Analytic Modeling of Impermeable
and Resistant Barriers

by Charles R. Fitts"

Abstract

Superpositioned analytic functions are used to efficiently and accurately model ground-water flow fields containing thin
barriers such as slurry walls and sheet-pile walls. Barriers are modeled as a series of straight-line segments strung together to create
irregularly shaped open or closed boundaries with zero thickness. The complex analytic functions employed provide perfect
continuity of flow across the boundary while approximating normal flux boundary conditions along the boundary. Along an
impermeable boundary the normal flux is specified as zero, and along a resistant (leaky) barrier the normal flux is proportional to a
specified resistance parameter and the potential difference across the boundary. Solution of a given flow problem requires solving
a system of equations with one equation per boundary corner. These equations are linear for impermeable boundaries and for
resistant boundaries in confined aquifers or single-strata unconfined aquifers. In other cases, the boundary condition equations
associated with resistant barriers can be nonlinear and a new technique for iterative solution is employed. Implementation of these
techniques in a computer program is tested and it is demonstrated by modeling various configurations of flow funneled into a gap

between two barriers.

Introduction

Barriers to flow such as slurry walls and sheet-pile walls are
often important features in the ground-water flow fields at con-
taminated sites and at construction sites. These barriers are
typically vertical and very thin compared to their horizontal
extent. The hydraulic conductivity of the barriers is generally low
enough that most flow is deflected around the barrier. In some
cases, a significant amount of flow also leaks through the barrier.
Barriers have been used to ring contamination sources, and some
recent attention has focused on the use of barriers to channel
contaminant plumes into a small zone where in situ treatment
occurs (Pankow et al., 1993).

Flow around barriers can be modeled with numerical
models (e.g. McDonald and Harbaugh, 1988; Hseih and
Freckleton, 1993), but to achieve reasonable accuracy requires
fine grid or element spacing in the vicinity of the barrier, and
extremely fine spacing where flow curls around the end of a
barrier. In some modeling studies, the location of the barrier is a
design variable; using a numerical model in such cases is tedious
because the spatial discretization must be redefined each time the
barrier location is changed. With appropriate analytic functions,
it is possible to model steady two-dimensional flow around
impermeable and resistant (leaky) barriers without the spatial
discretization dilemma of numerical models; changing the loca-
tion of the modeled barrier requires only a quick adjustment of
boundary coordinates. Another advantage of analytic methods
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over numerical methods in this case is relatively fast and accurate
computation.

Previous analytic approaches to the problem include those
of Strack (1986) and He (1987). Both implemented analytic
solutions for modeling thin impermeable and resistant barriers
along smooth curves in two-dimensional steady flow fields.
Strack (1986) represented barriers as a curve consisting of hyper-
bola segments, and He (1987) modeled barriers as a curve con-
sisting of line segments and arc segments. The smooth curve
approach used by both researchers avoids the difficulty of assign-
ing boundary conditions at corners in the boundary. At corners,
the flux normal to the boundary is multivalued, and a normal
flux boundary condition cannot be assigned there.

The techniques presented here differ from the previous
techniques of Strack (1986) and He (1987) in essentially two
aspects. First, the barriers are modeled as a series of connected
straight-line segments. A new technique allows boundary condi-
tions to be effectively approximated, despite the multivalued
normal flux at corners. Compared to the previous smooth curve
techniques, this straight-line method requires simpler input and
is simpler to program. A second contribution of this research is
extension of the method to cases involving nonlinear boundary
conditions on resistant barriers. Nonlinear boundary conditions
arise when barriers are in aquifers that are represented as strati-
fied (i.e. two or more strata with different hydraulic conductivity
and thickness).

