does not
¯uctuate like the MOC/BIOPLUME II solution does,
and (2) the FLOTRAN concentrations are also about
3/4 of the RESSQ value.

In the 9� 8 grid runs, neither model reached the
concentrations predicted by RESSQ. The reason for this
was that the model domain was simply too small. The
contaminant was impinging on the constant head and
no-¯ow boundaries. In order to more accurately model
this scenario, the model domain was enlarged. Increas-
ing the model domain to a 14� 16 �or 14� 18� grid and
retaining the same grid size �900� 900 ft2) improved the
results. In addition, a mesh re®nement was performed
with 225� 225 ft2 grid blocks. Runs were made with

both FLOTRAN and BIOPLUME II using the re®ned
grids. These results are also shown in Fig. 11.

Fig. 11a shows the resulting concentration break-
through at the recovery well for the FLOTRAN simu-
lations. A signi®cant improvement (from 26.8% error at
the breakthrough well to 12.2%) is observed by simply
increasing the size of the model domain, and an addi-
tional improvement (to 10.7%), especially near the
breakthrough time, is seen with the mesh re®nement. A
further mesh re®nement (not shown) improves the re-
sults by about 0.1%. Errors for this simulation are given
as percent di�erences from the RESSQ solution at the
last time step.

Fig. 11b shows the results of the same simulations
done with BIOPLUME II. In all three simulations,
the concentration in the recovery well ¯uctuates. In the
original simulation, the concentration ¯uctuates around
a curve about 25% below the RESSQ solution, which is
where the original FLOTRAN solution lies. Increasing
the model domain improves the simulation in that the
¯uctuations are centered more closely on the RESSQ
solution, however the amplitude of the ¯uctuations
is not reduced. Mesh re®nement does not improve
the results. A similar run was performed with MT3D,Fig. 10. Test B.2, aquifer model for the recharge/recovery doublet.

Fig. 11. Test B.2, concentration breakthrough curves at the recovery

well for the recharge/recovery pair.
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to determine if the observed behavior is typical of
the Method of Characteristics; the behavior was very
much like BIOPLUME II, and the results are not
shown.

4.3. Tests vs. Bioplume II

The next test of FLOTRAN (Test C) is a direct
comparison with BIOPLUME II in a case assuming
instantaneous reaction of hydrocarbon with oxygen.
The comparisons were performed by taking the same
conceptual model for a hypothetical site and applying
it to both models. The conceptual model involves an
aquifer domain of 1100� 700� 10 m3, with a source of
contamination 150 m from the upstream boundary.
The initial oxygen concentration is 5000 lg/l, and ox-
ygen enters the upstream boundary at a concentration
of 5000 lg/l. The source was assumed to be active for
60 years. Other relevant model parameters are given in
Table 8.

The hydrocarbon plume was created using a con-
tinuing source modeled by 3 wells side by side. Using the
same input parameters for FLOTRAN and BIOP-
LUME II, a direct comparison of the models was pos-
sible. The results for hydrocarbon concentration along
the centerline of the plume at several points in time are
shown in Fig. 12. FLOTRAN and BIOPLUME II agree
well in this simulation. Excluding the cells upstream of
the wells, for which the agreement was rather poor, the
average di�erence between the FLOTRAN and BIOP-
LUME II solutions agreed within 1.9%, averaged over
all 40 time steps. Near the source, the hydrocarbon
concentrations vary by up to 11%, due to oscillations in
the BIOPLUME II simulation caused by particles
moving from one cell to another, and discrete particle
creation at the well. A mesh re®nement was performed,
halving the grid size in the direction of ¯ow. BIOP-
LUME II still showed some oscillation near the source,
and away from the source, the hydrocarbon concentra-
tions were consistently lower than with FLOTRAN, and

the mass balance errors in BIOPLUME II were on the
order of 30±60%.

4.4. Partially saturated ¯ow and transport test

The ®nal test case tests the ability of FLOTRAN to
model ¯ow and transport in a partially saturated media.
We assumed a domain �0; 20� � �0; 20� � �0; 20� ft3, with
constant pressure head boundary conditions of 5 and
12 ft on the top �z � 20� and bottom (z� 0), respec-
tively, and no-¯ow conditions on the sides. Initial
pressure head was speci®ed by W�x; y; z� � 12ÿ z. The
media was heterogeneous, with hydraulic conductivity
of 0.57 ft/day everywhere except in the region
�1; 15� � �1; 15� � �10; 15�, where conductivity was set to
0.0057 ft/day. In¯ow concentration of 5 mg/ft3 was
enforced for 5 < x < 9; 10 < y < 14 ft, at the top
boundary. Elsewhere in¯ow concentration was assumed
to be zero.

The functions h and K are similar to functions used in
a test case described in [3]. In particular,

h�w� �
hsÿhr

1� a wj j� �n� �m � hr; w < 0

hs; w P 0

� �
and

K�w� � Ks
f1ÿ�ajwj�nÿ1��1��ajwjn�ÿmg2

�1��ajwj�n�m=2 ; w < 0

Ks; w > 0

( )
;

where hs � 0:368; hr � 0:102; a � 3:35; m � 0:5 and
n � 2. Ks is the saturated hydraulic conductivity. The
speci®c storage was set to zero, and longitudinal and
transverse dispersion coe�cients of 0.1 and 0.01 ft were
used, respectively.

