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Abstract--The onset of two-dimensional roll convection in the presence of boiling is studied for a fluid- 
saturated horizontal porous layer. The layer is heated from below and cooled from above. The rest-state 
phase structure consists of a liquid region overlying a two-phase region. The two important parameters in 
the problem are the Rayleigh number in the liquid region (Ra) and the dimensionless heat flux at the 
bottom boundary (Qh). Both liquid-dominated and vapor-dominated two-phase regions are investigated. 
For liquid-dominated systems, the convective instability is driven mainly by buoyancy in the liquid region. 
while for vapor-dominated systems the instability is driven by the gravitational instability of the overlying 
layers. For liquid-dominated systems, a stability diagram in Ra Qb parameter space is used to interpret 

prior laboratory experiments. 

1. I N T R O D U C T I O N  

t tEAT ] RANSt'ER in porous media is a subject of  growing interest because of  extensive engineering applications. 
Much of the existing literature deals with single-phase thermal convection. However, in many problems of  
interest such as geothermal energy or post accident scenarios in nuclear reactors, the porous medium consists 
of  single-phase (liquid) as well as two-phase (liquid + vapor) regions. This paper analyzes the onset or" thermal 
convection in a porous medium containing both single-phase and two-phase regions. 

The phase structure in fluid-saturated porous media heated from below and cooled from abo~e is layered 
after the onset of  boiling, with a liquid region overlying a two-phase region, as sketched in Fig. 1. Laboratory 
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FIG. 1. Geometry of the porous layer, and temperature and pressure profiles of the basic state. 
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C specific heat 
ex, ey unit vectors in x, y, respectively 
g acceleration due to gravity 
hr~ latent heat of vaporization 
H height of the porous medium 
k~ effective thermal conductivity of the 6 

porous medium A 
kr:, k,.., relative permeabilities for liquid and 

vapor, respectively q: 
K permeability of  the porous medium 
p dimensionless pressure q,,  
q* heat flux at the bottom boundary 
Qb dimensionless heat flux at the bottom ® 

boundary, qbH/(ke(T~t -- To)) x 
Ra Rayleigh number for the liquid phase, 2 

( KHgfl:( T * t -  T~) )/(v:a/) It 
Rat heat flux Rayleigh number for the liquid fi/ 

phase, ( Kq*H 2gfl:)/ (k::~:) v 
Ra,_,~, Rayleigh number based on liquid-vapor 

density difference, ( KH, q( I - fi,) )/(v:~x: ) 
S liquid saturation in the two-phase region H 
T dimensionless temperature p 
T* temperature fi, 
T* temperature at the top boundary a 
T*~ saturation temperature 
u, v dimensionless x and y components of q~ 

velocity, respectively f~ 
v dimensionless velocity vector 
x, y horizontal and vertical coordinates, see 

Fig. 1. 

Greek symbols 
ct: liquid thermal diffusivity 
ctl function in equation (12) 
~2 function in equation (13) 

N O M E N C L A T U R E  

P: 
/~, 
~2 
7 

liquid thermal expansion coefficient 
((1 -- dp)p~C~ + c~prC:)/(p:Ce) 
¢(1 -:v) 
density ratio parameter, 
f l : (T~ t -  T*)/(I -fiv) 
interface position 
amplitude of perturbation of the 
interface 
transformed vertical spatial coordinate in 
liquid region 
transformed vertical spatial coordinate in 
two-phase region 
amplitude of temperature perturbation 
wave number of the perturbation 
latent heat parameter, hfg/(C:(T*~t- T~)) 
dynamic viscosity 

kinematic viscosity 
transformed horizontal spatial 
coordinate 
amplitude of pressure perturbation 
density 
PJP: 
growth rate of perturbation 
transformed time variable 
porosity of the porous medium 
amplitude of v velocity perturbation. 

Subscripts and superscripts 
cr critical state for the onset of convection 
: liquid 
s porous material 
v vapor 
0 basic state 
1 perturbed state. 

experiments [1-3] have shown that the liquid region temperature profile may be conductive or convective, 
whereas the two-phase region is essentially isothermal at the saturation temperature. The two-phase region 
may be liquid-dominated or vapor-dominated. Heat transport across the isothermal two-phase region occurs 
by vertical counterpercolation of liquid and vapor. Liquid evaporates on the heating surface and vapor 
condenses at the interface between the liquid and two-phase regions. Experiments have indicated that thermal 
convection in the liquid region may occur before the onset of boiling [3] as well as after the onset of boiling 
[2]. Visualization experiments [4] indicate that after the onset of convection, the liquid region streamlines 
penetrate the two-phase region, which implies considerable interaction between the two regions. However, no 
previous study has analyzed the onset of convection in porous media containing both single-phase and two- 
phase regions. 

The problem of thermal convection in a porous medium with a liquid region overlying a two-phase r e ,on  
has some unique features. There are two mechanisms for instability: the first is buoyancy produced by density 
gradients arising from temperature variations in the liquid region. The second mechanism is gravitational 
instability due to the heavier liquid region overlying the lighter two-phase region. The gravitational instability 
differs from the classical gravitational instability of superposed fluids [5] because the interface between the 
liquid and two-phase regions is permeable, and therefore permits both heat and mass transfer across it. In a 
related study, Schubert and Straus [6] have considered the stability of a vapor-dominated geothermal system 
with a liquid region overlying a dry vapor region. They concluded that such systems are stable provided the 
permeability of the porous media is sufficiently low. The stabilization is provided by phase change processes 
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at the interface. When liquid penetrates the interface, the interface distorts to remain on the Clapeyron curve. 
resulting in an adverse pressure gradient. Schubert and Straus, however, did not consider the effects of 
buoyancy within the liquid or the effect of a possible liquid phase in the underlying steam zone. 