The following sections describe the modeling techniques,
their implementation in a computer program, and example
applications. The applications include analysis of discharge
through “funnel and gate” barrier systems of varying configura-
tions.
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Basic Equations of the Analytic Method

Superposition of large numbers of analytic functions is a
technique that has been widely applied to the solution of steady
two-dimensional ground-water flow problems [see Strack (1989),
Fitts (1985), and Strack and Haitjema (1981a, 1981b)]. Rather
than write analytic solutions for head ¢ directly as functions of
position, ¢ (X, y), analytic solutions for head are written with the
aid of a discharge potential ®: ¢[P(x, y)]. This discharge poten-
tial is defined in terms of head so that the following equations are
always true.

Qu = P Q, = P W
" ox ’ ay

where Q, and Q, [L*/T] are the components of the aquifer
discharge vector in the x and y directions, respectively. The
aquifer discharge vector (Q, Qy) represents the flow/time pass-
ing through a unit-width panel that extends vertically over the
entire thickness of the aquifer. Equations (1) are satisfied for a
confined aquifer if the discharge potential and head are related as

& = kHo¢ + C. (2

where k is the horizontal hydraulic conductivity, H is the aquifer
thickness, and C. is a constant. If the aquifer is unconfined, the
discharge potential satisfies (1) with this definition:

k 2
¢=@-b tC 3

where b is the elevation of the aquifer base, and C. is a constant.
Potential-head relationships that satisfy (1) have also been
defined for the other aquifer types, including layered con-
fined/unconfined aquifers (Strack, 1989). For the two-strata
aquifer pictured in Figure 1, the following potential-head rela-
tionships apply:
& = Yki(¢ — by) (b < ¢ <)
& =k,Hi(¢p — b1) + Yka(¢p — b2)* + C (b2 < ¢ <b3)
& =kHi(¢p — b1) + koH2(¢p — b2) + D (¢ = bs) 4)
where C and D are constants

C=—}YkH/

D =~k H: + k.Hy?) (5

With definitions (4) and (5), ® is continuous as ¢ crosses the
aquifer elevation boundaries b, and bs, and equation (1) holds
regardless of the head. These potential definitions are used in the
models demonstrated later in this paper. Despite the existence of
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Fig. 1. Two-layered aquifer.

two strata, the model is two-dimensional in the horizontal plane;
all resistance is associated with horizontal components of flow
and none is associated with vertical components. Since the
problem is posed in terms of @, not ¢, the locations where flow
transitions between confined flow, unconfined flow in the upper
layer, and unconfined flow in the lower layer do not need to be
specified as model input but are given as model output.

When there is leakage or infiltration into the aquifer from
the upper and/or lower boundaries at a net rate N [L/ T], conti-
nuity of flow requires

dQx d
Q , 9Q
ax dy

=N 6)

Combining the continuity condition (6) with (1) gives the
Poisson equation, the governing equation for steady flow with
infiltration/leakage.

i’e  Ie
ox’ dy’

Vi =—N 7N

If there is no leakage/infiltration, the governing equation
becomes the Laplace equation.

Vi =0 8)

A particular problem is solved by superpositioning dis-
charge potential functions that satisfy the Laplace and/or
Poisson equations to yield a composite solution of the governing
equation. The total discharge potential &, is a sum of discharge
potential functions, each associated with particular boundaries
and conditions on those boundaries.

Pu(x,y) = g1 Py (X, y) T 22Pp(x,y) + ...
Py (x,y) T dux,y)+ ... &)

Some of the functions contain constant parameters that are
given when the problem is posed (g1, g2, . . . ) and others contain
unknown parameters (ui, uz, . . . ). The coefficient functions
®;,(X,y)...and Py (X, y). .. are analytic solutions representing
the effects of specific aquifer features such as wells or stream
segments. The unknown parameters u;, us, . . . are determined
by specifying a number of boundary conditions at control points
located on aquifer features or boundaries. The number of speci-
fied boundary conditions equals the number of unknown
parameters, yielding a system of linear equations which is solved
by standard methods.

Analytic expressions for the aquifer discharge vector (Qx,
Qy) are given by a sum of the derivatives of each potential
function.

