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SUMMARY

Solution algorithms for solving the Navier–Stokes equations without storing equation matrices are
developed. The algorithms operate on a nodal basis, where the finite element information is stored as the
co-ordinates of the nodes and the nodes in each element. Temporary storage is needed, such as the search
vectors, correction vectors and right hand side vectors in the conjugate gradient algorithms which are
limited to one-dimensional vectors. The nodal solution algorithms consist of splitting the Navier–Stokes
equations into equation systems which are solved sequencially. In the pressure split algorithm, the
velocities are found from the diffusion–convection equation and the pressure is computed from these
velocities. The computed velocities are then corrected with the pressure gradient. In the velocity–pressure
split algorithm, a velocity approximation is first found from the diffusion equation. This velocity is
corrected by solving the convection equation. The pressure is then found from these velocities. Finally,
the velocities are corrected by the pressure gradient. The nodal algorithms are compared by solving the
original Navier–Stokes equations. The pressure split and velocity–pressure split equation systems are
solved using ILU preconditioned conjugate gradient methods where the equation matrices are stored, and
by using diagonal preconditioned conjugate gradient methods without storing the equation matrices.
© 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The advantage of explicit time marching schemes for solving partial differential equations is
that the prediction of the future solution from earlier solutions is done without having to solve
a system of equations. Therefore, computer memory for storing the equation matrices is not
required and it is possible to solve larger problems with significantly more degrees of freedom.

Explicit time marching schemes are extensively used for hyperbolic equation systems, while
implicit time schemes are most frequently used for solving parabolic equation systems. Implicit
algorithms offer a higher degree of stability, which is required when diffusion is included in the
flow equations. However, implicit algorithms usually require more work and more storage, as
an equation system has to be solved.

In the present work, explicit and implicit time marching schemes are combined to solve the
Navier–Stokes equations. The conjugate gradient method is used to solve the parabolic
diffusion equation and the Laplace equation is used for the pressure implicitly. The forward
Euler method is used to solve the convection equation.
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The most complicating factor in solving the Navier–Stokes equations is how to handle the
pressure term. A variety of approaches have been investigated. Penalty methods have proved
to be unstable and produce pressure checkerboard, but the mixed interpolation method [1]
appears to be the most stable, robust and accurate approach [2].

An operator splitting algorithm presented by Goda [3,4] consists of splitting the equations.
The velocities are first found by using the pressure obtained at the previous step, then the new
pressure is found from a modified Poisson equation, and in the last step, the velocities are
corrected by the corresponding new pressure gradient. The numerical schemes applied to the
splitting algorithm have been both explicit and implicit in time. Utnes [5,6] used a second-order
explicit Runge–Kutte method for the time derivatives of the velocities and solved the modified
Poisson equation by a direct solver. Ruas [7] and Goldberg [8] also implicitly solved for the
velocities and used old velocities in forming the non-linear matrix coefficients. The equation
systems were solved iteratively by conjugate gradient methods. An advantage of the splitting
algorithm, is that equal order, linear basis function can be applied to approximate both
pressure and velocity.

The new algorithm developed in the present work contains additional operator splitting. The
velocity equation is split in a diffusion equation and a convection equation. In this algorithm,
four equation systems are solved sequencially. These equations are the diffusion equation, the
convection equation, the pressure equation and the mass equation. The diffusion equation and
the pressure equation are both symmetric and positive definite Laplace equations, while the
convection equation and the mass equation are pure hyperbolic equations.

The characteristics of the different algorithms, which are compared with respect to efficiency
and stability, are summarized below.

(i) Coupled algorithm; assembled equation system; coupled node fill in ILU preconditioned
conjugate gradient solver.

(ii) Pressure split algorithm; assembled equation system; ILU preconditioned conjugate
gradient solver.

(iii) Pressure split algorithm; nodal equation system; diagonal preconditioned conjugate
gradient solver.

(iv) Velocity–pressure split algorithm; assembled equation system; ILU preconditioned conju-
gate gradient solver.