In the present work, a linear stability analysis of boiling in a porous medium, heated from below and cooled 
from above, is carried out. The basic state is one-dimensional with a liquid region overlying a two-phase 
region, and the liquid region temperature profile is conductive. The two important parameters in the problem 
are the Rayleigh number (Ra)  which accounts for buoyancy effects in the liquid region, and the dimensionless 
heat flux at the bottom boundary (Q0 which controls the height of the two-phase region. As the height of the 
two-phase region tends to zero, the analysis reduces to the onset of convection in a single-phase region with 
an effective Rayleigh number given by Ra Qh. We consider both liquid-dominated and vapor-dominated two- 
phase regions. For liquid-dominated systems, we show that the critical Rayleigh number is lowered by the 
presence of the two-phase region. We present a stability diagram in the Ra Q~ parameter space and use it to 
interpret laboratory experiments. For vapor-dominated systems, at sufficiently low liquid saturations, we shox~ 
that instability is possible even in the absence of thermal buoyancy effects (Ra = 0), and compare our results 
x~ith Schubert and Straus [6]. 

2. GOVERNING EQUATIONS 

We consider a porous domain bounded by two horizontal parallel plates which are separated by a distance 
t f .  We assume the porous medium to be uniform, isotropic and fully saturated with fluid. The porous medium 
is heated from below and cooled from above. The phasc structure after the onset of boiling consists of a liquid 
region overlying a two-phase region (see Fig. 1). Two-dimensional motion in the x y phmc is assumed. A 
colnplete discussion of the equations in the liquid and two-phase regions is given in rcf. [71. The Bou>>incsq 
approximation is used to account for buoyancy effects in the liquid region. The two-phase region is taken to 
be isothermal at the boiling temperature (T%). 

The equations are made nondimensional using the following reference quantities: length, H; time. t t :  x, 

(diffusion time scale); and temperature, T = (T*--T**'tr*0j,, v -~ , t -  T*) where T* is the temperature of the top 
boundary. The governing equations in the liquid and two-phase regions in dimensionless form arc : 

l iquM 

Ill'o-phase 

V've = 0 (continuity) (I) 

v, -- - V p -  Ra T<. (Darcy's equation) (2) 

8T 
[ I ~ - & + v ~ ' V T = V ' T  (energy); (3) 

/~ ,& +V.  (v,+A.v,) = 0 

v / =  - kr/(Vp + Ra e~ ) 

v ~ = - k ~, fi, (Vp + R a _,~ e ,.) 

4'¢5~/. ~-i (1 - S ) + V .  (fi,2v,) = 0 

(continuity) (4) 

(Darcy's equation for liquid) (5i 

(Darcy's equation for vapor) (6) 

(energy) (7) 

where T and p are the temperature and pressure respectively ; v the velocity vector, and S the liquid saturation 
in the two-phase region. 4' is the porosity of the porous medium ; Ra the Rayleigh number in the liquid region 
which is based on the temperature difference ( T ' t -  T~) ; Raz~ the Rayleigh number in the two-phase region 
which involves the density difference between the phases, tSv is the ratio of vapor and liquid densities and ). is 
a latent heat parameter. ,8~ and [-~2 are constants involving the heat capacities and densities of liquid, vapor. 
and porous medium, fi/is the ratio of liquid and vapor dynamic viscosities, e, is the unit vector in v which is 
assumed positive in the direction of the gravity vector, kr, and kr, are the relative permeabilities for the liquid 
and vapor phases, respectively, which are typically functions of S. The subscripts {, v, and s represent liquid, 
vapor, and porous medium, respectively. 

The two Rayleigh numbers are related by a density ratio parameter, 7, given by 

R a  ,q,( T * ,  - T*,,) 
7 : R a , 2  - l - ~  

;, is the ratio of the maximum density change in the liquid region to the density difference between phases in 
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the two-phase region. 2: involves physical properties and boundary temperatures. If these are known, Ra and 
Ra,., are not independent, but are related by Ra = Ra2oT. 

Note in equations (5) and (6), that the liquid and vapor phases in the two-phase region are locally taken to 
be at the same pressure, p. This follows when the mean radius of curvature of the interfaces separating the 
phases (at the pore level) is large, and the capillary pressure difference may be neglected. Thus, in equations 
(5) and (6), the flow of each phase is driven by the difference between Vp and the hydrostatic gradient for the 
phase. Capillary pressure effects can arise for very fine grain porous media, or when wicking action (and not 
gravity) is important for the movement of the liquid phase. For simplicity, capillary pressure effects will be 
neglected in the present analysis. 

The boundary conditions are : 

at y = 0: 

at y =  1: 

T =  0, p = 0 (isothermal.permeable) (8) 

-fi~2vv = Q~ (constant heat flux) 

t ' /+~v~ = 0 (impermeable) (9) 

where v is the y velocity component, and Qb the non-dimensional heat flux at the bottom. Note that Qb is 
made dimensionless with k¢(T*, t -T*)/H,  which represents the maximum conduction flux across a liquid- 
saturated porous layer before the onset of boiling. 