9D Py, ddy,
Q —*79;——& ax 8 ax a
Iy, 0Dy,
s ax o ax B
a%, ddy, 3Py,
@=" oy ey Pay
Py, ddy,
—u 3y -, 3 - ... (10)

These analytic expressions for the aquifer discharge vector are
used when specifying boundary conditions on impermeable and
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Fig. 2. Open and closed barriers.

resistant boundaries, and when tracing pathlines for model out-
put plots.

Discharge potential functions are available to represent
many aquifer features, including infiltration/leakage, uniform
crossflow, wells, streams, areal recharge or leakage, thin leaky or
draining features and aquifer heterogeneities [see Strack (1989)
for detailed descriptions of the method and these functions].

Barrier Modeling Method

Barriers are approximated as a series of straight-line seg-
ments that form either open-ended boundaries or closed loop
boundaries, as shown in Figure 2. Although actual barriers have
small finite width, they are modeled as having no width. Oppo-
site sides of the boundaries are denoted as + and —, n is a local
coordinate normal to the boundary, and s is a local coordinate
tangential to the boundary.

Potential Functions Representing the Boundary

Each segment of the boundary is represented by a line-
doublet complex potential function (}(z) = ® + iV written as a
function of the complex coordinate z = x + iy. Line-doublet
functions have the following properties suited for modeling of
barriers:

® & is discontinuous across the boundary (®* # &), This is
neccessary to produce a discontinuity in head across the
boundary.

® The normal component of aquifer discharge is con-
tinuous across the boundary (9®"/dn = 9/ dn), which ensures
that the boundary itself has no discharge.

® The tangential component of aquifer discharge is discon-
tinuous across the boundary (d®*/ds # dd | ds).

Strack (1989) describes several types of line-doublet func-
tions, two of which are implemented here. All segments other
than the tip segments of open-ended boundaries are represented
by a function with a linear variation in (" — &) along the
segment.

0= +iw=—[@Z+a0) In —
= 1Y = — a a
2w L2 T RN T

+2a]

where ao and a; are real constants, and Z is a dimensionless
complex variable defined as
2z —(z1+ z
g2tz (12)
Z; — 7y
The complex coordinates z; and z, are at the ends of the line
segment, and z is the point where Z and () are evaluated. The
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constants ao and a, determine the linear distribution of (®" — &)
along the line segment.

The end segments of open-ended boundaries are repre-
sented by a line doublet with a square-root distribution of (@' —
") along its length, which gives the proper boundary conditions
around the tip of the element.

w1

ﬁ_ 172
o Lo m 2

where ao is a real constant, and x is a dimensionless complex
variable defined as

Q=0 +iv= +ﬂ (13)

Z— 27
X=—""—"— (14)
Z; — 71

The complex coordinate z, is at the open end of the line segment,
z2is at the other end of the line segment, and z is the point where
x and {} are evaluated.

When the line-doublet functions are strung together to form
an irregular boundary, the vartiation in (®* — &) along the
boundary is constrained to be continuous at the junctions
between adjacent segments. A hypothetical distribution of (&' —
¢") for a four-segment open-ended boundary is illustrated in
Figure 3. In this case, there are three unknowns to be solved for:
(@' — @) at each of the three internal corners. Given (" — &)
at each corner, the constants ao and a; in the potential functions
(11) and (13) can be determined. Whether the boundary is open
or closed, the number of unknowns is equal to the number of
corners in the boundary. For each of these unknowns, an equa-
tion is generated by specifying a normal flux boundary condition
associated with each corner.