(v) Velocity–pressure split algorithm; nodal equation system; diagonal preconditioned conju-
gate gradient solver.

Quad-tree grid generation has been applied successfully by Kallinderis [9] and Greaves
[10–12]. These authors used the hierarchic structure of the quad tree for recursive subdivisions.
As the quad-tree grid has achieved a satisfactory refined grid, a triangular mesh is constructed
from the rectangular elements in the quad-tree. In the present work the tri-tree grid generation
method is successfully applied [13,18].

2. TRI-TREE ADAPTIVE GRID GENERATION

The tri-tree grid generation is based on triangles in two dimensions and tetrahedra in three
dimensions [13]. The refinements of triangles are shown in Figure 1. The information of the
tree structures is contained in records associated with each triangle as shown in Figure 2. These
records contain the level of refinement, the node numbers and pointers to the divisions
associated with the triangular structures.
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Figure 1. The figure shows the two-dimensional tri-tree structure for subsequent divisions of a triangle into 16
triangles.

The four terminal leaves of the tree in Figure 1 are discarded in one level of recoarsement
of the entire tree. Between each recoarsement level, a tri-tree element can not be involved in
more than one recoarsement. The procedure is performed once more to obtain the next level
of recoarsement.

Although the tri-tree elements are discarded with respect to the finite element grid genera-
tion, the discarded tri-tree elements are marked and kept in the tri-tree structure. The reverse
operation, the refinement operation, is thus performed on the same tree structure by reinserting

Figure 2. The figure shows the information in the tri-tree structure in two dimensions. This information is contained
in a record consisting of nine integers. The first integer describes the level of refinement. When this integer is negative,
it indicates a terminal triangle. The next three integers are the indices to the corners of the present division. If the
refinement level integer is positive, the next four integers are pointing to the triangles into which the triangle is refined.
If the triangle is terminal, the following three integers are pointers to the neighboring triangles. If one of these integers

is zero the triangle has no neighbor in that direction. The last index is pointing to the parent triangle.
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the discarded tri-tree elements into the tri-tree. The recoarsement–refinement algorithm is,
therefore, performed on an existing tri-tree structure and does not require additional memory
or file storage.

3. THE NAVIER–STOKES EQUATIONS

3.1. The coupled algorithm

The non-linear Navier–Stokes equations are given by

r
(v
(t

−m92v+rv ·9v+9p=0 in V,

−9 ·v=0 in V,
(1)

where v is the velocity vector, p is the pressure and m is the viscosity coefficient. The first
equation is the equation of motion which contains a time, diffusion, convection and pressure
term. The second equation is the equation of continuity. A minus sign is introduced into the
continuity equation, in order to obtain the same sign for the pressure gradient as for the
continuity equation in the finite element formulation.

In the finite element formulation, the velocities are approximated by quadratic basis
functions and the pressure is approximated by linear basis functions on each element [1]. Note
the quadratic polynomials Ni and the linear polynomial Li. Then, by the Galerkin residual
method and integration by parts, the second-order finite element formulation of the Navier–
Stokes equation system becomes,
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There are several methods of linearizing this equation system. The common linearization
techniques involve computation of gradients or approximate gradients as the Newton method.
The Newton linearization method is a global method of linearization.

The Navier–Stokes equations have one non-linear term, the convective acceleration, which
requires a non-linear iterative solution procedure. The non-linear algorithm chosen is the
Newton method, which is known to have second-order convergence rate. The Navier–Stokes
equations are then differentiated with respect to the unknowns, and a linear equation system
must be solved at each Newton iteration.
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vn+1=vn+Dvn+1, (4)

pn+1=pn+Dpn+1. (5)

If the initial solution v0 and p0 which is chosen, is close enough to the final solution,
convergence of the non-linear equation system is guaranteed.

