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Abstract--7[~he thermal conductivity of densified random packing of spheres is studied. First, the resistance 
to heat flow of two touching deformed spheres is determined by the finite element method. A discrete 
model is proposed to extend the single contact results to random packings of spheres. The packings are 
densified by expanding the particle radius. Finally a continuous analytical expression is proposed to 

describe tJae relation between the effective thermal conductivity and the relative density of the packing. 

INTRODUCTION 

The determination of the conductivity of packings of 
spheres has long been a subject of great importance. 
Much of the work done in this domain relates to 
applications such as cryogenic insulation, boilers and 
heat exchangers, c, hemical catalysts and powder met- 
allurgy. Industrial processes such as the hot forming 
of metal and ceIamic powders involve particulate 
materials at high temperatures. Knowing the thermal 
properties of these materials and its evolution 
throughout the densification is essential to allow the 
correct simulation of any hot forming process. 

The formal problem is to determine the effective 
conductivity of a random packing of spheres and its 
change during the,, densification of the packing. This 
conductivity, which shall be used in the thermal 
diffusion equation, should take into account all 
phenomena occurring, i.e. pure conduction through 
the solid phase, conduction and convection through 
the void phase and radiation. 

The effective conductivity can be obtained exper- 
imentally (Agapiou and DeVries [1]). The required 
experiments are delicate and often imprecise. Numeri- 
cal simulation of the phenomena can therefore be very 
useful, not only :Lo understand the involved mech- 
anisms but also to estimate the effective conductivity 
through densification. 

Even though, in some cases, the radiation and con- 
vection occurring through the void phases can be 
important (Tien and Vafai [2]), the conduction 
through the solid phase is often the dominant con- 
tribution. We cortcentrate here on this mechanism. 
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Other mechanisms are supposed to be largely domi- 
nated by solid phase conduction. This assumption 
implies that the effective conductivity depends on the 
conductivity of the solid material, the geometry of the 
contact and the geometry of the packing. Solutions for 
this problem have been obtained by several authors, 
in particular Batchelor and O'Brien [3] for regular 
packings. Jagota deduced the effective conductivity of 
a random packing of spheres through either a con- 
tinuum calculation (Jagota and Hui [4]) or a discrete 
model (Jagota [5]). 

In this work, a medium composed of equal sized 
spheres in a random packed bed is considered. This 
packing is put to densify and the relation between the 
effective thermal conductivity and the density of the 
medium is obtained. The 'relative density' is defined 
as the volumetric fraction of the particles. 

We begin this work by studying the thermal resist- 
ance of two touching spheres with different contact 
radii. Next, a discrete model is presented to deduce 
the macroscopic thermal conductivity of the medium 
through densification, and finally, we propose a 
relation describing the effective thermal conductivity 
through the whole range of densities with a smooth 
transition from a typical particulate material behavior 
to a Maxwell upper-bound material behavior. This 
relation is especially useful for the simulation of for- 
ming processes like hot isostatic pressing of metal 
powders. 

CONDUCTION THROUGH A SINGLE CONTACT 

Consider the following problem: in a particulate 
medium, composed of monosized spheres, we want to 
determine the resistance to the heat transfer by solid 
phase conduction of two touching spheres. The one- 
dimensional thermal resistance of a solid volume is 
defined as 
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At cylinder cross-section area 
J heat flow 
k thermal conductivity 
nc mean coordination number 
R particle radius 
R' particle radius after expansion 
r~ contact radius 
RT one-dimensional thermal resistance 
R~ thermal resistance of a cylinder 
t final slope of relation (11) 
T temperature 

NOMENCLATURE 

Z coordinate in the direction of heat 
flow. 

Greek symbols 
p packing relative density. 

Subscripts 
0 initial 
s solid 
eft effective. 

TI -- T2 
RT -- - - ,  (1) 

J 

w h e r e  T 1 and T2 are the imposed temperatures at the 
extremities of the volume and J is the resulting heat 
flow. In the case of a plain cylinder in a uniform heat 
flow parallel to its axis, the thermal resistance is easily 
deduced from Fourier's diffusion equation 

Az 
R~ = , (2) 

ksA,  

where Az is cylinder height, ks is material conductivity 
and A, is the cross-section area of the cylinder. 