The interface between the liquid and two-phase regions is represented functionally by y =  6(x, t). The 
following compatibility conditions are prescribed at the interface : 

p+ = p-  (pressure is continuous across the interface) (10) 

T-  = 1 (interface is at the phase change temperature) (1 I) 

(vT-(v7fi~v~)-~tlv~)'n = 0 (mass balance) (12) 

(V T-  + fi~2v{ - ~tzv 3 • n = 0 (energy balance) (13) 

where ct ~, ~t2 are functions of S given by ~t~ --- qg(l -fiv)(l - S )  and ~., = O~v2(I - S ) .  v~ is the local velocity of 
the interface, and n the unit vector normal to the interface. The superscripts - and + represent the liquid 
and the vapor sides of the interface, respectively. Note that capillary effects at the interface are neglected in 
equation (10), consistent with their neglect within the two-phase region. 

It is more convenient to apply the compatibility conditions at the perturbed interface if the equations are 
transformed from the (t, x, y) space to (r, ~, q) space where ~ = t. ~ = x, and qt = y / f (x ,  t) (in liquid) or 
/7_,, = ( 1 - y ) / ( 1 - 3 ( x ,  t)) (in two-phase). 

Then 

g ~/,a6 a '~  1 a 
V =  ( ~  3 ~ ~ e ) e ~ +  3 ~ e "  (in liquid) 

l e 
e,. (in two-phase) 

l" [~I/~' ['ga'X 2 1 ~ a 2 
+t  t -~) t~-~) + ~ )  ~-~ 2 (in liquid) 

~ 72 ~ ~ 

~-: +kl - a  a~'- + (1-6) ~ ka~) )&t2, + 1--6  ~ dq 63/'/2e a 

f d]'c r/, 76 ~ (in liquid) 

& ~/2~ g3 0 (in two-phase). 
L ~ + I - 3  & &/:~ 

In summary, the dependent variables appearing in governing equations (1)-(13) are re, v~, p, T, S and 3. In 
addition, functional relations for k,, and k~, are required. Several dimensionless parameters involving physical 
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properties appear in the equations; namely, O. ~ ,  fL,. p~C{peC, (which appears in/30, 7 and ).. Although 7 
and ,:. involve the temperature difference (T*,,-  T~), it will be convenient to regard them primarily as physical 
property parameters• In addition, two independent parameters appear, Ra and Qb- This is in contrast to the 
single-phase convection problem which is governed by a single parameter Raf, the heat flux Rayleigh number. 
The additional parameter in the present set of equations, Qb, is required to specify the two-phase region and 
the position of the phase change interface. Clearly, as the thickness of the two-phase region approaches zero, 
the two layer stability problem reduces to the single-phase convection problem with Ra,- = Ra Qh. 

3. LINEAR STABILITY ANALYSIS 

3.1. Basic state 
The basic state is one-dimensional as sketched in Fig. 1. The liquid region is motionless and heat is transferred 

therein by conduction alone. Heat is transferred across the two-phase region by the vertical counterpercolation 
of liquid and vapor. The basic state solution is given below. 

Liquid 

dpo 
T O = r/,, - Rar/16o. (14) 

dr// 

The rest position of the interface is given by 60 = 1 :Qh. 

Two-phase 

Qb Qh 
Uv,O - -  - . * l ! / , O  ~ _ _  

p ~ / .  / .  

• . U C 0  dp0 _ ( 1 - o 0 J _ ~  + ( I - 6 0 )  Ra. (15t 
dqz,~ kt, 

Saturation So is found from the following equation : 

+ ~ k ~  = I .  (16) 
)o( R a 2 ~ -  Ra) 

We assume linear relative permeabilities, i.e. k~e = S, and k~v = 1 - S .  Thus, equation (16) is quadratic and 
yields two solution branches for So: a liquid-dominated branch and a vapor-dominated branch (see Fig. 2). 
We consider both branches of saturation in our analysis. Note that there is also a maximum value of heat flux 
in Fig. 2 beyond which two-phase solutions do not exist [1]. Surpassing this limit implies dryout of the liquid 
phase in the two-phase region. 
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3.2. Perturbed state 
We consider small perturbations about the basic state, and neglect second- and higher order terms. For 

example, T = To+eT,, etc., where e is small. The perturbation equations in ,, ~, r/coordinates are: 

liquid 

Oue. I 1 Or:. t 
--+ = 0  

Op, r/: dp0 06, 
u+., = 0~ + 3o dr/+ ~ 

v,,., = 60 ~r/.,. + 3 , - - R a T i  

6~T! r/," dTo 0at 1 dTo o2Ti r/+ dTo c~26t 
fl' 0~ -fl'6 o dr/, & + - - v ' ' = - -  6o dr/+ "" ~ 2  6o dq+ 0~ 2 + - -  

1 02T , .  

a~ or/:' 
(17) 

two-phase 

Ou:., 1 Or:., = c~ OS, 
~ 1 - - 6 o 0 R / , ,  - 

= t- Opt t- q2, dpo 031 
u:,l -"~:  0~ -- "~: 1 - 6 o  dr/2, 3~ 

I<~: Op, k~: dpo I~: dpo 
- + - -  61 + S i - I ~ : R a S ~  

v:., 1-3o  Or/z, (1 --60) 2 dr/z, 1 --3 o dr/2¢, " 

( k~ Op, k~. dpo /~. dpo ) 
- -  -q 61 + - -  - -  S, -I~,, Ra2, Si 

v~.t = fi: 1 - 6 0  0q2, (1 --60) 2 dr/2, 1 --60 dr/z, 

OU,,., 1 0V~., _ o0S,  

0~ 1 -60  ~r/2,~ 0z 
(18) 

where/~r:.v = dkr:.v/dS. For linear relative permeabilities,/~,: = 1 and /~rv = -- 1. The basic state variables are 
represented by the subscript 0 and the perturbed variables by the subscript 1. Note that the continuity and 
energy equations in equation (18) have been cast in a form different from that in equations (4) and (7). 

