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Stability of boiling in porous media
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Abstract—The onset of two-dimensional roll convection in the presence of boiling is studied for a fluid-
saturated horizontal porous layer. The layer is heated from below and cooled from above. The rest-state
phase structure consists of a liquid region overlying a two-phase region. The two important parameters in
the problem are the Rayleigh number in the liquid region (Ra) and the dimensionless heat flux at the
bottom boundary (Q,). Both liquid-dominated and vapor-dominated two-phase regions are investigated.
For liquid-dominated systems, the convective instability is driven mainly by buoyvancy in the liquid region.
while for vapor-dominated systems the instability is driven by the gravitational instability of the overlyving
layers. For liquid-dominated systems, a stability diagram in Re-Q, parameter space is used to interpret
prior laboratory experiments.

1. INTRODUCTION

HEAT TRANSFER in porous media is a subject of growing interest because of extensive engineering applications.
Much of the existing literature deals with single-phase thermal convection. However, in many probiems of
intcrest such as geothermal energy or post accident scenarios in nuclear reactors, the porous medium consists
of single-phase (liquid) as well as two-phase (liquid + vapor) regions. This paper analyzes the onset of thermal
convection in a porous medium containing both single-phase and two-phase regions.

The phase structure in fluid-saturated porous media heated from below and cooled from above is layered
after the onset of boiling, with a liquid region overlying a two-phase region. as sketched in Fig. 1. Laboratory
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FiG. 1. Geometry of the porous layer, and temperature and pressure profiles of the basic state.
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NOMENCLATURE
C specific heat B, liquid thermal expansion coefficient
e, e, unitvectorsin X, y, respectively B ({(1=)p.Ci+dp,C)/ (p,C,)
g acceleration due to gravity B o(1—-p5,)
hrg latent heat of vaporization y density ratio parameter,
H height of the porous medium BATE—TH/(1-5,)
k, effective thermal conductivity of the I’} interface position
porous medium A amplitude of perturbation of the
k., k. relative permeabilities for liquid and interface
vapor, respectively n, transformed vertical spatial coordinate in
K permeability of the porous medium liquid region
p dimensionless pressure N  transformed vertical spatial coordinate in
qF heat flux at the bottom boundary two-phase region
O,  dimensionless heat flux at the bottom 0] amplitude of temperature perturbation
boundary, g¥H/(k(T%, —T¥) K wave number of the perturbation
Ra Rayleigh number for the liquid phase, A latent heat parameter, A,/ (CAT&—T7))
(KHgBAT% —T¥H)/(v,a,) u dynamic viscosity
Ra;  heat flux Rayleigh number for the liquid i ulu,
phase, (Kq*HgB,)/(k.v,2,) v kinematic viscosity
Ra,, Rayleigh number based on liquid—vapor ¢ transformed horizontal spatial
density difference, (KHg(! —p.))/(v, ) coordinate
S liquid saturation in the two-phase region IT amplitude of pressure perturbation
T dimensionless temperature p density
T*  temperature P pulpe
% temperature at the top boundary o growth rate of perturbation
T¥*  saturation temperature T transformed time variable
u,v  dimensionless x and y components of ¢ porosity of the porous medium
velocity, respectively Q amplitude of v velocity perturbation.
Y dimensionless velocity vector
x, y horizontal and vertical coordinates, see Subscripts and superscripts
Fig. 1. cr critical state for the onset of convection
/ liquid
Greek symbols s porous material
o, liquid thermal diffusivity v vapor
o function in equation (12) 0 basic state
&, function in equation (13) 1 perturbed state.

experiments [1-3] have shown that the liquid region temperature profile may be conductive or convective,
whereas the two-phase region is essentially isothermal at the saturation temperature. The two-phase region
may be liquid-dominated or vapor-dominated. Heat transport across the isothermal two-phase region occurs
by vertical counterpercolation of liquid and vapor. Liquid evaporates on the heating surface and vapor
condenses at the interface between the liquid and two-phase regions. Experiments have indicated that thermal
convection in the liquid region may occur before the onset of boiling [3] as well as after the onset of boiling
[2]. Visualization experiments [4] indicate that after the onset of convection, the liquid region streamlines
penetrate the two-phase region, which implies considerable interaction between the two regions. However, no
previous study has analyzed the onset of convection in porous media containing both single-phase and two-
phase regions.

The problem of thermal convection in a porous medium with a liquid region overlying a two-phase region
has some unique features. There are two mechanisms for instability: the first is buoyancy produced by density
gradients arising from temperature variations in the liquid region. The second mechanism is gravitational
instability due to the heavier liquid region overlying the lighter two-phase region. The gravitational instability
differs from the classical gravitational instability of superposed fluids {5] because the interface between the
liquid and two-phase regions is permeable, and therefore permits both heat and mass transfer across it. In a
related study, Schubert and Straus [6] have considered the stability of a vapor-dominated geothermal system
with a liquid region overlying a dry vapor region. They concluded that such systems are stable provided the
permeability of the porous media is sufficiently low. The stabilization is provided by phase change processes
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at the interface. When liquid penetrates the interface, the interface distorts to remain on the Clapeyron curve.,
resulting in an adverse pressure gradient. Schubert and Straus, however. did not consider the effects of
buoyancy within the liquid or the effect of a possible liquid phase in the underlying steam zone.

