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Abstract. In the practice of soil remediation, organoleptic observations such as the smell or the colour
of contaminated soil play an important role when determining well-defined volumes of contaminated
soil. A GIS is then used to combine quantitative measurements with such soft data. In this study general
procedures concerning how to deal with this type of observations are presented. The procedures were
applied to a former gas works site, which was contaminated with cyanide and polycyclic aromatic
hydrocarbons in the Netherlands. The volume of contaminated soil was determined. Use of soft data
reduced the uncertainty in the volume of contaminated soil with 4 to 16%.
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1. Introduction

Geographical Information Systems (GIS) are suitable to a variety of environmen-
tal problems. They may be used to delineate sub-areas that have to be isolated
and/or remediated, to inspect visually the quality of the sampling pattern and to
obtain insight into the effects of different sanitation techniques. Their use is most
advantageous when many different sources of information need to be combined.
Until now emphasis has been placed on combined historical information, soil maps,
satellite data and point observations (Stein, 1994). In the majority of these stud-
ies, the point observations were considered to be hard data: measurements were
made in well-equipped laboratories. Geostatistical interpolation procedures (krig-
ing) were then of a great value for extending this information to locations where
measurements were not made. In particular, stratification based on the soil map
or on historical information as well as the use of co-variables such as elevation
provided useful procedures to include as much relevant information as possible for
interpolation (Staritskyet al., 1992; Leenaerset al., 1989). Interactive GIS may be
used to improve the processing of data by accounting for knowledge that is oth-
erwise unaccessible, for example in intelligent Geographical Information Systems
(Burrough, 1992; Steinet al., 1995).

In many environmental studies organoleptic observations related to texture,
colour and smell of soil samples are collected by experienced environmental work-
ers to select appropriate sampling locations and hence minimize the costs of lab-
oratory measurements. On the basis of these observations they may be able to
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delineate parts of the area that are contaminated. In short: organoleptic observa-
tions can influence decisions for sanitation purposes substantially. In this study we
identify organoleptic observations as soft data: they are often qualitative and are
based on subjective judgement made on small volumes of soil which might have
considerable consequences for environmental management. Until recently little
has been known of how to deal with soft data in a GIS environment, for which
points, lines and polygons are common types of objects. In mining and petroleum,
however, use of soft data is already common (Zhu and Journel, 1993). This study
focuses on the use of soft data in environmental studies. An additional problem
encountered concerns the interpretation of these data from a statistical point of view
and, in particular, how such data can be combined with hard data. In this study we
used soft data with the aim of improving geostatistical procedures. The study is
illustrated with an analysis of data from a gas work site in the eastern Netherlands.

2. Soft Data Related to Hard Data in a GIS

A common division of spatial objects in a GIS is the distinction between points, lines
and polygons. Here it is assumed throughout that these objects have fixed attribute
values (Molenaar, 1991): points are denoted byzi , lines bylj and polygons bypk.
In environmental soil studies it is a common practice to survey an area with augers
from which soil samples are taken and analyzed. The measured on soil samples may
be stored as attributes in a database (Rikkerset al., 1994) and as such are considered
to be known with certainty. In this study attention is focused on soft data: these
data are often qualitative and are subjectively observed. To use optimally soft data
for data processing, a relation with hard data need to be established. To model the
softness for points, it is assumed here that both the variable of interest, such as
the concentration of a pollutant, and the soft data may be expressed by a random
function Z(x), depending on the location vectorx in a 1-, 2- or 3-dimensional
space. The actual observation (hard or soft) is a realization of the random function.
Measurement errors are likely to be larger for soft data. Such differences in the
patterns of spatial continuity could be accounted for by using cokriging (Dowd,
1993). In principle the concept of softness extends to lines and polygons as well
(Burrough, 1989) but these will not be treated in the current study.

Three different forms of soft point data are distinguished (Journal, 1986; Zhu
and Journal, 1993):

1. Prior information: prior information, such as historical information concerning
the presence of building, may be helpful to delineate homogeneous sub-areas;
roads and rivers are lines,lj, and the delineations of the sites for old buildings
are polygons,pk.

2. Indicator data: at a certain location an observation is known to exceed a critical
value without needing to take a measurement. For example, in case of mineral
oils, the dark colour of the soil and strong smell may indicate sharply that the
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particular spot is polluted: a specified threshold value,za is exceeded:Z(x)�za,
without specifyinghow muchthe valueza is exceeded. Interval data indicating
that at a certain location an observation falls between some specified, i.e.za
� Z(x) � zb can be treated in a similar fashion. Slight blue colouring of a
soil polluted with cyanide may indicate a small degree of pollution, which is
likely to be less severe than that indicated by dark blue colouring. Sometimes a
particular distribution, such as a log-normal distribution, is assumed to model
this type of uncertainty. In most situations, however, the form and the size of
the distribution cannot be inferred from a single observation.