3.2. The pressure split algorithm

The original Navier–Stokes equation can be reformulated into three equations which
describe the fluid flow. In the reformulated version below, there is one excessive equation,
which simplifies the numerical solution algorithm.

r
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The fine element formulation of the pressure split equations becomes,
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The three equations, Fv, Fp and Fm are then solved sequencially by the non-linear Newton
algorithm.
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By replacing the pressure with dn=pn−pn−1 [8], the Newton formulations of the pressure
split the equations are,&
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3.3. The 6elocity–pressure split algorithm

The original Navier–Stokes equation can be reformulated into four equations which
describe the fluid flow. In the reformulated version below, there is one excessive equation,
which simplifies the numerical solution algorithm.
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The fine element formulation of the velocity–pressure split equations becomes,
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The four equations, Fv, Fc, Fp and Fm are then solved by the non-linear Newton algorithm.
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Replacing the pressure with dn=pn−pn−1 [8], to achieve divergence free flow, the Newton
formulations of the pressure split equations are,&
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Table I. Computation parameters

ElementsCorner nodes AdaptionDtRe

500100 550 1024
1146 70200 608 0.0
1972 0.9301021400

1.210800 3061 6047
1 6.91600 13 002 25 913

The table shows the grid and time parameters: the number of elements, the number of
nodes, the time step and the time used for adapting the grid to the solution

Let nd be the spatial dimension, then the exact integrals above can easily be computed using
the formula [14],&

V
Li

aLj
bLk

g =
a !b !g !

(a+b+g+nd)!
nd !V.

4. BOUNDARY CONDITIONS

The boundary conditions at external boundaries where either v is specified or (v/(n=0, will
cancel the boundary integrals 	dV mLi (vn¯(n ddV in Equation (11). The pressure in Equation
(11) is replaced by dn=pn−pn−1. Then the normal derivative (d/(n=0 and the boundary
integral 	dV Li (dn¯(n ddV cancel.

The advantage of using the non-linear Newton formulation for solving linear equations is
that the boundary conditions for the correction introduced into the equation system are always
zero, while the actual boundary value is inserted in the initial solution vector.

The pressure computations are based on the continuity equation for each element. Therefore
the final pressure has to be calculated from the Poisson equation with boundary conditions.
The Poisson equation is derived from the differentiation of the Navier–Stokes equations and
substitution of the continuity equation.

92p+r9(v ·9 · v)=0 in V. (14)

The finite element formulation and integration by parts result in,
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By substitution of the velocity boundary conditions for external boundaries, (v/(n=0, and
Newton formulation, the equation to be solved becomes,&

V
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The pressure boundary condition (p/(n is obtained directly from the Navier–Stokes
equations and expressed by the velocity terms. In general, the normal derivative of the pressure
is given by
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In the driven cavity problem, (p/(n=0 for all boundaries. For flow where the velocity is
constant along the inlet boundary, m92v=0. For flow in tubes where there is a parabolic flow
profile, u=u0(1−r2/R2) at the inlet, m (2u/(r2= −mu0 2/R2.

5. NUMERICAL SOLUTION ALGORITHMS

In the mixed formulation of the Navier–Stokes equations, the non-linear equation system is
Newton formulated and the matrix coefficients are assembled. The storage scheme is sparse
and described in detail in Dahl and Wille [2]. The corresponding linear equation system of the
Newton formulation of the Navier–Stokes equations is solved using the non-symmetric
CGSTAB conjugate gradient algorithm with coupled node fill in preconditioning.

In the pressure split algorithm, the velocity is found using the Navier–Stokes equations, Fv

in Equation (7), with ILU preconditioned CGSTAB for the assembled equation matrix and
with diagonal preconditioned CGSTAB in the nodal algorithm.

The pressure is found from the Poisson equation, FP, by ILU preconditioned, symmetric
conjugate gradients for the assembled equation system and diagonal preconditioned, symmet-
ric conjugate gradients for the non-assembled equation system.

The velocity correction equation Fm in Equation (7) is solved by diagonal preconditioned
symmetric conjugate gradients for the non-assembled equation system and the ILU precondi-
tioned symmetric conjugate gradients for the assembled equation system. When the velocity
and pressure equations, Fv and Fp are not assembled, the mass matrix in Fm is simply lumped
and the velocity correction is found by inverting the lumped mass vector.