In the present work, a linear stability analysis of boiling in a porous medium, heated from below and cooled
from above, is carried out. The basic state is one-dimensional with a liquid region overlying a two-phase
region. and the liquid region temperature profile is conductive. The two important parameters in the problem
are the Rayleigh number (Ra) which accounts for buoyancy effects in the liquid region, and the dimensionless
heat flux at the bottom boundary (Q,) which controls the height of the two-phase region. As the height of the
two-phuse region tends to zero, the analysis reduces to the onset of convection in a single-phase region with
an effective Rayleigh number given by Ra Q,,. We consider both liquid-dominated and vapor-dominated two-
phase regions. For liquid-dominated systems. we show that the critical Rayleigh number is lowered by the
presence of the two-phase region. We present a stability diagram in the Re—Q, parameter space and use it to
interpret laboratory experiments. For vapor-dominated systems. at sufficiently low liquid saturations. we show
that instability is possible even in the absence of thermal buoyancy effects (Ra = 0). and compare our results
with Schubert and Straus [6].

2. GOVERNING EQUATIONS

We consider a porous domain bounded by two horizontal parallel plates which are separated by a distance
H. We assume the porous medium to be uniform, isotropic and fully saturated with fluid. The porous medium
is heated from below and cooled from above. The phase structure after the onset of boiling consists of a liquid
region overlying a two-phase region (see Fig. 1). Two-dimensional motion in the x—y plane is assumed. A
complete discussion of the equations in the liquid and two-phase regions is given in ref. [7}. The Boussinesy
approximation is used to account for buoyancy effects in the liquid region. The two-phase region is taken
be isothermal at the boiling temperature (TZ%,).

The equations arc made nondimensional using the following reference quantities: length. H; time. H- x,
(diffusion time scale); and temperature, T = (T*--T§,/(T*, —T¥) where T¢¥ is the temperature of the top
boundary. The governing equations in the liquid and two-phase regions in dimensionless form arc:

liquid
V:v, =0 (continuity) (hH
v, = —Vp—RaTe, (Darcy’sequation) (2)
¢T , )
/},A(;; +v,'VT =V-T (energy); (3)
nvo-phase
¢S _ o
B e +V-(v,+p.v,) =0 (continuity) (4
v, = ~k,(Vp+ Rae) (Darcy'sequation forliquid) (5
v, = —k.fi,(Vp+Ra,,e,) (Darcysequationforvapor) (6)
G ]
d)ﬁv"‘?[(l —S)+V-(p.2v,) =0 (energy) (N

where T and p are the temperature and pressure respectively ; v the velocity vector; and S the liquid saturation
in the two-phase region. ¢ is the porosity of the porous medium ; Ra the Rayleigh number in the liquid region
which is based on the temperature difference (T%,— T¥); Ra,, the Rayleigh number in the two-phase region
which involves the density difference between the phases. g, is the ratio of vapor and liquid densities and 4 is
a latent heat parameter. f§, and fi, are constants involving the heat capacities and densities of liquid. vapor.
and porous medium. f, is the ratio of liquid and vapor dynamic viscosities. e, is the unit vector in y which is
assumed positive in the direction of the gravity vector. k,, and k., are the relative permeabilities for the liquid
and vapor phases, respectively, which are typically functions of S. The subscripts #, v. and s represent liquid,
vapor, and porous medium, respectively.
The two Rayleigh numbers are related by a density ratio parameter, 7, given by

Ra  BAT4L T3
*7 Ray,  1-p,

Moo=

+ is the ratio of the maximum density change in the liquid region to the density difference between phases in
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the two-phase region. y involves physical properties and boundary temperatures. If these are known, Ra and
Ra,, are not independent, but are related by Ra = Ra,,).

Note in equations (5) and (6), that the liquid and vapor phases in the two-phase region are locally taken to
be at the same pressure, p. This follows when the mean radius of curvature of the interfaces separating the
phases (at the pore level) is large, and the capillary pressure difference may be neglected. Thus, in equations
(5) and (6), the flow of each phase is driven by the difference between Vp and the hydrostatic gradient for the
phase. Capillary pressure effects can arise for very fine grain porous media, or when wicking action (and not
gravity) is important for the movement of the liquid phase. For simplicity, capillary pressure effects will be
neglected in the present analysis.

The boundary conditions are:

at y=0: T=0, p=0 (isothermal permeable) &)
at y=1: -—pv, =0, (constantheat flux)
v,+p, =0 (impermeable) &)

where v is the y velocity component, and Q, the non-dimensional heat flux at the bottom. Note that g, is
made dimensionless with k(T%,— T#/H, which represents the maximum conduction flux across a liquid-
saturated porous layer before the onset of boiling.