3. Indirect data: based on the presence or absence of physical objects, inference
is made concerning the most likely value of the variable to be studied. Typical
examples in environmental studies include remnants of buildings and bricks
to which relatively high values of contaminants are associated.

In this paper a 3D-volume of polluted soil is described using values from
chemical analyses and organoleptic observations. Measurement are located in R3

using the vector of coordinates (x1,x2,x3). The object is stored in a single database
in a GIS.

3. Study Area

The study area of 5 ha on a former gas works site is located in the city of Enschede
in the eastern Netherlands (Figure 1). The site was used to obtain gas from coal,
starting in the late nineteenth century until the middle of the nineteen sixties.
As a result of the various industrial processes and handling of by-products and
waste substances such as tar, aromatic organic compounds, ammonical liquors
and cyanide, by human activities and soil forming processes, the distribution of
contaminants is very heterogeneous. Coke residues are found on the gas work sites
mixed with soil. Prussian Blue (iron sulphides and ferric ferrocyanide) used in the
purification of the coal gas before it was stored in gas tanks is also found on the
site. It was decided to use a GIS to store the available information and to visualize
the volume of contaminated soil, including its uncertainties.

Within the immediate perimeter of the premises at the gas works site so-called
key-areas were defined and encircled within a radius of 25 m around each of the
described buildings. On the basis of historical information, four relevant spatial
objects were identified as key areas:

– Gas was stored in largegas tanks, in which condensates accumulated on the
(unpaved) floors, in particular Naphtalene and Cyanide.

– Tar and ammonia were stored intar and ammonia tanks; in addition tar was
also stored in acoal-tar tank: both tar and ammonia became available in large
quantities during gas production.

– Spent oxide was dumped in aspent oxide building. When gaining gas from
coal, hydrated iron oxide, used to extract sulphate and cyanide from the gas,
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220 L. A. M. HENDRIKS ET AL.

Figure 1. Study area located in the eastern Netherlands. Marked are the observation locations and
previous buildings.
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is periodically regenerated by exposing it to air or by blowing air through it.
After the sulphur content reached a level of 45–50%, the iron oxide became
useless. It was either stored, or it was sold as a weed killer. Due to cyanide
complexes, dumped (spent) oxide is easily identified by its characteristic blue
colour and smell.

– Theoutside areais the area beyond the four other key areas.

This form of statification of the site helps to disinguish the possibly strongly
polluted sub-areas from the possibly unpolluted areas on the basis of historical
information. Only few quantitative analyses were made within the first three key
areas: these areas were known to be strongly contaminated. The outside area
was also little sampled, because of initial lack of interest in the supposedly non-
contaminated area. There is, however, some contamination in the outside area
due to (i) intensive anthropogenic movement of waste and contaminated materials
during gas works operation, and the demolishing and levelling of the site and (ii)
downward and subsequent lateral migration in the groundwater.

For the three-dimensional volume of soil three layers were defined on the basis
of hydrological conditions of the area. The anthropogenic top-layer (0–2 m below
the soil surface) is permanently above groundwater. The second layer (2–4 m
below the soil surface) is alternately above groundwater and below the highest
groundwater level. The third layer, consisting of sand to 7 m below the soil surface,
followed by a loam layer of 1–2 m thickness and again sand to 20 m below the soil
surface, overlaying massive tertiary clay, is permanently below groundwater.

The two major contaminants, i.e. tar and spent oxide, have a large content
of the polycyclic aromatic hydrocarbons (�PAH) and cyanide (CN), respectively.
The�PAH consist of a list of 10 differentPAHs (VROM, 1990). For this study
attention was focused on pollution by�PAH andCN in the soil. It is common
practice to define for each contaminant so-called target and intervention-levels:
a concentration below the target-level indicates a clean observation, whereas an
observation above the intervention-level indicates severe pollution requiring imme-
diate action. Sometimes, also an intermedia value is used. The target, intermediate
and intervention-levels forCNand�PAH for soil are 1, 10, 100 and 1, 20, 200 mg
kg�1 dry matter, respectively.