In the velocity–pressure split algorithm, all equation systems to be solved are symmetric and
positive definite. The equations Fp and Fm are solved as in the pressure split algorithm. The
velocity is found from Fv in Equation (11), in the same way as in the pressure split algorithm,
except that the symmetric conjugate gradient algorithm is used instead of CGSTAB. The
velocity correction equation Fc, due to convection, is solved in the same way as the velocity
correction equation due to the pressure, Fm.

Table II. Coupled algorithm

ErrorSolution timeLinearRe

100 73 141 3 ·10−3

146 7 ·10−4200 60
455 4 ·10−3400 127

5 ·10−32 957238800
5001600 19 127 3 ·10−2

The table shows the number of linear iterations, the solution time and the error estimate
for the coupled algorithm
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Table III. Time adaptation

Max ReeDt Max DpeMax CoeRe

2.51 9.16200 620 0.98
0.99 1.84400 290 4.30
0.99 10.811.73110600

5.901.26800 60 0.97
2.08 3.931000 40 0.98

The table shows the maximum Reynolds number, the maximum Courant number and
the maximum diffusion parameter before divergence when incrementing the time step for
different Reynolds numbers

6. SOLUTION ADAPTION

There are three important parameters in the solution algorithm for the Navier–Stokes
equations. These parameters are the Reynolds number (Re), the Courant number (Co) and the
diffusion parameter (Dp).

Re=
rv ·9v
m92v , Co=

rv ·9v
r#v/#t, Dp=

m92v
r#v/#t. (19)

The Reynolds number is defined as the ratio of convection to diffusion. The Courant
number is defined as the ratio of convection to acceleration and the dissipation parameter is
defined as the ratio of diffusion to acceleration. The Reynolds number reflects the degree of
non-linearity in the equation system. The Courant number indicates the degree of hyperbolicity
and the diffusion parameter indicates the degree of parabolicity in the equation system. The
Reynolds number, Courant number and the diffusion parameter can be computed for each
element.

6.1. Grid adaption

The element Reynolds number Ree is computed for each tri-tree element from the expression
given below. Let Li

c be the linear basis function evaluated at the geometrical center of the
element. Then the different parameters become

Ree=
Si L i

cr
&

V
Niv ·9v dV

Si Li
cm

&
V

9Li ·9v dV
BeRe. (20)

Numerical experiments such as those of Wille [14,15] have shown that eReB10 in two spatial
dimensions and eReB30 in three dimensions, in order to obtain a converged solution for the
Navier–Stokes equations. In the present work, the element Reynolds number limit is eRe=1
for refinement and recoarsement of the grid.

6.2. Time adaption

The element Corant number Coe and the element diffusion parameter Dpe are computed for
each tri-tree element.
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For explicit time schemes, it has been shown theoretically that the time marching scheme
remains stable if eCoB1 and eDpB1/2 [16]. These values have been derived for whole
geometries, where characteristic length and mean velocity are applied in the derivations. As the
diffusion equation is solved implicitly, the diffusion parameter is not important for conver-
gence. The element Courant number has been found experimentally to be in the range 1.0–2.5
when divergence occurs (Table III). In the present work, the Courant number limit is chosen
to be 0.5. The length of the time step is computed from

DtB0.2Dt0/max(Coe), (23)

where Dt0 is the time step in the computation of the element Courant number, Coe.

7. EXPERIMENTS

The numerical algorithms are tested for the driven cavity flow problem shown in Figure 6. The
density of the fluid is r=1000 and the viscosity is m=0.001. For the coupled algorithm, (1),
the convergence criterion for the linear iterations is eL=0.001 and the non-linear convergence
criterion is eN=0.0001. In order to ensure a minimum number of linear iterations, the
conjugate gradient algorithms are forced to do at least NLmin

=5 iterations. The maximum
number of linear iterations to be executed is NLmax

=100, which ensures that the conjugate
gradient algorithms are stopped when the required convergence criterion is not reached.
Similar criteria are imposed on the non-linear Newton iterations. The maximum number of
non-linear Newton iterations is set to NNmax

=5. There are therefore two possibilities for
stopping the linear and non-linear iterations. The iterations are either stopped when the
convergence criterion is reached or when the number of iteration limits is reached. The time
step in the coupled algorithm 1 is infinite, Dt= · 1030.