The interface between the liquid and two-phase regions is represented functionally by y = d(x, ). The
following compatibility conditions are prescribed at the interface:

pt =p~  (pressure is continuous across the interface) (10)

T~ =1 (interface is at the phase change temperature) (1)

v, — (v ¥ )—a,v)-n=0 (massbalance) (12)
(VT +p,4vy —a,v, ) n=0 (energybalance) (13)

where a, a, are functions of S given by «, = ¢(1-p,)(1—8) and z. = ¢5,4(1 —S). v, is the local velocity of
the interface, and n the unit vector normal to the interface. The superscripts — and + represent the liquid
and the vapor sides of the interface, respectively. Note that capillary effects at the interface are neglected in
equation (10), consistent with their neglect within the two-phase region.

It is more convenient to apply the compatibility conditions at the perturbed interface if the equations are
transformed from the (1, x, y) space to (t, &, n) space where T = 1. I = x, and y, = y/é(x, 1) (in liquid) or
Has = (1 =p)/(1 =d(x, 1)) (in two-phase).

Then
é n,80 ¢ 1 ¢ e
v (55 i 6—'1{) e, + Sa—n,"y (in liquid)
0 N @ ¢ 1 i . i
(% + =5 aF a) e . — m&»hb e, (in two-phase)
o (pT m () _ma 2
ot \o et 82 \o¢))om, S orocem,
’Ifz ésy 1 : T
4.((3 55)4.;)6_”/2 (in liquid)
Vi= , 3
kil +<'72¢ 0% . 2y <«_93>) 0 M8 &
o¢? 1-63E2 " (1-8)*\oé Oy 1 —008 080N,y
2 2 2
N2 éé) 1 ) 0* : )
+((1—5 <6§ +(l—-5)2 an§¢ (in two-phase)
éd n,é6 0 C
_6_= E—Eé_rén, (in liquid)
ot N -
i+ 20 cj— d (in two-phase).

In summary, the dependent variables appearing in governing equations (1)—(13) are v,, v,. p, T, S and 4. In
addition, functional relations for k., and k,, are required. Several dimensionless parameters involving physical
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properties appear in the equations; namely. ¢. 5., . p,Ci/p,C, (which appears in f,). 7y and 4. Although 7
and 4 involve the temperature difference (T*,— T%), it will be convenient to regard them primarily as physical
property parameters. In addition, two independent parameters appear, Ra and Q,. This is in contrast to the
single-phase convection problem which is governed by a single parameter Ra;. the heat flux Rayleigh number.
The additional parameter in the present set of equations, Q,, is required to specify the two-phase region and
the position of the phase change interface. Clearly, as the thickness of the two-phase region approaches zero,

the two layer stability problem reduces to the single-phase convection problem with Ra; = Ra Q..

3. LINEAR STABILITY ANALYSIS

3.1. Basic state

The basic state is one-dimensional as sketched in Fig. 1. The liquid region is motionless and heat is transferred
therein by conduction alone. Heat is transferred across the two-phase region by the vertical counterpercolation
of liquid and vapor. The basic state solution is given below.

Liquid

d
T, = 1. diq" — —Ran,s,. (14)
14

The rest position of the interface is given by 3, = 1'Q,,.

Two-phase

N O
Ueo= — 2=, Uro="7
poi
d : .
PO (1=6,) " 4 (1—6,) Ra. (15)
drlZd) kr/
Saturation S, is found from the following equation :

Oy 1 11
S S R I 16
HRan—Ra) \ky, © fop. K o)

We assume linear relative permeabilities, i.e. k., = S, and k., = 1 —S. Thus, equation (16) is quadratic and
vields two solution branches for S,: a liquid-dominated branch and a vapor-dominated branch (see Fig. 2).
W< consider both branches of saturation in our analysis. Note that there is also a2 maximum value of heat flux
in Fig. 2 beyond which two-phase solutions do not exist [1]. Surpassing this limit implies dryout of the liquid
phase in the two-phase region.

1.00 Y Y T — T T
0.80 - —
> - . 4
la
~
I+ 0.60[; -
[} H . . .
o E. -— Liquid-dominated |
O| o i
&N 0.40 *\ Vapor-dominated -
= : 1
0.20F -1
0.00 M 1 " 1 L 1 " 1 1
0.00 0.20 0.40 0.60 0.80 1.00
S (Saturation)