A normal mode expansion is used for the perturbation variables, i.e. T, = ®(q)e ~<+'' and 6, = Ae~<"% 
etc., where a is the growth rate of the perturbation and x the horizontal wave number. 0, H, and f2 denote the 
amplitudes of the temperature, pressure and v velocity perturbations, respectively. A is the amplitude of the 
perturbation of  the interface. 

Simplifying, equations (17) and (18) can be rewritten as a system of first-order ODEs: 

where 

and 

dX: 
= F:X: (in liquid) (19) 

dr/: 

dA"2~ 
dr]2 * = FE,X2, (in two-phase) (20) 

FdFI, dO, I v  
x, = LU+ U~, n,o,~ 

F dH H S A]  T 
X:,  = Ld~/2,, . . ] 

where the superscript T denotes a transpose. 
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F; is a 5 x 5 matr ix  in the l iquid region defined by 

F~ = 

0 -Ra6o ~:6~ 0 

--1 0 0 - - R a a o + K ~ a ~ + a f l L 6 ~  

1 0 0 0 

0 1 0 0 

0 0 0 0 

- Ra q, -- ~2r1,3o -- rl,3,,l~,n 

0 

0 

0 

Similarly', F,,p is a 4 x 4 matr ix  in the two-phase  region defined by 

F2,,6 -~ 

a 3 a.  a 4 a ,  a~ a 2 
0 -C I -C, C~ 

al al al (l I a L al 

1 0 0 0 

0 C I ('2 ('~ 

0 0 0 0 

where 

a l - -  

b l  - 

k r /  

(I - bo)'-' 

k r , ~  

(1 --C~o):' 

c I - -  

h; -h , -  a3, b ~ - h t a a  b~ h~a< 

(12 a .  (1, 
b . - b , - -  b : - b l - - -  b : - b l  -- 

a l  (l I a t  

I dp o 1 
a 2 =  (1-6o)2d~12,~ +77-Ra'l-oo a3=k~/s: '- ,  a a = t k a ,  

1 d p o  l 
b,  = (1 -c5o)-" d~'l:,t , 1 - 3  o Ra2'~' b3 = k~,K'-, 1",4 = --49c;, 

tl:, > , dp,, 
(Is = k r t - - ~ ' - - - -  

1 - -  0,~ dr/ : .  

r/z° K" dpo 
= kr, i - , 5 ,  - a , ; 7 ;  

The boundary conditions are : 

liquid 

at r / , = O :  BC~X,  = 0  

where 

[Oo o ,  o Oo] 
BC,  = 0 0 1 ; 

two-phase 

at ~ / 2 0 = 0 :  B C 3 X , _ , = O  

where 

BC 3 

k~, 1 dpo Ra kr~ dpo 
0 1 - 6 0  drl20 (l - 6 0 )  2 d~/2, p 

k~ I dpo kr, dpo 
~ o o  0 I --~5 0 dr/2 0 + Ra2~ (1 - go) 2 dr/2, 

The  compatibil i ty conditions at the interface ( ~ / =  t/2~ = 1) can be wri t ten as 

[ A'~] = o BC,_ X2~ 
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where 

BC, = 

0 0 ! 0 0 0 

0 0 0 1 0 0 

1 Ra 
- 5o 0 0 - - R a  Oo z~ 

1 l 
0 _&~ 0 0 (1 -ao ) :  z~ 

0 0 0 0 1 0 

- 1  

0 

0 

0 

0 

0 0 

0 0 

Z1 Z3 

Z 5  Z 6  

0 - i  

and 

_ (  k~t \ i - o 0 /  _ _ k~, ~ ( 1 dpo 
z , =  . l _ 5 o + p t p v T - - T 1 ,  Z2 . . . .  R a - - -  1 -6o  dq2¢ 

kre dpo k~, dpo "~ 
z3 = - (1-60)2 dq: o +filfiv ~ _ 5 o ) ,  dq_,o +:~la) ,  

fitfi* dp0 ) 
1-6o  dq,ev + fitPv Ra:o 

- - . t r y  

z4 = It~pvZ 1 --60 

1 dp0 "~ _ _ . k,~ dpo 
) - - ~ O "  zs = fiery). I --6o d~l,.¢~ + Ra'-° ' -6 PEP#. (1 -50)  2 dq_,~ - 

where c~ r and a_, are evaluated using the basic state saturation So. 
The perturbation state is governed by equations (19) and (20), two boundary conditions involving BC~ and 

BC3, and the interface condition involving BC:. The system consists of five ODEs for the liquid region, four 
ODEs for the two-phase region, and nine boundary/compatibility equations. 