Let us consider now the case of two touching 
spheres and assume that there is a uniform flow par- 
allel to the center-to-center axis. If the temperatures 
on the median plane of each sphere, defined as the 
plane perpendicular to the center-to-center axis con- 
taining the center of the sphere, is uniform, a one- 
dimensional thermal resistance element can be defined 
as in equation (1). 

There have been numerous works devoted to the 
determination of the thermal resistance of two touch- 
ing spheres. The analytical solution for this geometry, 
when the contact radius is small compared to the 
particle radius, can be obtained by modeling the heat 
flow from a finite circular area through a semi-infinite 
half space. The solution to this problem can be found 
in Carslaw and Jaeger [6] 

R T 7z (re) 1 
- ~ \ ~ ]  , (3) 

R~r 

where rc is the contact radius and R is the particle 
radius. 

Other authors obtained slightly different results for 
slightly different boundary conditions (Chan and Tien 
[7], Yovanovich [8]). All these solutions are somewhat 
constrained to the small contact radius domain which 
limits their applicability to low density conditions. As 
far as we know, there is no model calculating the 
conduction through the contact between largely 
deformed particles. In order to avoid this limitation, 
we decided to calculate the thermal resistance using 
the finite element method. 

NUMERICAL SOLUTION 

The calculations have been performed for a 
uniform, linear row of spheres with two contacts per 
sphere. The geometry of the contact was obtained by 
viscoplastic deformation of the spheres under a nor- 
mal contact force up to various strain ratios (Dellis et 
al. [9]). Because of periodicity, only two touching half- 
spheres have been considered. A thermal flux per unit 
surface is imposed on the median plane of one sphere 
and a constant temperature is imposed on the median 
plane of the other sphere. This set of boundary con- 
ditions was chosen for convenience sake, the thermal 
flux being immediately available from the imposed 
flux face. Some previous tests have shown that the 
solution for the thermal resistance was almost inde- 
pendent of the particular set of boundary conditions 
chosen. The steady state solution has been obtained 
with the thermal module of LAGAMINE finite 
element code from the University of Li6ge. Figure 1 
shows three different meshes used. The evolution of 
the inverse of the thermal resistance--normalized with 
regard to the thermal resistance of a cylinder of radius 
R and height 2R--as a function of the contact 
radius--normalized with regard to the sphere 
radius--is shown in Fig. 2. The thermal resistance 
derived from numerical calculations reasonably agrees 
with the analytical solution up to a contact radius of 
about one third of the particle radius. 

The following fit can be used to represent these 
results : 

R T = 0.899 (4) 
R~ 

EXTENSION TO A RANDOM PACKING OF 
SPHERES 

Some methods have been proposed to predict the 
effective thermal conductivity of a random packing of 
spheres. Using a mean field assumption, Jagota and 
Hui [4] showed that the effective thermal conductivity 
is closely related to the fabric tensor of granular 
materials (Oda et al. [10]). The authors used the 



Thermal conductivity of random packing of spheres through densification 1345 

Iltllllllllll /I / 
0.1 0.3 

Fig. 1. Different meshes used for FEM calculations. 
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Fig. 2. Normalized thermal resistance as a function of normalized contact radius. 
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expression for the heat flow through a small contact 
derived by Carslaw and Jaeger [6]. In the isotropic 
case the effective conductivity reduced to 

k~ff 1 
k~ - rcl~ pncr~, (5) 

where nc is the mean number of contacts per particle, 
rc is the mean contact radius and p is the relative 
density of the packing. This model allows the deter- 
mination of the effective conductivity at the beginning 

of the densification process, since it uses an expression 
for the heat flow valid only for small contacts. 