FI1G. 2. Q, saturation in the two-phase region of the basic state.
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3.2. Perturbed state
We consider small perturbations about the basic state, and neglect second- and higher order terms. For
example, T = To+¢T, etc., where ¢ is small. The perturbation equations in , &, # coordinates are:

liquid
cu, , 1 év,,
==
¢ 3o On,
v = Py N dpe 80,
= o0& " 8o dn, 0¢
1 op, 1 dp,
vy= =t b =28, —RaT
o do O, S5 dn, : :
éT, n,dTy, é8, 1dT, T, n,dT, 0%, 19°T,
I P o e e @ T Ta @ TR e “
two-phase
du, 1 % _ GAY
& 1—34 012 B ot
L ey dpy 3,
Uy = kr/ 55 kr/ i __50 d'72¢ 65
ky op, k., dpg lér/ dp, .
v, = Ly e PO S,—k,RaS
T 1=800n5  (1-85)7dnyg I 1 =8¢ dna, l ‘ '
- op, M2 dp, 06,
= — —_— —k ——
uv,l #/( krv aé ™ 1—60 d"]2¢ 66
_( ky Op ke dpo ke dpo : )
vor = fi| e 0 S, Ko Rasy S
! ﬂ/(l—‘so e (1=80)" dnye ' 1-4, dnay l e
Su, | AN
- —— = e 1
where k,,, = dk,,,/dS. For linear relative permeabilities, k,, = 1 and k,, = — 1. The basic state variables are

represented by the subscript 0 and the perturbed variables by the subscript 1. Note that the continuity and
energy equations in equation (18) have been cast in a form different from that in equations (4) and (7).

A normal mode expansion is used for the perturbation variables, i.e. 7, = ©() €*“**°" and §, = Ae™**,
etc., where o is the growth rate of the perturbation and k the horizontal wave number. 6, I1, and Q denote the
amplitudes of the temperature, pressure and v velocity perturbations, respectively. A is the amplitude of the
perturbation of the interface.

Simplifying, equations (17) and (18) can be rewritten as a system of first-order ODEs:

dXx,

ax, _ e 19
an, F,X, (inliquid) (19)
dx
5 2 = Fy4X, (in two-phase) (20)
M2
where
dIT de T
Xl = [dﬂ(, d—r]{’ n, Ga A]

and

where the superscript T denotes a transpose.
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F.1s a 3% 5 matrix in the liquid region defined by

0 —Rad, K33 0 n;K>0% Ra— Ra
-1 0 0 —Rad,+K33+0B,068 —Ran,—wkn.d,—nd,p.0
F, = 0 0 0 0
0 1 0 0 0
0 0 0 0 0

Similarly, F,, is a 4 x 4 matrix in the two-phase region defined by

a, a- a, d ds 4,

0 -L_%, LG G By
a, a, a, a a, a,
F,= |1 0 0 0
0 C, > &}
0 0 0 0
where
by—b, al blA—herf /);7/7,((5'
a, a, a,
m oy ST T s
by—b bi=b, - : ho—by =
a, o a,
/\ 1 dl’o 1 5 P 5 dpn
s, Uy = — 5 —— 4+ — — Ra, =k K, = ¢, ds =k, ——K -——
a, (l—— NE - (1—‘)0)'d’1:¢+ =3, a4,  d, K as; = o, das y 1_0“}\ e,
Ky I dpo I X . dp,
h"—,*—‘ﬁ. h e e S 3 = K, K", h, = — . b—l\ T
S T mayt P Ty dn, T 1o, R by =kakt hi=—do 1—0‘," Ao

The boundary conditions are:

liguid

wherc

two-phase

at 7,,=0: BC;X,,=0

where

k., 1 dp, k., dp,
- 0 —-————~Ra =
BC, = lk—oo 1 -3, d:z.p (IZOO) ((ij’lz(p
v l >rv
: b ape + Ras, Po
1—3d, 1—3,dn,, (1— 50)° d1a,

The compatibility conditions at the interface (1, = ,, = 1) can be written as
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where
r 1
0 0 0 0 0 -1 0
0 0 0 0 0 0 0 0
1 Ra
BC, = —5~0 0 0 —Ra ——g z, 0 =z Z,
1 11
0 0—0 0 0 ~ =" Z4 0 =z Ze
L 0 0 0 0 1 0 0o 0 -1
and
- kr{ - - krv l dpﬂ ﬁ/ﬁv de - -
= -<l—50 + [Py 1_60) L= _(1_50 dﬂﬂ; —Ra— 1=, dnay +ip, Ray,
kr/ dp() - - krv de > - = a krv
Iy= -\t P s +u,6 ), Zi=Lp A
‘ ((1—50)"1'72«» Kb sy dny, 110 ST PTG,

- . 1 de > - . krv d[)o
zs = A,pr| — +Rayy ), ze=f[ht 55— — %0
sTHP ( I—0pdry, © ) Se TP S Y Ay,

where o, and «, are evaluated using the basic state saturation S,.

The perturbation state is governed by equations (19) and (20), two boundary conditions involving BC, and
BC,, and the interface condition involving BC,. The system consists of five ODEs for the liquid region, four
ODE:s for the two-phase region, and nine boundary/compatibility equations.