3.3. Method o f  solution 
The solution of equations (19) and (20) is based on the shooting technique suggested by Davey [8]. We 

consider the solution vector Xe and express the relation between Xe = Xr ° at r/t = 0 and Xe = X) at r/t = 1 as 

X )  = B<X ° 

where B/ is the transfer matrix for the liquid region. A basic assumption is that Be depends only on the 
eigenvalues (a, x) and the parameters of  the problem (Ra, Qb) and not on the boundary conditions. Similarly, 
we can write 

where B2o is the transfer matrix for the two-phase region. 
For given values of (Ra, Qv, a, to), the ODEs given by equations (19) and (20) can be integrated from q = 0 

to l by sequentially using for the vector X ° (i.e. the vector representing the boundary conditions at q = 0) the 
orthonormal vectors given by the columns of I, the identity matrix of the same dimension. A fourth-order 
Runge-Kutta scheme with 50 integration steps is used to obtain the eigenfunctions X(q). The five vectors Xe ~ 
of values at qt -- l, and the four vectors X:~ of values at r/,~ = l, form the columns of B~ and B:o. respectively. 
Orthonormalization of the solution vectors during integration is not necessary since we are analyzing stability 
near critical conditions. The vectors formed by the columns of Br and B.,~ are found to be linearly independent 
for the range of parameters considered here. As a check, the solution technique was used to study the onset 
of single-phase convection in porous media for a variety of boundary conditions [10], and was found to yield 
very accurate results. 

By combining the results of  the eigenfunction integrations with the boundary/compatibility conditions, the 
characteristic equation for stability can be written as 

f f  (Ra, Qb, a, x) = 0 

,y~ = Det 

where 

BCI 0 0 0 

Be - i  o o 

0 BC,_ 0 

0 0 - - I  B,_~ 

0 0 0 BC3 

(21) 
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A zero value for this determinant means that the homogeneous perturbation equations have a non-trivial 
solution. Standard techniques for non-linear equations such as Miiller's method [9] can be used to find the 
roots of  this 18 × 18 determinant. The overall solution procedure requires iteration on ~. With a tentative value 
for G, and Ra, Qb and ~; specified, the eigenfunction integration is performed. Then, equation (21) is sol~ed 
for the new value of  ~ and the cycle is repeated until convergence on o- is achieved. The solution procedure 
allows movement of the phase change interface, with appropriate heat and mass balances satisfied, and appears 
to work successfully for a wide range of  parameters. For  neutral stability analyses, a is set to zero, and with 
Qh and K specified, an iteration is performed on Ra to determine the critical Rayleigh number. For several 
cases, the exchange of stabilities was validated by showing numerically that there were no complex roots of  o 
in the right half plane near the onset of  convection [1 I]. Thus. unstable solutions are exponentialb growing 
and not time oscillatory. 

4.  R E S U L T S  

The solutions to the characteristic equation (equation (21)) are analyzed in the Ra--Qb--~7-h: parameter space. 
where a and ~ arise from the stability analysis. The physical property parameters are evaluated using water as 
the working fluid, T* = 30 C and T*~t = 100 C (typical of laboratory experiments), liquid and vapor properties 
evaluated at T* and T*~,, respectively, and a porous medium consisting of  glass beads or silica sand: therefore, 
~h = 0.35, fi, = 0.6068 x 10 --~, fi, = 38.67, p~C~/prCr = 0.5820, 7 =  0.03663 and 2 = 7.706, These values are 
held fixed. 

Representative ranges examined for the R a - Q , - k  parameters are 0 ~< Ra ~< 200, 0,1 ~< Q, ~< 10, and 
10 : ~ ~c ~< 10. The major parameter is Qb, since this essentially controls the mean height of the tx~o-phase 
icgion. A value of  Qh = 1 denotes the maximum conduction heat flux across the liquid-saturated porotls la\cr  
at the onset of boiling. 

4. I . Liquitgdominated two-phase regions 
We first consider the stability of  liquid layers overlying l iquid-dominated two-phase regions. This cor- 

responds to the rest state solutions on the liquid-dominated branch in Fig. 2. 
4.1, I. Dependence on wave number (x). Figure 3 provides a representative example of  how the growth rate 

to-) varies with the wave number (~:). Ra is the curve parameter and Q~ = 2. Both short and long ~avelength 
disturbances are stable since ~ < 0. Short  wavelength disturbances (large ~:) are stabilized by thermal diffusion 
effects, whereas long wavelength disturbances (small K) are stabilized by viscous effects. Medium ~ avelength 
disturbances are unstable at higher Rayleigh numbers, i.e. for higher permeability porous media. 

Figure 4 displays the neutral stability curves (c~ = 0) for various Qb values. The critical Rayleigh number 
for the onset of  convection, Ra~, varies with Q~ and ~:. The lowest critical Rayleigh number is lbund by 
searching for the minimum value of  Ra~, for all values of  Qb >~ 1 and for all disturbance wavelengths. The 
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FIG. 3. Growth  rate (a) vs wave number (~:) for various Ra, with Qb = 2. 
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FIG. 4. Neutral stability curves for various Qb- The minimum critical Rayleigh number for all Qb occurs 
at Qb = 1.35, ~ = 1.9, and is Ra~,.~ = 14.57. 

lowest critical Rayleigh number of the first unstable mode, Racr.mi°, is 14.57. This occurs for Qb = 1.35 and 
~: = 1.9. For single-phase convection, in the absence of boiling, the corresponding critical parameters are 
Raf,~, = 17.7 and x = 1.75 for a saturated porous layer [10]. These, incidentally, correspond to the (Ra, K) 
values at the minimum of the curve corresponding to Qb = 1 in Fig. 4. 