Figure 4 illustrates what could be considered a unit function
associated with a typical corner. Both line segments shown are
represented by function (11), with (" — &) varying linearly
from zero at the ends to 1.0 at the common corner. The compos-
ite potential for a series of line segments can be thought of as a
series of these unit functions scaled and superpositioned to
provide the proper distribution of " — & along the boundary.
Also shown in Figure 4 is what this unit function contributes to
the component of aquifer discharge normal to the right-hand
segment, Q, = —d®/dIn. Q, is continuous across the right-hand
segment, as desired. It can also be seen that Q, is singular at the
ends of the segment; the normal flux boundary condition asso-
ciated with the corner cannot be assigned at the corner. Instead,
the normal flux boundary condition is assigned at two control
points that straddle the corner, /4 of the segment length from the
corner. The V4 distance was chosen because the normal flux
contributed by the unit function for this corner is large compared
to the normal flux contributed by unit functions associated with
adjacent corners.

<I>_

\/

Fig. 3. Distribution of (®* — ®”) along an open-ended boundary, as a
function of distance along the boundary.




Fig. 4. Top: unit function potential ¢, contour interval 0.05. Bottom:
component of aquifer discharge normal to the right-hand segment Q.,,
contour interval 0.005 (CP denotes control point locations).

Boundary Conditions for an Impermeable Boundary

As discussed above, the unknowns that need to be deter-
mined are the potential differences (®* — @) at each corner of
the boundary, which in turn determine the constants ap and a, in
(11) and (13) for each segment of the boundary. The desired
boundary condition is zero aquifer discharge normal to the
boundary, Q. = (Qx, Qy) - n = 0, where Q. is the component of
the aquifer discharge vector (Qsx, Qy) normal to the boundary,
and n is a unit vector normal to the boundary. For each
unknown (®" — &) at a corner, the equation generated involves
the sum of normal flux at two control points straddling the
corner.

Qu(z) + Qu(z) =0 (15)

where z; and z; are the complex coordinates of the two control
points. The condition (15) causes close approximation of Q, =0
along the entire boundary, provided the boundary is broken into
small enough segments.

Boundary Conditions for a Resistant Boundary
The condition applied to the resistant boundary control
points is

Qu(z) + Qu(z)) = Qi (zi) + Q¥ () (16)

where Q,(z:) and Q. (z;) are the components of modeled aquifer
discharge normal to the boundary at the control points z; and z;.
The terms Q¥ (z;) and Q¥ (z;) are the leakage rates through the
boundary per unit length of boundary at the control points. Q¥ is
calculated as the gradient of a potential defined within the
resistant barrier, ®*, as though the barrier has finite width b*
and hydraulic conductivity k*.

Jdb* O*t — P
dn B b*

Qi = )
where the + and — superscripts refer to opposite sides of the
boundary. If the aquifer is unconfined,

o* = lsk*(¢p — b1)’ ¢ =bs (18)
and if it is confined
®* = k*[(b; — b1) (¢ — b1) — Y(bs — b1)’] ¢=bs (19)

where b; and b; are as defined in Figure 1. Equations (17)
through (19) result in equation (36.1) of Strack (1989) when
heads are unconfined on both sides of the boundary in a single-
layer aquifer and equation (36.3) of Strack (1989) when heads are
confined on both sides. The formulation presented here is more
flexible than the formulation of Strack (1989), since it allows for
nonlinear conditions with layered aquifers and changes from
confined to unconfined flow across the boundary.
Combining equations (16) and (17) gives

1
Qn(zi) + Qu(zy) = oy

[@*(z:) — * (z) + &*"(2z)) — ¥ ()] (20)

The boundary condition equation (20) is put in terms of the
aquifer potential by assuming a linear relationship

1
— (8% (2) = 9 (@) + 9 (@) — ()] =

M[®'(zi) — ® (z:) + @' (z) — D ()] + N (21)
where M and N are constants. Combining (20) and (21) gives
Qn(zi) T Qu(z) =

M[®"(z;)) — & (z:) + &' (z) — & (z)] + N (22)

The constants M and N are determined by the head at the control
points and relations (4), (I18), and (19). The ratio b*/k* can
always be factored out of the left side of (21), and is embedded in
the constants M and N. The boundary is modeled as having no
actual width, so the factor b*/k* is specified as the resistance of
the boundary.