3.3. Method of solution
The solution of equations (19) and (20) is based on the shooting technique suggested by Davey [8]. We
consider the solution vector X, and express the relation between X, = X atn, =0and X, = X/ aty, = 1 as

X} =BX?

where B, is the transfer matrix for the liquid region. A basic assumption is that B, depends only on the
eigenvalues (o, ) and the parameters of the problem (Ra, Q,) and not on the boundary conditions. Similarly,
we can write

Xéd’ = B:¢Xg¢

where B,, is the transfer matrix for the two-phase region.

For given values of (Ra, Q. 0, k), the ODEs given by equations (19) and (20) can be integrated from n = 0
to 1 by sequentially using for the vector X° (i.e. the vector representing the boundary conditions at 5 = 0) the
orthonormal vectors given by the columns of 7, the identity matrix of the same dimension. A fourth-order
Runge-Kutta scheme with 50 integration steps is used to obtain the eigenfunctions X (). The five vectors X,
of values at 57, = 1, and the four vectors X, of values at #,, = 1, form the columns of B, and B, respectively.
Orthonormalization of the solution vectors during integration is not necessary since we are analyzing stability
near critical conditions. The vectors formed by the columns of B, and B, are found to be linearly independent
for the range of parameters considered here. As a check, the solution technique was used to study the onset
of single-phase convection in porous media for a variety of boundary conditions [10], and was found to yield
very accurate results.

By combining the results of the eigenfunction integrations with the boundary/compatibility conditions, the
characteristic equation for stability can be written as

F(Ra,Q,,0,k) =0 2n
where
BC, 0 0
B, g 0
F = Det 0 BC, 0

0 0 0 BG,
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A zero value for this determinant means that the homogeneous perturbation equations have a non-trivial
solution. Standard techniques for non-linear equations such as Miuller’s method [9] can be used to find the
roots of this 18 x 18 determinant. The overall solution procedure requires iteration on ¢. With a tentative value
for 5. und Ra. @, and « specified. the eigenfunction integration is performed. Then. equation (21) is solved
for the new value of ¢ and the cycle is repeated until convergence on ¢ is achieved. The solution procedure
allows movement of the phase change interface, with appropriate heat and mass balances satisfied. and appears
to work successfully for a wide range of parameters. For neutral stability analyses. o is sct to zero. and with
Oy, and « specified, an iteration is performed on Ra to determine the critical Rayleigh number. For several
cases. the exchange of stabilities was validated by showing numerically that there were no complex roots of ¢
in the right half plane near the onset of convection [11]. Thus. unstable solutions are exponentially growing
and not time oscillatory.

4. RESULTS

The solutions to the characteristic equation (equation (21)) are analyzed in the Re—Q,~0~K parameter space.
where ¢ and « arise from the stability analysis. The physical property parameters are evaluated using water as
the working fluid, 7% = 30°Cand T%, = 100 C (typical of laboratory experiments), liquid and vapor propertics
cvaluated at THand T%,, respectively, and a porous medium consisting of glass beads or silica sand : therefore,
¢ =035, g, =0.6068x10"", 1, =38.67, p.C,/p,C, = 0.5820. » = 0.03663 and ~ = 7.706. These values are
held fixed.

Representative ranges examined for the Ra-Q,-~ parameters are 0 < Re <200, 0.1 € Q. < 10. and
10 7 =% x < 10. The major parameter is Q,. since this essentiallv controls the mean height of the two-phase
region. A value of @y = 1 denotes the maximum conduction heat flux across the liquid-saturated porous laver
at the onset of boiling.

4.1, Ligquid-dominated two-phase regions

We first consider the stability of liquid layers overlying liquid-dominated two-phase regions. This cor-
responds to the rest state solutions on the liquid-dominated branch in Fig. 2.

4.1.1. Dependence on wave number (k). Figure 3 provides a representative example of how the growth rate
(o) varies with the wave number (k). Ra is the curve parameter and Q,, = 2. Both short and long wavelength
disturbances are stable since ¢ < 0. Short wavelength disturbances (large ) are stabilized by thermal diffusion
effects, whereas long wavelength disturbances (small k) are stabilized by viscous effects. Medium wavelength
disturbances are unstable at higher Rayleigh numbers, i.e. for higher permeability porous media.

Figure 4 displays the neutral stability curves (6 = 0) for various 0O, values. The critical Rayleigh number
for the onset of convection. Ra,, varies with 0, and k. The lowest critical Rayleigh number is found by
scarching for the minimum value of Ra,,. for all values of Q, = 1 and for all disturbance wavelengths. The

60 — T Ty —T—T7T

40~

20

o (Growth rate)
R
o
[

-80 o il L0 gl P

10°2 107 10° 10

¥ (Wave number)

F1G. 3. Growth rate (¢) vs wave number (x) for various Ra. with Q, = 2.
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0 ) 1 A ] ) L A i :
0 2 4 6 8 10

¥ (Wave number)

FIG. 4. Neutral stability curves for various Q,. The minimum critical Rayleigh number for all 0, occurs
at Q, = 1.35, x = 1.9, and is Ra,, ., = 14.57.

lowest critical Rayleigh number of the first unstable mode, Ra,, ;. is 14.57. This occurs for @, = 1.35 and
k = 1.9. For single-phase convection, in the absence of boiling, the corresponding critical parameters are
Ra;. = 17.7 and k = 1.75 for a saturated porous layer [10]. These, incidentally, correspond to the (Ra, x)
values at the minimum of the curve corresponding to 9, = 1 in Fig. 4.