The 3-D contaminant solution at time 10 days on a
40� 40� 40 uniform mesh is given in Fig. 13. The de-
viation in the plume due to the low conductivity zone is

Table 8

Model parameters for FLOTRAN vs. BIOPLUME II Test

Model parameter Value

Number of grid cells 25� 15

Hydraulic conductivity 1� 10ÿ4 m/s

Porosity 0.3

Dx, Dy 50 m

Thickness 10 m

Dispersivity 30 m

Gradient 8� 10ÿ4 m=m

Injection rate 1� 10ÿ4 m3=s (over 3 cells, 0.25,

0.5, 0.25)

Injection concentration 10,000 lg/l

Background O2 concentration 5000 lg/l

Stoichiometric factor 3 mgO2
/mgHC

Fig. 12. Test C, FLOTRAN vs. BIOPLUME II comparison ± con-

centration along the centerline of the plume for 10, 20, 30, 40, 50 and

60 yr of simulation.
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apparent. A 2-D slice through the solution along the
plane x � 6:5 is shown in Fig. 14. A comparison solution
on a 20� 20� 20 mesh is shown in Fig. 15. While the
solutions are similar, the solution on the ®ner mesh is
much better resolved. In Fig. 16, we show the solution
computed on a 40� 40� 40 non-uniform mesh, with
re®nement around the plume. This solution is slightly
sharper than the uniform grid solution in Fig. 14.
The contour levels in these plots are 0.5, 1, 1.5, 2, 2.5
and 3 mg/ft3.

In these runs, the initial ¯ow time step was set to
around 0.05 days. The ®rst few ¯ow time steps required

around 10 Newton iterations to converge. After the
initial in®ltration, the number of Newton iterations de-
creased and the ¯ow time step was increased until a
steady state was reached.

5. Conclusions

FLOTRAN has been tested by comparing it to ana-
lytical, semi-analytical, and numerical solutions to the
ground water ¯ow and contaminant transport equa-
tions. In testing against analytical solutions, the code
performed very well, matching the analytical solution
almost exactly for the 1-D tests. In the 2-D test with a
continuous source, a mesh re®nement was performed,
and the model performed well on the ®ne and medium

Fig. 14. Two-dimensional slice through contaminant solution along

x� 6.5. Time� 10 days, 40� 40� 40 uniform mesh.

Fig. 15. Two-dimensional slice through contaminant solution along

x� 6.5. Time� 10 days, 20� 20� 20 uniform mesh.

Fig. 16. Two-dimensional slice through contaminant solution along

x� 6.5. Time� 10 days, 40� 40� 40 nonuniform mesh.

Fig. 13. Three-dimensional contaminant solution at t� 10 days on

uniform 40� 40� 40 mesh.
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meshes, indicating that the cell Peclet number should be
less than 3, and that near wells, the cell volume can a�ect
observed concentrations due to mixing. In the 2-D test
with a slug source, it matched the analytical solution
well, especially at later times. At earlier times, the dif-
ference between a point source and a ®nite width source
was evident in the solutions.

In the 3-D analytical test, FLOTRAN performed
well, matching the shape and concentrations of the
HPS solution very closely at a variety of locations.
MT3D also performed well on this test, however
FLOTRAN gave nearly identical results in about 1/10
of the computational time. The tests against analytical
solutions show that the formulation of the approxi-
mations used in FLOTRAN is correct, and that the
code does not add excessive numerical error to the
solution. The tests re-emphasize the known fact that
the mesh size can be an important factor in numerical
simulations.

The semi-analytical testing of FLOTRAN was per-
formed using modeling parameters designed to stress the
numerical capabilities of a model. In these tests, under
radial ¯ow conditions with square cells, the model adds
some numerical dispersivity to the solution. The authors
have noted similar results in other non-uniform ¯ow
tests. In cases of uniform ¯ow, as in Test A.1, it adds
almost no numerical dispersivity. The code performed
quite well on these tests, which indicates that it is robust
enough to simulate non-ideal scenarios and still give
results reasonably close to reality. In the same tests,
BIOPLUME II produced a breakthrough curve that
oscillated in concentration every time a particle passed
over the boundary of the cell containing the well.

In testing FLOTRAN against BIOPLUME II in 2-D
mode, the two models gave results that are similar in
shape and magnitude. The FLOTRAN solution, how-
ever, is strictly monotonic, increasing steadily as the
injectant pervades the aquifer. The BIOPLUME II so-
lution ¯uctuates by over 10% as particles pass from cell
to cell, taking all their mass with them. In addition, since
the number of particles introduced at the well is not
directly linked to the volume injected at the well, the
BIOPLUME II solution loses mass, and can su�er from
large mass balance errors.

FLOTRAN's modularity provides for extension of
the model to incorporate alternate reaction scenarios.
Holder et al. [14] have incorporated reaeration through
the vadose zone using Fick's law into FLOTRAN. Their
®ndings indicate that reaeration may be an important
factor in modeling natural attenuation.

Overall, FLOTRAN has proved to be an e�cient and
accurate numerical model, which has performed well in
a variety of tests. Its advantages include the use of
advanced numerical techniques, and computational
e�ciency, which allows for more re®ned grids, improv-

ing model accuracy while not increasing model run
times.
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