Table IV. Pressure split algorithm, full mass matrix

Re Assembled algorithm Nodal algorithm

Error Linear iterations Solution time ErrorLinear iterations Solution time

9 ·10−4100 698 255 9 ·10−4615 69
9 ·10−42606649 ·10−490750200

1 ·10−3 1532 1051400 1 ·10−31500 304
2 ·10−39791505 2 ·10−3800 34672750

1600 3 ·10−215 95927793 ·10−342531560

The table shows the number of linear iterations, solution time in seconds and the obtained accuracy of the solution
for the assembled and nodal pressure split algorithm with full mass matrices
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Table V. Velocity–pressure split algorithm, full mass matrix

Re Nodal algorithmAssembled algorithm

Linear iterations Solution timeLinear iterations Solution time Error Error

1306 9 ·10−41809 ·10−4100 920 86
224 9 ·10−4200 1300 133 9 ·10−4 1443

2503 614400 2000 347 1 ·10−3 1 ·10−3

20892616 7 ·10−32 ·10−3800 2011 1156
3631 11 3361600 2226 4766 3 ·10−25 ·10−3

The table shows the number of linear iterations, solution time in seconds and the obtained accuracy of the solution
for the assembled and nodal velocity–pressure split algorithm with full mass matrices

In the pressure split algorithm 6, the convergence criteria for the linear conjugate gradient
iterations eL=0.0001. The limiting number of linear conjugate gradient iterations is NLmin

=5
and NLmax

=50. In the non-linear velocity Equation (6) one non-linear iteration is always
executed. The number of outer split iterations is always NSmax

=100.
The convergence and stop criteria for the velocity–pressure split algorithm are the same as

for the pressure split algorithms.

7.1. Computational parameters

The computation parameters are shown in Table I. These parameters are characteristic for
all numerical algorithms. As the solution adapted grids are generated during the computations
in each algorithm, the grid and the grid parameters may vary slightly because the computa-
tions may have reached slightly different levels of convergence. The length of the time steps are
the same for both of the operator split algorithms.

7.2. Coupled algorithm

The coupled algorithm has been thoroughly investigated in previous work [2,17,18]. For
comparative reasons, the coupled algorithm is applied to the same test examples as the
operator split algorithms. The results of the simulations for the coupled algorithm 1 are shown
in Table II.

Table VI. Pressure split algorithm, lumped mass matrix

Re Assembled algorithm Nodal algorithm

ErrorSolution timeLinear iterationsLinear iterations Solution time Error

53 9 ·10−4 427100 213400 9 ·10−4

228200 9 ·10−4500 70 9 ·10−4 431
9 ·10−4 1022 926 1 ·10−41000400 235

3080 9 ·10−3800 1000 682 1 ·10−3 2955
10821600 1 ·10−215 72621513 ·10−32997

The table shows the number of linear iterations, solution time in seconds and the obtained accuracy of the solution
for the assembled and nodal pressure split algorithm with lumped mass matrices.
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Table VII. Velocity–pressure split algorithm, lumped mass matrix

Assembled algorithm Nodal algorithmRe

Error Solution time ErrorLinear iterationsLinear iterations Solution time

9 ·10−4 504 86 9 ·10−4100 400 46
9 ·10−41387809 ·10−4200 600 64

1 ·10−3 1054 552 1 ·10−3400 1000 196
9 ·10−2199124651 ·10−2800 1001 611

8998 1 ·10−21600 1059 3045 6 ·10−3 2268

The table shows the number of linear iterations, solution time in seconds and the obtained accuracy of the solution
for the assembled and nodal velocity-pressure split algorithm with lumped mass matrices.