The soil was sampled during successive soil surveys by means of borings. A
soil sample and an organoleptic (soft) observation always characterize a vertical
section of a 0.1 m diameter in the soil with a starting and a final depth. The locations
of all observation points are shown in Figure 1. A total of 156 soil samples were
analyzed for totalCN and 91 soil samples for�PAH. At each location the soil
core was described by partitioning the boring into separate depth intervals on the
basis of organoleptic judgement. The number of depth intervals could be different
for each boring, ranging from 1 and 2 (most commonly encountered) to 5. Clearly
polluted depth intervals were not sampled, neither were clearly unpolluted depth
intervals. From depth intervals where the degree of pollution was doubtful, a soil
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sample was taken to determine type and degree of pollution in a laboratory. Each
observation therefore relates to an organoleptically homogeneous depth interval.

In this study a general approach was formulated to derive depth data from
organoleptic observations (Figure 2). Consider first the relatively simple situation
of a single polluted layer. If at a certain location the measured�PAH or CN
concentration is above the target-level, the depth to the upper surfaceU is equal to
the starting depth of the sampling interval and the depth to the lower surfaceL to
the final depth of the sampling interval. If the concentration is below the critical
value, bothU andL are set equal to the centre of the interval.

When two intervals are sampled three situations can be distinguished:

(i) both intervals contain contaminated soil: the depth to the first upper surface
(U1) was set to the starting depth of the first interval, the depth to the first
lower surface (L1) to the final depth of the first interval, the depth to the second
upper surface (U2) to the starting depth of the second interval and the depth to
the second lower surface (L2) to the final depth of the second interval;

(ii) one of the two intervals contains uncontaminated soil: eitherU1 andL1 or U2

andL2 are set equal to the centre of this interval, depending on which of the
two intervals contains uncontaminated soil;

(iii) both intervals contain uncontaminated soil: bothU1 andL1 as well asU2 and
L2 are set equal to the centre of the first and the second sampling interval,
respectively.

When a single interval was encountered in the neighbourhood of a double
sampling interval, bothU1 andU2 are set equal toU, andL1 andL2 to L. Extension
of this procedure to more than two contaminated layers is straightforward, but was
of little relevance in the current case study since only a few locations contained
more than two sampling intervals. Note that sampled interval can be determined
as polluted or not on the basis of either actual measurements, or organoleptic
observations.

All soil survay observations that have been made since 1981 were recorded
and stored in a database. Two types of organoleptic observations were recorded:
one was measured very thoroughly, being based on the colour, smell and texture
of the soil and a general description of the degree of contamination. The second
form was measured roughly, being based mainly on smell: samples from which a
strong smell was registered (at a safe distance) were likely to be more polluted than
samples without smell. In addition, external visual presence of tar, tar odour, blue
coloured soil and the presence of coal or coke residues were recorded, which may
indicate a pollution with�PAH. CNcontaminations are evident where the soil is
blueish and has a particular almonry smell.
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224 L. A. M. HENDRIKS ET AL.

4. GIS and Geostatistics

An important option in GIS is to delineate three-dimensional objects from point
observations. Geostatistical procedures are commonly used to predict the con-
centrations of a pollutant at a particular location, yielding also the associated
uncertainties in form of the variance of the prediction error for these objects. The
predicted values are stored in a GIS-database. This means that observations on
severalZ variables,Z1, ...,Zk have three coordinates (x1,x2,x3) in a database (Raper
and Kelk, 1991). Since a particular aim was to visualize the volume of contaminat-
ed soil including its prediction error, the database has to be accessed for displaying
in a 3D representation, maybe after some necessary spatial transformations, for
example to show the volume of soil where the predictions exceed the target-level.
The GIS-database also has to be accessible in such a way as to be able to make
cross-sections of the study area to give an optimal view of possibly contaminated
locations.

To determine the spatial extent of polluted soil, we applied geostatistical tech-
niques. Geostatistics is based upon regionalized variable theory (Matheron, 1965;
Cressie, 1991). Measurements are viewed as realizations of random variables,
which are tied to their measurement locations in a 1-, 2- or 3-dimensional space.
The variablesU, U1, U2, L, L1 andL2 for bothCN and�PAH are considered as
regionalized variables, and will be denoted byU(x), U1(x), U2(x), L(x), L1(x) and
L2(x) to stress the relation with the location vectorx. In most situations obser-
vations are spatially dependent, which means that observations that are close to
each other in the ground are more alike than distant observations. This dependence
is described by the variogram, which measures the degree of dissimilarity of the
regionalized variable between places a distanceh apart. The variogram forU(x),

u(h), is defined as


u(h) =
1
2
E
h
(U(x)� U(x+ h))2

i
whereU(x) andU(x+h) denote the regionalized variable at two locationsx andx+h,
a distanceh apart. The symbolE[.] represents mathematical expectation over the
area of interest. For all the other variables a similar expression holds. In practice the
variogram is computed as half the average squared difference between components
of observed pairs:


̂u(h) =
1

2M(h)

M(h)X
i=1

(u(xi)� u(xi + h))2

whereu(xi) andu(xi+h) denotes a pair of measurements on the upper pollution
surface, separated by a vectorh, the total of such pairs being equal toM(h). In
many studies the variogram depends only on the length of the distancejhj and not
on the direction (isotropic case). A distinction will be made between the calculated
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USE OF SOFT DATA IN A GIS 225

valueŝ
u(h), called the estimated semivariance, and the variogram, being its graph
as a function of the separation distancejhj. In order to estimate reliably
(h), pairs of
data are grouped into distance classes: pairs with approximately the same separation
distance are used to estimate the semivariance for that particular distance, so that
M(h) is at lest 30 (Webster and Oliver, 1990). The length of a distance class is
termed the lag.

Often the estimated semivariance for small value ofh is small because the
observations are fairly similar for this separating distance, whereas for a larger
value ofh larger differences are obtained. A mathematical model is usually fitted to
the experimental variogram in order to duduce semivariance values for any possible
distance required by interpolation procedures. A common variogram model is the
exponential one, defined as:

g(h) =

(
C0 +A�(1� e�

jhj

b ) forjhj > 0
0 forjhj = 0

where the parametersC0 (the nuggetvariance),A (the still variance) andb (the
range) may be estimated using a weighted non-linear regression procedure (Webster
and Oliver, 1990), with weights equal toM(h) for each distance. Other models could
be chosen as well.

Kriging is a linear unbiased prediction of a value at an unvisited location by
assigning weights�i to the observationsu(xi), i = l,...,n:

û(x0) =

nX
i=1

�iu(xi)

with minimized prediction error variance (Cressie, 1991).
For bothCN and�PAH variograms were computed for depths to the upper

and lower boundaries of layer 1 and 2. A lag length of 10 m was used to have
sufficient pairs of data points for estimation of semivariances. The depths to the
layers were predicted using ordinary point kriging, with a neighbourhood of 8
observations. From the predicted values of upper and lower surfaces the total
volume of contaminated soil was determined by multiplying the depths by the
surfaces of the grid cells for bothCN and�PAH. This is equal to the sum of the
volume of the first polluted layer and the volume of the second contaminated layer,
from which the intersection is subtracted. The total volume of contaminated soil is
the soil that is either contaminated byCNor by�PAH. The uncertainty of the depth
to each layer was determined by subtracting the kriging standard deviation from the
depth to the upper boundaries and by adding it to the depth to the lower boundaries.
This gives an approximate 68% bound for each depth. For each layer the uncertainty
equals the sum of the uncertainties of the two depths, hence approximately 95%.
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Table II
Descriptive statistics according to vertical stratification on the basis of
three distinguished depth layers

Depth Nr. of Mean Std.dev. Median
samples (mg kg�1) (mg kg�1) (mg kg�1)

CN 0–2 m 56 48.29 135.78 4.25
2–4 m 32 22.75 62.17 1.85
4–7 m 38 13.80 44.79 0.00

�PAH 0–2 m 28 29.81 70.49 3.05
2–4 m 18 818.85 2180.04 0.12
4–7 m 29 4.94 24.67 0.00

5. Results and Discussion

Summary statistics of collected data are given in Table I. For bothCN and�PAH
the mean values are above the intermediate- and below the intervention-level. So
without a spatial analysis the area would be classified as moderately polluted. How-
ever, large maximum values and large coefficients of variation (3.6 mg kg�1 for
CNand 6.3 mg kg�1 for �PAH), as well as the 84 and 25 observations forCNand
�PAH, respectively, above the target-level, and the 11 and 4 observations above
the intervention-level indicate that sub-locations are likely to be heavily pollut-
ed. This also illustrates the positively skewed distributions, which are commonly
encountered in environmental studies.