To describe the evolution of the effective con- 
ductivity through the densification, another approach 
is necessary. We consider the material to be composed 
of initially spherical particles in point contact. This 
packing is placed to densify under an isotropic pres- 
sure. To this densification will correspond an increase 
in the particle contact area. Consider inside this pack- 
ing all particles located inside a cube away from the 
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Fig. 3. Schematics of particle packing and equivalent thermal 
resistance network. 

borders, to remove possible wall effects. A uniform 
heat flow is imposed on the center of all particles 
intersecting the upper side of the cube, whereas a 
uniform temperature is imposed on the center of the 
particles intersecting the lower side of the cube. The 
other faces are supposed to be adiabatic to reproduce 
a symmetry condition. Considering that all particles 
in the medium have a uniform temperature with local- 
ized disturbances around the contact, then the contact 
can be replaced by a one-dimensional thermal resist- 
ance element. Repeating the operation for all contacts, 
the particle packing is reduced to a three-dimensional 
network of thermal resistance elements, the nodes 
having the same locations as the particle centers (Fig. 
3). A similar study has been done by Jagota [5] for 
slightly deformed particles. 

For each node of the network, thermal equilibrium 
requires that 

n c 

~, J~ = O, (6) 
i - - I  

CALCULATION OF THE EFFECTIVE 
CONDUCTIVITY OF RANDOM PACKINGS OF 

SPHERES DURING DENSlFICATION 

Two numerically obtained packings of spheres were 
used for the calculation of the effective conductivity. 
The first one was obtained by Bouvard and Auvinet 
[11] with an algorithm proposed by Auvinet [12] that 
simulates the vertical deposition of the spheres inside 
a quasi-cubic box. This packing contains 420 rigid 
spheres in equilibrium under gravity. The average 
coordination number is six and the relative density is 
0.57. The other packing used was obtained by Yen 
and Chaki [13] using a dynamic simulation of particle 
rearrangement. It contains 948 elastic spheres in equi- 
librium under gravity inside a cylinder. Its initial den- 
sity was found to be 0.6. 

To simulate an isotropic, homogeneous dens- 
ification process the analogy proposed by Arzt [14] 
has been used. Instead of decreasing the volume of 
the packing, we assumed that every particle expanded 
from its initial radius R to a radius R'  with its center 
remaining fixed. As the total volume of the packing is 
supposed to remain constant, the relative density p 
after expansion is calculated as 

P0 

where P0 is the initial density of the packing. The 
expansion process results in an increase of the average 
interparticle contact area and number (Fig. 4). The 
new contact radius is calculated by a simple geometry 
relation from the particle position and new particle 
radii, considering two overlapping spheres. Arzt [14] 
distributed the excess volume due to particle over- 
lapping all around the free surfaces of the particle, 
which led to the creation of new contacts. As these 
contacts are tiny, they have been neglected in the 
present study. 

Figure 5 shows the node temperature distribution 
inside the densest packing, with a relative density of 
0.607, which corresponds to a particle expansion of 
1.005. This distribution is clearly linear and the effec- 

where nc is the number of contacts of the particle, i.e. 
the number of thermal resistance elements connected 
to the node. Ji, the heat flow through each element, is 
given by 

AT,. 
J i  = - - ,  (7) 

RTi 

where ATi is the temperature difference between the 
two touching particles and Rv~ is the thermal resistance 
of the element, given by equation (4). Applying 
relation (6) to all the particles in the packing yields a 
linear system of simultaneous equations where the 
temperatures of the particles are unknowns. The solu- 
tion of the system gives the macroscopical tem- 
perature gradient and hence the effective conductivity. 

Contact area 
augmentation 

New contact 

Fig. 4. Arzt [15] analogy for densification. 
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Fig. 5. Node (particle center) temperature distribution inside the packing as a function of position in the 
flow direction normalized with regard to particle diameter. 

tive conductivity is then the slope of the plot. Cal- 
culating the effective conductivity for each packing at 
different particle ,expansions yields its relation with 
the relative density. Figure 6 shows the evolution of 
the normalized conductivity vs the density for both 
packings. It is clear that they follow parallel paths, 
shifted by the difference in the initial density. At den- 
sities approaching,, 1, this model is expected to fail 
since the notion of touching particles is no longer 
valid. In fact, relation (8) yields a density higher than 
1.0 if applied to an expanded particle radius cor- 
responding to a contact radius rc/R = 0.64, which is 
still in the validity domain of relation (4). It is impor- 
tant to notice that, due to the construction algorithms 
used, both packings described are anisotropic as a 
result of the preferred direction of deposition. All the 
results shown were obtained with the heat flow in 
this direction. The other directions yield an effective 
conductivity approximately 5% lower. 