4.1.2. Streamline and temperature patterns. Illustrative streamline and isotherm patterns at neutral stability
are shown in Fig. 5. The interface between the liquid and two-phase regions is indicated by the dashed lines.
Base conditions are Ra = 18.25, @, = 2, and k = =. This point lies on the neutral stability curve corresponding
to 0, = 2 in Fig. 4. The flow was generated by introducing a disturbance of wave number n and amplitude
0.01 at the interface, and then calculating the corresponding flow and temperature fields from equations (19)
and (20). The streamlines are based on the liquid velocity (v,) in the liquid region, and the phase-averaged
liquid and vapor velocity (v,+ g,v,) in the two-phase region. The streamlines clearly penetrate the interface
which is consistent with visualization experiments [4]. When liquid penetrates the interface, the interface
distorts because it is also an isotherm. The resulting pressure gradient along the interface drives the flow in
the two-phase region.

4.1.3. Stability boundaries in Ra—-Q, space. A comprehensive map of conductive and convective solutions in
Ra—Q, parameter space is shown in Fig. 6. The wave number is fixed at xk = x, a value that allows for
comparison with experiments [2, 4]. The general trends in Fig. 6, however, may be expected to apply for a
broad range of k values. Four regions can be identified from linear stability theory:

(I) conductive liquid layer;

(II) convective liquid layer;

(I11) conductive liquid layer above a two-phase layer;
(IV) convective liquid layer above a two-phase layer.

The onset of boiling is indicated by curve ABE. For @, values above this curve, boiling occurs with a liquid
layer overlying a two-phase zone. The two-phase boiling zone is liquid-dominated. For Q, values below curve
ABE. boiling does not occur and the liquid phase fills the porous layer. The onset of convection in the liquid
layer is denoted by curve CBD. Convection occurs to the right of the curve, and not to the left. Curve CBD
thus defines the critical Rayleigh number, Ra,,, as a function of @, for a fixed value of «.

Curve BD in Fig. 6 is obtained from the present stability analysis. It allows for the effects of boiling and
serves to separate the boiling region above the curve ABE into two parts, distinguished as to whether the liquid
overlying the two-phase zone is purely conductive (III) or convective (IV). Curve BC, on the other hand,
divides the non-boiling, single-phase region below curve ABE into purely conductive (I} and convective (II)
parts. Curve BC thus defines the onset of single-phase convection in a horizontal porous layer. The associated
critical Rayleigh number may be found with the present (or other) analysis method. For an impermeable,
constant-heat-flux bottom and a permeable, isothermal top, the result is Ra,. = 23.17 when x = n. Curve BC
therefore corresponds to Ra.Q, = 23.17 after converting to the temperature-based Rayleigh number.
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In laboratory experiments, boiling occurs when the temperature at the bottom reaches the saturation
temperature (T*)). The branch AB of curve ABE in Fig. 6 corresponds to Q,, = 1, and represents the onset of
boiling before the onset of convection. Along AB, there exists a liquid-filled porous layer with a bottom tem-
perature at T%,. The branch BE represents the onset of boiling after convection already exists within a liquid-
filled porous layer. Since the convective amplitude is finite, curve BE cannot be obtained using the present
analysis. Instead, curve BE was obtained from numerical solutions of the single-phase convection problem.
Ra-Q,, values were noted when the bottom temperature reached 7%,. Further details are available in ref. [11].

The comprehensive map in Fig. 6 is extremely useful for interpreting boiling experiments in the laboratory.
In particular, the map reveals that a complex range of behaviors may exist in the vicinity of point B when
simple process paths are followed in Ra-Q,, space. Experiments conducted on a porous medium with constant
properties by varying the bottom heat flux are an example. Such process paths are represented by vertical
dashed lines in Fig. 6. We might imagine three experimental scenarios. At low Ra (as indicated by line 1-17),
the liquid region is conductive before and after the onset of boiling. This is consistent with the experiments of
ref. [1] on low-permeability porous beds (K = 11 x 10~ '2 m?). At higher Ra (as indicated by line 2-2’), the
liquid region is conductive before the onset of boiling, but becomes convective almost immediately when
boiling starts, which agrees with the observations of Sondergeld and Turcotte [2] (K = 70 x 10~ '* m?). For
large Ra (as indicated by line 3-3), the liquid region becomes convective before the onset of boiling and stays
convective after the onset of boiling, which is consistent with the experiments of ref. [3] on high permeability
porous beds (K = 1600 x 10~ '2 m?). In addition, Bau and Torrance [3] observed that at large heat fluxes, the
liquid region reverts back to a conductive state which again is consistent with Fig. 6. More quantitative
comparisons with experiments are not possible because of side wall heat losses and large uncertainties in the
properties of the porous medium. The qualitative agreement is strong, however, and the map provides an
interpretation of previously unexplained experimental observations.