4.1.2. Streamline and temperature patterns. Illustrative streamline and isotherm patterns at neutral stability 
are shown in Fig. 5. The interface between the liquid and two-phase regions is indicated by the dashed lines. 
Base conditions are Ra = 18.25, Qb = 2, and x = n. This point lies on the neutral stability curve corresponding 
to Qb = 2 in Fig. 4. The flow was generated by introducing a disturbance of wave number rc and amplitude 
0.01 at the interface, and then calculating the corresponding flow and temperature fields from equations (19) 
and (20). The streamlines are based on the liquid velocity (v/) in the liquid region, and the phase-averaged 
liquid and vapor velocity (ve+,rvvv) in the two-phase region. The streamlines clearly penetrate the interface 
which is consistent with visualization experiments [4]. When liquid penetrates the interface, the interface 
distorts because it is also an isotherm. The resulting pressure gradient along the interface drives the flow in 
the two-phase region. 

4.1.3. Stability boundaries in Ra-Qh space. A comprehensive map of conductive and convective solutions in 
Ra-Qb parameter space is shown in Fig. 6. The wave number is fixed at x -  rt, a value that allows for 
comparison with experiments [2, 4]. The general trends in Fig. 6, however, may be expected to apply for a 
broad range of x values, Four regions can be identified from linear stability theory : 

(I) conductive liquid layer; 
(II) convective liquid layer; 
(III) conductive liquid layer above a two-phase layer; 
(IV) convective liquid layer above a two-phase layer. 

The onset of boiling is indicated by curve ABE. For Qb values above this curve, boiling occurs with a liquid 
layer overlying a two-phase zone. The two-phase boiling zone is liquid-dominated. For Qb values below curve 
ABE. boiling does not occur and the liquid phase fills the porous layer. The onset of convection in the liquid 
layer is denoted by curve CBD. Convection occurs to the right of the curve, and not to the left. Curve CBD 
thus defines the critical Rayleigh number, Rac, as a function of Qb for a fixed value of ~:. 

Curve BD in Fig. 6 is obtained from the present stability analysis. It allows for the effects of boiling and 
serves to separate the boiling region above the curve ABE into two parts, distinguished as to whether the liquid 
overlying the two-phase zone is purely conductive (III) or convective (IV). Curve BC, on the other hand, 
divides the non-boiling, single-phase region below curve ABE into purely conductive (I) and convective (II) 
parts. Curve BC thus defines the onset of single-phase convection in a horizontal porous layer. The associated 
critical Rayleigh number may be found with the present (or other) analysis method. For an impermeable, 
constant-heat-flux bottom and a permeable, isothermal top, the result is Rat.or = 23.17 when h- = re. Curve BC 
therefore corresponds to Ra¢rQb = 23.17 after converting to the temperature-based Rayleigh number. 



Stability of  boiling in porous media 1905 

i 

Y 

~ x  

Y 

-- x Isotherms 

. 2 0 0  

" . 4 0 0  

- . 6 0 0  

- . 8 0 0  

Streamlines 

~, ..~ 
\ ~ . o 2  ~ 

0 

/ 

1 

0 

FtG. 5. Isotherms (top) and streamlines (bottom) at neutral stability for Q~ = 2, ~ = zr, and Ra = 18.25 
The dotted line is the interface. 

12 

10 

A 

0 
0 

8 

Qb 

6 

I I I I 

] Conductive liquid layer 
II Convective liquid layer 
IH Conductive liquid layer above 

a 2-phase layer 
IV Convective liquid layer above 

a 2- phase layer 

, 3 /  
I 

HI  

, 1 '  
I I 
! 

I V  

I 

, I I  
I 

I I 

E 

C 

20 40 60 80 100 120 140 

Ra 

FIG. 6. Map of conductive and convective solutions in Ra-Qb parameter space for liquid-dominated t~ o- 
phase systems (~ = ~z). 



1906 P.S. RAMESH and K. E. TORRANCE 

In laboratory experiments, boiling occurs when the temperature at the bottom reaches the saturation 
temperature (T*,). The branch AB of  curve ABE in Fig. 6 corresponds to Q, = I, and represents the onset of 
boiling before the onset of convection. Along AB, there exists a liquid-filled porous layer with a bottom tem- 
perature at T*~. The branch BE represents the onset of boiling after convection already exists within a liquid- 
filled porous layer. Since the convective amplitude is finite, curve BE cannot be obtained using the present 
analysis. Instead, curve BE was obtained from numerical solutions of the single-phase convection problem. 
Ra-Qb values were noted when the bottom temperature reached T*~. Further details are available in ref. [I I]. 

The comprehensive map in Fig. 6 is extremely useful for interpreting boiling experiments in the laboratory. 
In particular, the map reveals that a complex range of behaviors may exist in the vicinity of point B when 
simple process paths are followed in Ra-Qb space. Experiments conducted on a porous medium with constant 
properties by varying the bottom heat flux are an example. Such process paths are represented by vertical 
dashed lines in Fig. 6. We might imagine three experimental scenarios. At low Ra (as indicated by line I-1'),  
the liquid region is conductive before and after the onset of boiling. This is consistent with the experiments of 
ref. [1] on low-permeability porous beds (K = 11 x I0-~2 m2). At higher Ra (as indicated by line 2-2'), the 
liquid region is conductive before the onset of  boiling, but becomes convective almost immediately when 
boiling starts, which agrees with the observations of Sondergeld and Turcotte [2] (K = 70 x 10-~2 m2). For 
large Ra (as indicated by line 3-Y), the liquid region becomes convective before the onset of boiling and stays 
convective after the onset of boiling, which is consistent with the experiments of ref. [3] on high permeability 
porous beds (K = 1600 x 10- ~2 m2). In addition, Bau and Torrance [3] observed that at large heat fluxes, the 
liquid region reverts back to a conductive state which again is consistent with Fig. 6. More quantitative 
comparisons with experiments are not possible because of side wall heat losses and large uncertainties in the 
properties of the porous medium. The qualitative agreement is strong, however, and the map provides an 
interpretation of previot, sly unexplained experimental observations. 