The area was statified horizontally by defining polygons according to historical
information, and by considering the observations within each polygon. The strata
have very different mean values, for example the meanCN-concentration in the gas
tank area was 98.7 mg kg�1, whereas, quite surprisingly, the concentrations in the
coal-tar tank area were very low (8.1 mg kg�1). Also, the�PAHmean values ranged
from 0.08 mg kg�1 within the coal-tar tank area to 242.7 mg kg�1 in the outside
area due to a single outlier. Moreover, four out of sevenCNobservations within the
coal-tar tank area were below the target value, whereas seven out of twenty were
above the intermediate level in the gas tank area. The result of stratification shows
that prior information is very useful for delineating areas of greater risk from those
with smaller risk.

Stratification according to depth revealed a decrease inCN, from nearly 50 mg
kg�1 in the top 2 m to 14 mg kg�1 below 4 m (Table II). For�PAH this decrease
does not hold since there are very large concentrations at the second depth (2 -
4 m). Because of the skewness of distributions, however, the median appears to
be a much better indicator of the decrease in concentrations with increasing depth
(Table II).
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228 L. A. M. HENDRIKS ET AL.

Table III
Effects of visual observable remnants and colour on the concentrations ofCNand�PAH

CN CN
No. of Mean St.dev. No. of Mean St.dev.
obs (mg kg�1) (mg kg�1) obs. (mg kg�1) (mg kg�1)

Remnant
none 85 38.97 38.97 72 12.23 62.20
tar 6 84.32 120.11 6 2324.30 5132.30
bricks 5 201.66 349.74 4 3550.85 5918.30
coke 3 5.27 3.87 1 20.20 0.00
cyanide 4 123.75 132.26 1 0.00 0.00
coal 1 170.00 0.00 1 12.90 0.00

Colour
normal 55 6.13 18.36 47 3.17 13.71
black 23 76.79 191.82 21 703.47 2930.86
blackblue 9 27.13 36.84 9 14.80 41.83
grey 4 31.78 51.02 1 0.02 0.00
blue 3 1.13 1.60 1 0.30 0.00
greyblue 3 2.53 3.58 2 0.24 0.14

Next, the contribution of soft information to improve estimation of the volume
of polluted soil was analyzed. First, attention was focused on indirect data. For
each observation it was recorded whether tar, bricks, coke, cyanide or coal were
present in its immediate (within 1 m) vicinity (Table III). Samples close to bricks
contain very large values ofCN and�PAH. In the absence of any of these visual
indications, measurements were relatively low (mean ofCN and of�PAH were
equal to 39 mg kg�1 and 12 mg kg�1, respectively) although the presence of coke
gave even lower values. This is an indication of some visual forms as indicators
for high pollution levels. Second, attention was focused on colouring. For bothCN
and�PAHcolouring is an indicator of pollution: the darker the colour, the higher
are the measured concentrations. ForCNbinding to iron causes FeCn, which gives
a blue colouring (Prussian Blue) to the soil, whereas�PAH is darkly coloured by
itself, hence giving a darker colour to the soil as well with increasing concentra-
tions. For a relatively small number of observations, the typical almond smell of
cyanide as well as the smell of�PAH was also recorded at a safe distance and
translated to a scale from 1 to 5, corresponding to no smell to very strong smell,
respectively. Correlations between the first organoleptic observation (smell) and
measured concentrations were usually weak (around 0.3) because smelling is dis-
turbed by the presence of natural sulphur in the soil. Also, smell from a soil sample
taken below the groundwater level can originate from the contaminated ground-
water, which does not necessarily mean that the soil itself is contaminated. The
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Figure 3a. Variograms for the depth to the upper surface of the first layer (U1) and the depth to the
lower surface of the first layer (L1) for bothCN and�PAH.

correlation coefficient between the first and the second organoleptic observation
was equal to 0.921, probably caused by simultaneous collection of both data. This
implies in this study, that organoleptic observations as such, either visual or by
smell, are unreliable to determine the pollution level quantitatively.

As a third step additional observations on the starting and the final depth of
polluted depth intervals were derived from the organoleptic observations. Estimat-
ed variograms for U1, L1, U2, and L2, for both CN and�PAH are presented in
Figures 3a and 3b. For observations without organoleptic information, a relatively
large nugget effect was obtained forCN, ranging from 1/3 to 1/2 of the sill value.
This nugget effect almost disappears when depths based on organoleptic observa-
tions are included because of the larger number of observations. However, the sill
value remains the same, indicating that the total variability is not reduced when
organoleptic observations are included. In contrast, the size of the nugget effect for
�PAH was negligible. Accounting for organoleptic�PAH observations reduces
substantially the sill value, often by more than 50%.