crete model overestimates the material conductivity 
for high density. Considering that the pores do not 
touch each other, the solution to this problem is 
known since Maxwell [15]. A more general solution 
was obtained by Bauer [16] for arbitrary pore shapes 
and concentrations. In the case of isolated spherical 
pores, Maxwell obtained the relation 

k~ff 2p 
(9) 

ks 3 - p  

while Bauer derived the relation 

ke__ff ff ~ -  p3/2. (10) 
ks 

It is interesting to know that those expressions are 
almost identical above 0.85 of relative density and 
converge to density 1 with the same slope 3/2. This 
value of the final slope shall be used in our model. 

EFFECTIVE CONDUCTIVITY AT HIGH DENSITY 

When deformations are too important, the model 
proposed above is no longer valid, because of inter- 
actions between the multiple contacts the particles 
experience, and the notion of touching particles need- 
ing to be replaced by a model of a dense matrix with 
distributed pores. It is clear from Fig. 6 that the dis- 

AN ANALYTICAL CONTINUOUS RELATION FOR 
THE EFFECTIVE CONDUCTIVITY 

It is useful to put together the results obtained via 
the discrete element model for low and intermediate 
densities, and the analytical models for high densities 
in a single continuous relation between the effective 
conductivity and the relative density. This relation 
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Fig. 6. Normalized effective conductivity for the two packings as a function of density. 

m 

should have an infinity slope at the initial density in 
order to describe the finite increase of the contact 
radius (and so of the effective conductivity), due to an 
infinitesimal increase of the particle radii (and so of 
the relative density). The final slope should reproduce 
the theoretical high density model, equation (10). 
Between these values, it should reproduce the results 
obtained from the discrete element method. In order 
to respect these constraints, the following relation has 
been empirically chosen : 

keff {p_po~,(' po) 
k-7 = \ / ' (11) 

where t is the final slope of the relation and is obtained 
from the analytical models, t = 3/2. This relation sat- 
isfies all the conditions imposed. In Fig. 7, relation 
(1 l) is compared to the analytical relation (5) obtained 
by Jagota and Hui [5] and to the discrete model. Since 
the initial density of the highest density packing is 
closer to experimental values, this packing was chosen 
for the comparisons. The values of nc and rc used 
in the analytical relation (5) were, respectively, the 
average number of contacts per particle and the aver- 
age contact radius, both measured from the packing 
as a function of the relative density. There is a very 
good agreement between the three models in the low 
density domain and between the discrete model and 
relation (11) in the intermediate density domain. In 
Fig. 8, relation (11) is compared to the values obtained 

from the discrete element model for the highest density 
packing and to different experimental results for dens- 
ified spherical powders (refs. [1, 17] for 304L stainless 
steel powder and Abouaf  [18] for a nickel based alloy 
powder). The agreement of the proposed relation with 
both the discrete model and the experimental results 
is very good. 

CONCLUSION 

We have first obtained a relation describing the 
thermal resistance of two largely deformed spheres in 
contact from numerical calculation of the steady state 
solution by the finite element method. Next, we pro- 
posed a discrete model to describe the particulate 
media as a three-dimensional network of one-dimen- 
sional thermal resistance elements, each element 
replacing a two particle contact. From this model we 
obtained the effective thermal conductivity in the low 
and intermediate density domain. Using the analytical 
description of the high density domain derived by 
Maxwell, we proposed a continuous relation for the 
effective thermal conductivity of  a densifying random 
packing of spheres, evolving to a dense matrix with 
isolated spherical pores. This relation agrees well with 
other existing models, which are relevant either at low 
density or at high density, and with experimental data. 
It is very useful in the finite element simulation of 
coupled thermo-mechanical forming process as hot 
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isostatic pressing of  metal  powder.  It has been suc- 
cessfully used for such s imulat ions by Argento  et al. 
[19]. 
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