I the aquifer is confined on both sides of the boundary, or if
the aquifer is unconfined in the lower layer on both sides of the
boundary (¢ < b; in Figure 1), the relation (21) is truly linear,
and no iteration is required to solve the system of equations. In
other cases, relation (21) is only a linear approximation of a
nonlinear relationship, and iteration is required. With each itera-
tion, estimates of the constants M and N are updated based on
new estimates of heads on opposite sides of the boundary at the
control points. Iteration proceeds until some closure criterion is
met [e.g. the left and right sides of (16) differ by no more than
1%].

This method will cause close approximation of Q, = Q¥
along the entire boundary, provided the boundary is broken into
a sufficiently large number of segments (experience indicates
that 10 to 30 segments per barrier is enough in most cases).
Inherent in this two-dimensional formulation is the assumption
that the resistance to vertical flow inside the barrier can be
neglected; this assumptior is generally valid if the barrier is thin
and the saturated thickness does not change dramatically across
the barrier.
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Fig. 5. Contours of ® and V. Contour interval 1.0 m’/day.

Implementation

This method has been implemented by the author in the
computer program TWODAN. TWODAN can superposition
large numbers of analytic functions to represent variable infiltra-
tion/leakage, uniform crossflow, point sources or sinks (wells),
line sources or sinks (streams), aquifer heterogeneities, imper-
meable barriers, and resistant barriers. The program uses the
composite analytic solution to directly generate contour plots
and pathlines.

A model constructed to check implementation contains a
closed resistant boundary formed of 42 line segments and an
open impermeable boundary formed of 23 line segments. The
aquifer has two layers; the lower layer is 4 m thick with hydraulic
conductivity of 3 m/d and the upper layer is 1 m thick with
hydraulic conductivity of 12 m/d. The model consists of the
functions representing the two boundaries plus the potential for
a uniform flow with Q0 = 0.153 m%/d and Q, = —0.129 m?/d.

Puni = —QuoX — Qyoy (23)

The closed boundary is resistant with resistance b*/k* = 100
days. The open boundary is an impermeable one.

An analytic flow-net of the solution is shown in Figure 5.
The flow-net was produced by contouring the composite ¢ and
V¥ functions, using a contour interval of 1.0 m*/day for both
functions. The contour interval represents the discharge between
adjacent stream function contours (streamlines). To create this
plot, the analytic solution was evaluated at about 13,500 regu-
larly spaced points within the plot area, and these data were
contoured with a linear interpolation algorithm. Where head
drops across the boundaries, the potential is discontinuous. The
flow-net illustrates that the solution is indeed analytic, and that
there is perfect continuity of flow through and around the bound-
aries (the stream function is continuous). Along the impermeable
boundary, the streamlines indicate that the solution closely
approximates the no-flow boundary condition. The heads along
both boundaries vary from fully confined conditions at the
upstream end (top of Figure 5) to unconfined in the lower layer

316

at the downstream end (bottom), to test the full range of possible
head-potential relationships.

A utility of TWODAN checks how well the solution meets
the boundary conditions at each corner, namely equation (15)
for the impermeable boundary and equation (16) for the resis-
tant boundary. For all corners of the impermeable boundary,
| Qu(z) + Qu(z)| < 4.1 X 107 m’/day. For all corners of the
resistant boundary, Qn(zi) + Qu(z;) differed from Q¥(z) +
Q%*(z;) by less than 0.07%,.

To demonstrate that the solution is not highly dependent on
the discretization of line segments representing the boundaries, a
second model was developed which is identical to the one that
produced Figure §, except that the boundaries are represented
by about half as many segments (22 for the resistant boundary
and 11 for the impermeable one). The analytic flow-net for this
model is shown in Figure 6. Although there are slight differences
in the patterns close to the boundaries, both portray essentially
the same flow-field.