4.2. Vapor-dominated two-phase regions

We next consider the stability of liquid layers overlying vapor-dominated two-phase regions. This cor-
responds to the rest-state solutions on the vapor-dominated branch in Fig. 2. Since the density difference
between the liquid and two-phase regions is greater when the rest-state saturation in the two-phase region lies
on the vapor-dominated branch of Fig. 2 rather than the liquid-dominated branch, we expect gravitational
instability to be the dominant instability mechanism. To show that this is in fact true, we consider the
special case when buoyancy effects in the liquid region are negligible, i.e. §,(T%,— T¥) = 0. This implies that
Ra =y = 0. Note, however, that Ra,, is finite, and therefore is the appropriate parameter to study this mode
of instability. We carry out the stability analysis in the Ra,,~Q,~0—x parameter space.

The stability analysis reveals that the rest state is unstable for large values of Ra,, and a range of Q, values.
Only long wavelength disturbances are stable, while both short and medium wavelength disturbances are
unstable. This is because thermal diffusion effects, which typically stabilize short wavelength disturbances, are
unimportant when thermal buoyancy is neglected. The main stabilizing effect to gravitational instability is due
to the phase change processes at the interface [6].

The neutral stability curve (¢ = 0) for a fixed wave number (k = 7) in Ra,,~0, space is shown in Fig. 7.
The critical value of Ra,,, Rass,,, varies with Q, and k. For k = m, the minimum value of Ra,,,, is 18.95,
occurring for Q, = 1.4. With water as a working fluid, and the bed parameters referred to at the start of this
section and H = 0.2 m, the minimum value of Ra,,. in Fig. 7 implies a bed permeability of K= 1.6 x107'2
m?, Thus, a one-dimensional vapor-dominated system will be stable onty for permeabilities lower than this
value. However, when the stability analysis in Ra,,~Q,~0—x space is repeated for rest-state solutions on the
liquid-dominated branch of Fig. 2, it is found that a one-dimensional liquid-dominated system is un-
conditionally stable when buoyancy effects are negligible (Ra = y = 0).

To illustrate that the usefulness of the present analysis is not restricted to laboratory-scale porous media,
we consider the vapor-dominated geothermal system studied by Schubert and Straus [6]. The physical property
parameters for this porous medium are ¢ = 0.05, g, = 0.2075, g, = 8.176, p.C./p,C, = 0.6475 and 4 = 1.757.
In addition, # = 1000 m, T%, = 242°C and T¥ = 20°C. Consistent with the assumptions of Schubert and
Straus, we neglect buoyancy effects, i.e. y = 0 and Ra = 0. Carrying out the stability analysis in Ra,;~Q, space,
assuming k = n and ¢ = 0, we find that the minimum value of Ra.,,, is 2.56, occurring for Q, = 1.2. This
corresponds to a critical bed permeability of 51 x 107'® m?, which compares well with the reported value of
40 x 10~ '* m? It should be pointed out that while the present analysis assumes a two-phase region underlying
the liquid region, Schubert and Straus assumed a dry vapor region underlying the liquid region.

4.3. Stability of rest state solutions

Based on the analysis in the two foregoing subsections, we now address the stability of the rest-state two-
phase solutions given in Fig. 2. For the present discussion. we assume that the wave number x is fixed at =.
However., the inferences drawn here may be expected to apply over a wide range of «.
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The stable region on the liquid-dominated branch of Fig. 2 can be deduced from curve BD in Fig. 6. The
minimum value of liquid saturation corresponding to the rest-state solution (S,) on curve BD is 2 0.98. Liquid-
dominated rest-state solutions with S, lower than this value are stable, while those with S, higher than this
value are unstable. The instability in such liquid-dominated systems is driven by buoyancy in the overlying
liquid region. It should be pointed out that while stability of the liquid-dominated rest-state solutions at large
0, (low Sy) is indicated by the linear stability theory (Fig. 6), a numerical solution of the complete equations
[11] has suggested that instability may be possible provided the perturbations are large enough so that second-
order effects become important. The numerical solution of the complete equations in Ra—Q, parameter space
will be the subject of a forthcoming article.

Similarly the stable regions on the vapor-dominated branch of Fig. 2 can be inferred from Fig. 7. The
maximum value of S, on the curve in Fig. 7 is ~0.02, which corresponds to an ordinate value, Qp/(A(Ra.;—
Ra)p.fi,), of 0.46 in Fig. 2. Vapor-dominated rest-state solutions below the (0.02, 0.46) point in Fig. 2 arc
unstable, while those above this point are stable. The mechanism for this instability is clearly gravitational
because the buoyancy driven instability is observed only for larger values of S, (>0.98).