7.3. Time adaption

The maximum possible time step which can be used without divergence is given in Table
III. The computations are carried out using the velocity–pressure split algorithm. For each
Reynolds number, time steps in increments of ten are applied until divergence occurs. The
largest time step before divergence is then used for the computation of the Courant number
and the diffusion parameter. The table shows that the maximum Courant number for
convergence is in the range 1.2–2.5. The corresponding diffusion parameter is between 3.0
and 10.9. The important parameter in the present numerical algorithms is the Courant
number. The updates due to pressure correction in the pressure split algorithm 6 and the
velocity–pressure split algorithm 10 are performed explicitly. In the velocity–pressure split
algorithm 10, the convective correction is also explicitly updated. In the present investigation,
the diffusion equation for both algorithms is solved implicitly. The diffusion therefore does
not impose any convergence limitations. The actual time step in the present investigation is
chosen so the maximum element Courant number CoeB0.2

7.4. Operator split algorithms

Table IV shows the results of the simulations of cavity flow by the pressure split al-
gorithm. The results on the left side of the table are for assembled equation systems and the
conjugate gradient equation solvers are preconditioned by incomplete LU factorization. The
results on the right side of Table IV are for the nodal algorithm and diagonal precondition-

Table VIII. Matrix storage

Re Coupled assembled Split assembled Split nodal

16 ·103 0185 ·103100
18 ·103 0286 ·103200

030 ·103482 ·103400
88 ·103 01075 ·103800

4655 ·1031000 0420 ·103

The table shows the number of coefficients and pointers to rows and columns in the
matrices for the assembled algorithms. The nodal algorithms allocate no matrix storage.
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Figure 3. The figure shows the number of elements (logarithmic units) for each Reynolds number. The grid is iterated
20 times for each Reynolds number with respect to solution adaption.

ing of the equation system. The mass matrix in Equation (6) is assembled and the corre-
sponding equation system is also solved by diagonal preconditioning of the conjugate
gradient method. The table shows that the assembled algorithm is the most efficient of the
assembled and the nodal algorithms, both in terms of number linear iterations and computa-
tional time.

Table V shows results of similar simulations for the velocity–pressure split algorithm. The
results in the table show that the assembled algorithm is the most efficient in terms of
number of total linear iterations as well as in computational time.

The results of the simulations of the velocity–pressure split algorithm with lumped mass
matrices are shown in Tables VI and VII. These algorithms are faster than those with full
mass matrices and corresponding solutions of the equation system. The mass lumping,
however, has only minor effects on the convergence rate and the accuracy of the solutions.

The main advantages of the nodal algorithms are that no equation matrices are stored.
Thus, problems can be investigated with more degrees of freedom and increased accuracy.
The earnings in computational storage increase the computational times to some extent, but
not dramatically. For the pressure split algorithm, the assembled equation matrix algorithm
is approximately five times faster than the corresponding nodal algorithm. For the velocity–
pressure split algorithm this factor is between two and three.

Comparing the two nodal algorithms, it appears that the velocity–pressure split algorithm
is faster than the pressure split algorithm. The superiority of the velocity–pressure split
algorithm is due to the fact that only linear matrix coefficients have to be generated during
the matrix–vector multiplication in the conjugate gradient solvers.

7.5. Matrix storage

Table VIII shows the number of matrix coefficients which are stored in the computer
memory for the different algorithms. The coupled algorithms require most storage, while the
assembled operator split algorithms require a factor of ten less storage. The corresponding
nodal algorithm does not need any storage for matrix coefficients.
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7.6. Adapti6e grid iterations

The tri-tree algorithm for refinements and recoarsements of finite element grids is explored.
The refinement–recoarsement algorithm not only provides an accurate solution at certain parts
of the grid, but has a major influence on the actual finite element equation system [19]. The
refinements of the grid lead to a more symmetric and linear equation matrix. The recoarse-
ments will ensure that the grid is not finer than necessary, for preventing divergence in an
iterative solution procedure. The refinement–recoarsement algorithm is a dynamic procedure
and the grid is adapted to the instant solution.