Application to “Funnel and Gate” Barrier Systems

Application of this method is demonstrated in models of
what have been called “funnel and gate” remediation systems. In
these systems, barriers funnel contaminated ground water
through a narrow gap or “gate,” where the water can be treated in
situ in a limited area (Pankow et al., 1993). The barriers would
typically be slurry walls or sheet-pile walls that key into an
aquitard at the base of the aquifer.

Five barrier configurations were modeled, with results
shown as analytic flow-nets in Figure 7. Since the flow-nets are
symmetric about the bisecting line between the two barriers, only
the left half is shown. Each model contains analytic functions
representing the barriers and a function representing uniform
flow in the negative y direction. Each barrier is represented as an
impermeable boundary with 9 to 17 segments, an upstream
opening width L, and a downstream opening width l. In all cases,
the aquifer was confined with the same fixed transmissivity T.
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Fig. 6. Same as Figure 5, but with fewer segments representing the
boundaries.
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Fig. 7. Analytic flow-nets for five impermeable barrier configurations.

Configurations (a), (b), and (c) contain two straight barriers at 45
degrees to the incoming flow, with gap widths of [=0.05L,0.1L,
and 0.2L, respectively. Configuration (d) has a gap width of 1 =
0.1L, but arectangular barrier arrangement. Configuration () is
like (a), except there is a trapezoidal region in the gate area where
the transmissivity is 100 times higher than the surrounding aqui-
fer transmissivity. Such high transmissivity zones may be con-
structed to provide a zone where oxygen or other chemical
agents could be introduced to enhance remediation. The tech-
nique for modeling heterogeneity boundaries is not discussed
here, but is covered by Strack and Haitjema (1981b), Fitts (1985),
and Strack (1989).

The flow-nets of Figure 7 provide some insights for design
of “funnel and gate” barrier systems. The results for all five cases
indicate that the zone of water captured and funneled through
the gate narrows substantially upstream of the barriers, because
some flow is forced out and around the barriers. At a distance
L/2 upstream of the upstream opening of the barriers, the width
of flow captured ranged from about 0.4L in case (a) to about
0.55L in case (c). These results indicate that the upstream open-
ing width L should be designed substantially wider than the
plume that the barriers are intended to capture. Although the
gap in case (c) is four times larger than the gap in case (a), the
flow through the gap in case (¢) is only about 40% larger than in
case (a); this is the result of higher velocities in the gap as the gap
width | decreases. Configurations (b) and (d) both have gap
widths of | = 0.1L, but the flow through the gap in (d) is about
30% larger than the flow through the gap in (b). The high
transmissivity zone of model (e) reduces resistance in the gap

area, and allows 25% more flow through the gap than the
comparable homogeneous model (b).

Concluding Remarks

The method presented here allows efficient and accurate
modeling of barriers in two-dimensional steady flow. To set up a
model with a barrier, the user only has to specify the verticies of
the boundary line segments and possibly a resistance. The
models presented in Figures 5, 6, and 7 were created in just a few
minutes. To be more specific, the following times apply for these
models, using standard personal computer equipment (60 MHZ
pentium PC): defining the boundaries took less than 5 minutes
(it was done graphically), solving the system of equations took
less than 15 seconds, and generating the contour plots on screen
required less than one minute. To develop similar models with
numerical methods, the user must define fine discretization near
the boundary and specify the properties of all elements of the
boundary and vicinity; this process can be very time-consuming.
The efficiency advantage of this method over numerical methods
becomes especially important if the model is used in design mode
to test various barrier configurations.

This approach does have some limitations, one of which is
that it is steady, not transient. Development of fully analytic
methods for barriers in transient flow is unlikely, due to the
difficulty of finding and implementing analytic solutions which
can meet complex boundary conditions in space and time.
Another limitation is that the present implementation in TWO-
DAN does not allow barrier boundaries to cross heterogeneity
boundaries. It is theoretically possible to allow such crossings,
and such capability may some day be implemented.
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