Predictions by kriging were made along four transects, which cross the study
area. Contamination withCN is shown in Figure 4; a similar figure was derived
for �PAH. Both the depths where the critical target value were exceeded as well

wate1847.tex; 3/12/1997; 17:16; v.7; p.13



230 L. A. M. HENDRIKS ET AL.

Figure 3b. Variograms for the depth to the upper surface of the second layer (U2) and the depth to
the lower surface of the first layer (L2) for bothCN and�PAH.

as the associated uncertainties are displayed. Since negative depths are unrealistic,
negative upper boundaries were set equal to zero. Close to buildings the target value
for both CN and�PAH is exceeded just below the soil surface. The uncertainty
increases with increasing distance to the buildings.

Next, the volume of contaminated soil was determined (Table IV). The volume
of soil contaminated byCN ranges from 55500 m3 for the target value to 7700 m3

for the intervention level without using any soft data. The uncertainty associated
with these values is quite large, due to the large spatial variability of the contaminant
and the relatively small number of observation points. Similar values were obtained
for�PAH. Of interest as well is the volume of moderately polluted soil between the
target and the intermediate level, which is estimated to be equal to 30700 m3. If soft
data are used as well, the volume between these levels increases to nearly 70000 m3.
We also notice that the uncertainty of the volume above the target threshold reduces
by 4% forCN and for�PAH by almost 16%. A reduction is expected because of
the increasing number of observations. The apparent difference between the two
variables is due to a large reduction in sill value of the variogram of�PAH when
using organoleptic observations. Finally, the two volumes were overlayed using
a GIS and the amount of soil where either of the two contaminants exceeds the
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Figure 4. Polluted depth intervals of soil predicted by kriging and the associated uncertainty.
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Table IV
Predicted volumes (V) of contaminated soil (m3) and the associated uncertainties (�) for CN and
�PAH, for different classes of contamination

CN �PAH
Without soft data With soft data Without soft data With soft data

Levela V � V � V � V �

<T 280500 267200 312700 348900
>T 55500 191900 68800 183900 23300 205200 17100 171800
>Im 24800 211200 6600 228400
>Iv 7700 226700 3200 270700

T-Im 30700 16700
Im-Iv 17100 3400

a T: Target level.
IM: Intermediate level.
Iv: Intervantion level.

Table V
Predicted volume (V) (m3) of contaminated soil as well as the
associated uncertainties (�)

Contaminant Without soft data With soft data

CN V 55500 68800
� 0–256400 0–252700

�PAH V 23300 17100
� 0–228500 0–188900

CN and�PAH V 69900 74900
� 0–221200 0–184500

critical target level was determined (Table V). Also for the total volume we notice a
substantial reduction in the uncertainty, with approximately 20% when organoleptic
observations are included.

6. Conclusions

The use of soft data, in the sense defined in this paper, appeared to be feasible within
a GIS context. Since they can be expressed as a combination of observations and
coordinates, they could be used within any GIS, allowing the application of stan-
dard operations as well as geostatistics. A quantitative translation of organoleptic
observations to concentration of pollutants in the soil was not useful in this study
because of the low correlation between these two measurements. However,indirect
use of organoleptic data to calculate depths at which threshold values are exceeded
was much more beneficial.
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Regarding the quality of the data, sampling is biased for two reasons: severely
polluted key areas were not sampled, because they are known to be polluted, while
the outside area was neglected. Hence, relatively few observations are far below the
target level, while also the number of observations above the intermediate level is
relatively small. Since the current study aims to use soft data to determine properly
the volume of soil with measurements above the target value, bias of the sampling
strategy is an advantage, in that very large observations are less informative than
observations close the critical level. It is not appropriate, though, to use the same
data for many other purposes, such as determining the volume of soil that is above
the intermediate level or the intervention level.

In this study a distinction has been made between three different forms of
soft data, all identified with organoleptic observations. However, the practice of
soil sanitation activities recognizes another, possibly very interesting, type of soft,
organoleptic, data. Any experiencedsurveyor may be able to assess qualitatively the
hydrological conditions, in particular at a local scale. Until now such information
is difficult to model within a GIS. A better relation between hydrological models
acting at a point scale and GIS should be established, allowing inclusion of soft
models. This would require within a GIS a direction oriented approach for data:
soil moisture and groundwater have a preferential flow direction, and a raster
GIS should allow the inclusion of a cause-effect relation for data. The degree of
uncertainty as modelled with the current approach is substantial, in particular from
a cost-decision making point of view. A reduction of these costs could be expected
by accounting for soft data within a GIS.
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