4.2. Vapor-dominated two-phase regions 
We next consider the stability of  liquid layers overlying vapor-dominated two-phase regions. This cor- 

responds to the rest-state solutions on the vapor-dominated branch in Fig. 2. Since the density difference 
between the liquid and two-phase regions is greater when the rest-state saturation in the two-phase region lies 
on the vapor-dominated branch of Fig. 2 rather than the liquid-dominated branch, we expect gravitational 
instability to be the dominant instability mechanism. To show that this is in fact true, we consider the 
special case when buoyancy effects in the liquid region are negligible, i.e. fl~(T~t- To) ~ 0. This implies that 
Ra = 7 = 0. Note, however, that Ra2~ is finite, and therefore is the appropriate parameter to study this mode 
of instability. We carry out the stability analysis in the Ra2o-Qb-a-x parameter space. 

The stability analysis reveals that the rest state is unstable for large values of  Ra2o and a range of Qb values. 
Only long wavelength disturbances are stable, while both short and medium wavelength disturbances are 
unstable. This is because thermal diffusion effects, which typically stabilize short wavelength disturbances, are 
unimportant when thermal buoyancy is neglected. The main stabilizing effect to gravitational instability is due 
to the phase change processes at the interface [6]. 

The neutral stability curve (or = 0) for a fixed wave number (re = ~z) in Ra2o-Qb space is shown in Fig. 7. 
The critical value of  Ra2~, Ra2~ .... varies with Qb and x. For ~¢ = n, the minimum value of Ra,_~.c, is 18.95, 
occurring for Qb = 1.4. With water as a working fluid, and the bed parameters referred to at the start of this 
section and H = 0.2 m, the minimum value of  Ra2~.,r in Fig. 7 implies a bed permeability of K = 1.6 × 10-~2 
m-'. Thus, a one-dimensional vapor-dominated system will be stable only for permeabilities lower than this 
value. However, when the stability analysis in Raz~-Qb-a-~¢ space is repeated for rest-state solutions on the 
liquid-dominated branch of Fig. 2, it is found that a one-dimensional liquid-dominated system is un- 
conditionally stable when buoyancy effects are negligible (Ra = 7 = 0). 

To illustrate that the usefulness of  the present analysis is not restricted to laboratory-scale porous media, 
we consider the vapor-dominated geothermal system studied by Schubert and Straus [6]. The physical property 
parameters for this porous medium are ~b = 0.05, t~v = 0.2075,/i: = 8.176, p~C,/p:C: = 0.6475 and 2 = 1.757. 
In addition, H = 1000 m, T*t = 242"C and T~ = 20"C. Consistent with the assumptions of Schubert and 
Straus, we neglect buoyancy effects, i.e. 7 = 0 and Ra = 0. Carrying out the stability analysis in Ra2~-Qb space, 
assuming x = zc and ¢r = 0, we find that the minimum value of Ra2~.~, is 2.56, occurring for Qb = 1.2. This 
corresponds to a critical bed permeability of  51 x I0-~s m 2, which compares well with the reported value of 
40 x 10- ts m 2. It should be pointed out that while the present analysis assumes a two-phase r e , o n  underlying 
the liquid region, Schubert and Straus assumed a dry vapor region underlying the liquid region. 

4.3. Stability o f  rest state solutions 
Based on the analysis in the two foregoing subsections, we now address the stability of  the rest-state two- 

phase solutions given in Fig. 2. For the present discussion, we assume that the wave number x is fixed at re. 
However, the inferences drawn here may be expected to apply over a wide range of x. 
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The stable region on the liquid-dominated branch of Fig. 2 can be deduced from curve BD in Fig. 6. The 
minimum value of liquid saturation corresponding to the rest-state solution (So) on curve BD is ~ 0.98. Liquid- 
dominated rest-state solutions with So lower than this value are stable, while those with So higher than this 
value are unstable. The instability in such liquid-dominated systems is driven by buoyancy in the overlying 
liquid region. It should be pointed out that while stability of the liquid-dominated rest-state solutions at large 
Q~ (low So) is indicated by the linear stability theory (Fig. 6), a numerical solution of the complete equations 
[11] has suggested that instability may be possible provided the perturbations are large enough so that second- 
order effects become important. The numerical solution of the complete equations in Ra-Qb parameter space 
will be the subject of a forthcoming article. 

Similarly the stable regions on the vapor-dominated branch of Fig. 2 can be inferred from Fig. 7. The 
maximum value of So on the curve in Fig. 7 is ~0.02, which corresponds to an ordinate value, Qd(2(Raz~- 
Ra)fi~fit), of 0.46 in Fig. 2. Vapor-dominated rest-state solutions below the (0.02, 0.46) point in Fig. 2 are 
unstable, while those above this point are stable. The mechanism for this instability is clearly gravitational 
because the buoyancy driven instability is observed only for larger values of So (> 0.98). 