5. SUMMARY

The stability of boiling in fluid-saturated horizontal porous layers heated from below and cooled from above
is analyzed. The basic state is one-dimensional consisting of a liquid region overlying an isothermal two-phase
region. Conditions for the onset of convection in the liquid region are investigated. Both liquid- and vapor-
dominated two-phase regions are considered. For liquid-dominated systems, the convective instability is mainly
driven by buoyancy in the liquid region, and the results of the stability analysis agree well with previous
experimental studies. For vapor-dominated systems, the instability is mainly driven by the density difference
between the liquid and two-phase regions.
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STABILITE DE L’EBULLITION DANS DES MILIEUX POREUX

Résumé—On étudie I'apparition de la convection en rouleaux bidimensionnels en présence d’¢bullition
pour une couche poreuse horizontale saturée en fluide. La couche est chauffée par le bas et refroidie par
le haut. La structure au repos consisteen une région liquide surmontant une région diphasique. Les deux
paramétres importants du probléme sont le nombre de Rayleigh dans la région liquide (Ra) et le flux
thermique adimensionnel a la base (Q,). On étudie les régions diphasiques I'une dominée par le liquide et
I'autre par la vapeur. Pour les systémes dominés par le liquide, l'instabilité de convection est pilotée
principalement par le flotterent dans la région liquide, tandis que pour les systémes dominés par la vapeur,
P'instabilité est conduite par 'instabilité gravitationnelle des couches supérieures. Pour les systémes dominés
par le liquide, un diagramme de stabilité Ra—Q, est utilisé pour interpréter les expériences principales en
laboratoire.

ZUR STABILITAT DES SIEDENS IN POROSEN MEDIEN

Zusammenfassung—Es wird das Einsetzen der Konvektion in Form zweidimensionaler Walzen in einer
fliissigkeitsgesittigten horizontalen pordsen Schicht in Anwesenheit von Sieden untersucht. Die Schicht
wird von unten beheizt und von oben gekiihlt. Die Phasenstruktur im Ruhezustand besteht aus einem
Fliissigkeitsgebiet, dem ein Zweiphasengebiet {iberlagert ist. Zwei wesentliche Parameter sind die Rayleigh-
Zahl im Flissigkeitsgebiet (Ra) und die dimensionslose Warmestromdichte an der unteren Berandung (Q,).
Es wird sowohl das fliissigkeitsbestimmte als auch das dampfbestimmte Zweiphasengebiet betrachtet. Fiir
fliissigkeitsbestimmte Systeme wird die Konvektionsinstabilitdt hauptsichlich durch Auftriebskrifte in
der Fliissigkeit bewirkt, wihrend fiir dampfbestimmte Systeme die Instabilitit durch die Schwerkraft-
instabilitdt der dariiberliegenden Schichten bestimmt wird. Es wird ein Stabilititsdiagramm in der Ra-Q,-
Ebene fiir fliissigkeitsbestimmte Systeme verwendet, um frithere Laborexperimente zu interpretieren.

YCTOAUYHUBOCTb KUITEHUS B TTOPUCTBHIX CPEJAX

Amnoramms—HccrenyeTcs BOIHHKHOBEHHE JIBYMEPHbIX KOHBEKTHBHBIX BAaJIOB MPH KMIICHHH B HAaCBILICH-
HOM XHOKOCTBIO 'OPH3OHTANLHOM NOPHCTOM cioe. Criolt HarpeBaeTcs CHH3Y H OXJIaXOAaeTCA CBEPXY.
OH cocTOMT H3 OGNacTH, 3anOJHEHHOfi XMAKOCTbIO, H H3 PacMoNoXeHHOH noa Hell aByxdasHoH
ob6nactH. OCHOBHBIMHM MapaMeTpaMH AAHHOH 3aJa4M ABIMOTCA yucao Pajes B xuakoi obractu Ra u
GespasmepHslit TerwoBo# MoToK y HikHeit rpavnus Q, . Hccnenytorcs asyxdasusie obracth ¢ npebia-
AaHHEM KaK XHIKOCTH, TaK H napa. B cucremax ¢ npeobnananueM xuaxoit $assl HEYCTOHYHBOCTb KOH-
BEKIHH 00YC/IOBJIeHa NPEHMYILECTBEHHO MOMBEMHOMR CHIIOH B 06/1aCTH, 3aMOHEHHOH XHIKOCTHIO, B TO
BpeMs Kak B CHCTEMaX C peobialaHHeM Napa OHA BbI3BAHA IPABHTALHOHHON HeCTAGHMIILHOCTBIO BhILIE-
JeXalHx caoes. IS HHTepNpeTauuH NpeabiAyIHX j1a6opaTOPHBIX 3KCIEPHMEHTOB B CIIyYae CHCTEM C
npeobaagaHHeM XHAKOCTH HCMOMb3YETCA CXeMa YCTOHYHBOCTH B POCTPAHCTBE NapameTpos Ra-Q, .