In the tri-tree multigrid algorithm, the solution from a coarser grid is scaled relative to the
increase in the velocity boundary condition for the finer grid. In order to have a good start
vector for the solution of the finer grid, the global Reynolds number or velocity boundary
condition should not be subject to large changes. For each grid and each velocity solution, the
element Reynolds number is computed and used as the grid adaptive indicator during the grid
adaption procedure. The runtime expenses for grid adaption are very small compared with the
computational time for solving the equation system (Table III). The grid can therefore be
adapted several times during the iterations for obtaining a solution at a specific Reynolds
number with only a minor increase in computational time.

Figure 3 shows the number of elements in the grid for each Reynolds number. The grid is
refined if the element Reynolds number Ree\1.0 and recoarsed if the recoarsed element
Reynolds number remains ReeB1.0.

Figure 4. The figure shows the solution adapted grids obtained by the nodal velocity–pressure split algorithm. The
grids to the left are the initial grids for Reynolds number 200 (upper) and Reynolds number 400 (lower). The grids
to the right are the final grids for obtaining the converged solution. Ten grid adaptions are executed for each Reynolds

number.
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Figure 5. The figure shows the solution adapted grids obtained by the nodal velocity–pressure split algorithm. The
grids to the left are the initial grids for Reynolds number 800 (upper) and Reynolds number 1600 (lower). The grids
to the right are the final grids for obtaining the converged solution. Ten grid adaptions are executed for each Reynolds

number.

Figures 4 and 5 show the initial and final grids for the adaptive refinements during the
solution procedure for Reynolds numbers 200, 400, 800 and 1600. The figures clearly show that
the adapted grids are changing as the solution converges during the solution procedure. The
computations are executed with the velocity–pressure split algorithm (see Figure 6).

8. DISCUSSIONS

The Navier–Stokes equations may be considered as a composition of the diffusion equation
and the convection equation. The solution of the diffusion equation is relatively smooth, while
the solution of the convection equation is due to rapid changes in boundary conditions which
propagate in the computational domain.

The traditional methods for solving the diffusion equations have been implicit, which implies
that an equation system must be solved, either by a direct or an iterative equation solver. In
most cases, in order to speed up the iterative solvers and stabilize the equation system, the
equation system has to be preconditioned. Both the direct solver and the most efficient
preconditioners require an assembled equation matrix. The storage of the assembled equation
matrix is therefore a limiting factor for the size of the equation system which can be solved.

The convection equations have previously been solved successfully by explicit time marching
schemes, such as the forward Euler method and the Runge–Kutta methods. The advantage of
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explicit methods is that no equation systems need to be solved and therefore, no equation
matrices have to be stored.

The velocity–pressure split algorithm consists of two mass equations and two Laplace
equations. Provided that the convection and pressure terms are made sufficiently small by local
grid adaption, the mass equations can be solved by simple mass lumping and inversion of the
lumped mass vector.

The Laplace equations for diffusion and pressure can be solved by a symmetric precondi-
tioned conjugate gradient method. ILU preconditioning is used in the assembled algorithm and
diagonal preconditioning is used in the nodal algorithm.

Two nodal algorithms have been presented. Both algorithms are operator splitting al-
gorithms. These algorithms utilize computation of the matrix coefficients when needed in the
conjugate gradient equation solvers. Matrices do not need to be stored, which creates an
advantage, in that the size of the problems to be investigated can be increased by several
orders.

The present investigation must be considered as an initial demonstration of the ability of the
operator splitting algorithms. Further investigations will include optimization of the parame-
ters at Dt, the number of necessary maximum linear iterations and the number of non-linear
iterations within each time step. These optimizations will be carried out with respect to a
reduction in computational time.

Figure 6. The figure shows the velocity vectors (left) and the pressure isobars (right) for Reynolds number 1600. The
solution is computed using the nodal velocity–pressure split algorithm.
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