5. S U M M A R Y  

The stability of boiling in fluid-saturated horizontal porous layers heated from below and cooled from above 
is analyzed. The basic state is one-dimensional consisting of a liquid region overlying an isothermal two-phase 
region. Conditions for the onset of convection in the liquid region are investigated. Both liquid- and vapor- 
dominated two-phase regions are considered. For liquid-dominated systems, the convective instability is mainly 
driven by buoyancy in the liquid region, and the results of the stability analysis agree well with previous 
experimental studies. For vapor-dominated systems, the instability is mainly driven by the density differeuce 
between the liquid and two-phase regions. 
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STABILITE DE L'EBULLITION DANS DES MILIEUX POREUX 

R6sum6----On &udie l'apparition de la convection en rouleaux bidimensionnels en pr6sence d'6bullition 
pour une couche poreuse horizontale satur6e en fluide. La couche est chauff6e par le baset  refroidie par 
le haut. La structure au repos consiste-en une r6gion liquide surmontant une r~gion diphasique. Les deux 
param6tres importants du probl6me sont le nombre de Rayleigh dans la r6gion liquide (Ra) et le flux 
thermique adimensionnel ~i la base (Qb). On &udie les r6gions diphasiques l'une domin6e par le liquide et 
rautre par la vapeur. Pour les syst6mes domin6s par le liquide, l'instabilit6 de convection est pilot6e 
principalement par le flottement dans la r6gion liquide, tandis que pour les syst6mes domin6s par la vapeur, 
l'instabilit6 est conduite par l'instabilit6 gravitationnelle des couches sup6rieures. Pour les syst~mes domin6s 
par le liquide, un diagramme de stabilit6 Ra-Qb est utilis6 pour interpr6ter les exp6riences principales en 

laboratoire. 

ZUR STABILIT,~T DES SIEDENS IN POROSEN MEDIEN 

Zusammenfassung--Es wird das Einsetzen der Konvektion in Form zweidimensionaler Walzen in einer 
fl/issigkeitsgesfittigten horizontalen porSsen Schicht in Anwesenheit von Sieden untersucht. Die Schicht 
wird von unten beheizt und von oben gekiihlt. Die Phasenstruktur im Ruhezustand besteht aus einem 
Fliissigkeitsgebiet, dem ein Zweiphasengebiet iibcrlagert ist. Zwei wesentliche Parameter sind die Rayleigh- 
Zahl im F1/issigkeitsgebiet (Ra) und die dimensionslose Wfirmestromdichte an der unteren Berandung (Qb). 
Es wird sowohl das fliissigkeitsbestimmte als auch das dampfbestimmte Zweiphasengebiet betrachtet. Fiir 
fl/issigkeitsbestimmte Systeme wird die Konvektionsinstabilit/it haupts/ichlich durch Auftriebskrfifte in 
der Fliissigkeit bewirkt, w~hrend ffir dampfbestimmte Systeme die Instabilit/it durch die Schwerkraft- 
instabilit~it der dar/iberliegenden Schichten bestimmt wird. Es wird ein Stabilit/itsdiagramm in der Ra-Qb- 

Ebene f/Jr fliissigkeitsbestimmte Systeme verwendet, um frfihere Laborexperimente zu interpretieren. 

YCTOITIHHBOCTb KHHEHHR B HOPHCTbIX CPE~AX 

AlmoTnlmg~---I/Ic-A?JIe]lyeTcJl BO3HHKHOBCHHC ]lByMepHbiX EOHBeETHBHb/X Ba.rlOB npH KHIIeHHH B HacbIHIeH- 
HOM Xlt/IKOCTblO ropH3OHTaJ1bnOM HOpHCTOM c~loe. CJlo~ sarpeaa~rcs CHH3y H ox~aT~aaeTc~ csepxy. 
OH COCTOWr H3 06~acrx, 3aHOJIHeHHO~[ ~OUIKOCTblO, H H3 pacnoxloxeHHOi~ noel He~ nByx~a3HO~ 
o6naCTH. OCHOBHUMH napaMeTpaMH ~IaHHO~ 3a~aqH SBn~OTC~ qHCnO P a n e s  B X~L~O~ 06~acrH Ra x 
6e3pa3Mepmafi Ten.qosog nOTOK y HIDEHei~ rpaHH~ Qb" Hcc.rle~ylOTCg ~syxdpa3mae o6aacrH c npe6aa- 
~aSHeM KaE xm~IKocrH, Tax H n a p ~  B CHCTeMax C n p e o 6 n a ~ a H n e y  ~ m ~ o i ~  dpaa~ HeycTo~HSOC~ EOH- 
~KWm o6ycaoB~ena HpeHMy[HeCTBeHHO nO~7~eMHOfi CHJIOI~ B o6~aCTH, 3anoJIHeHHOfi ~KH./I.KOCT~IO, B TO 
BpeM~l KaK B CnCTeMax c npeoeJla~aHHeM n a p a  OHa Bb/3BaHa rpaBsralmotmofl HecTa6H~n, HOCTbl¢ BI, Kne- 
ne~aumx c~oes. ~ mrrepnpeTamm n p e ~ y m H x  na6opaTopH~x aKcnepnMewros s ¢ny~ae CHCTeM C 

npeo6:la~aHneM ~I~II~OCTH xcno:ll~zyffrc~l cxeMa ycrofiqnBOCTn e npocTpaHCTBe napaMeTpos Ra-Q~. 


