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An equation of state for ammonia-water liquid has been calculated by least-squares fit 
for the following range of parameters: 0 to 100 wt% NHs, 170 to 300”K, and 0 to 10 kh. 
Measured and calculated liquid densities were used in conjunction with solid density and 
thermodynamic measurements to estimate the thermal expansion and density at 1 bar for 
the solid phases of ammonia dihydrate, ammonia monohydrate, and ammonia hemihy- 
drate between 0°K and their respective melting points. The peritectic ammonia-water 
liquid near pure ammonia dihydrate in composition was found to have a density of about 
0.946 g/cm3 and to be approximately neutrally buoyant relative to the corresponding 
solid phases. This implies that igneous activity involving ammonia-water liquids on icy 
satellites mav be both extrusive and intrusive in nature, possibly giving rise to a wide 
variety of morphologic and tectonic forms. B 1988 Academic Press, Inc. 

INTRODUCTION 

The ammonia hydrates are plausible con- 
stituents of the icy satellites and comets, 
comprising as much as 10% of the total 
mass (Lewis 1972). They are of particular 
interest because the presence of ammonia 
in water ice lowers the melting point of a 
peritectic mixture (-33% by mass NHj) to 
about 175°K (Rollet and Vuillard 1956). 
This melting temperature is low enough to 
be reached in the interiors of icy satellites 
only 500 to 1000 km in radius by radioactive 
heating alone, possibly accounting for the 
resurfacing observed on the satellites of 
Saturn and Uranus in this size range. In 
addition, the potentially significant mass 
fraction of ammonia hydrates in the interi- 
ors of the icy satellites indicates that infor- 
mation concerning the densities of these 
compounds at various temperatures and 
pressures is necessary for construction of 
accurate models of the satellites’ interiors. 
Unfortunately, many of the physical prop- 

’ Contribution No. 87-13 of the Theoretical Astro- 
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erties of the ammonia hydrates and their 
associated liquids are poorly determined. 
We have therefore assembled the data 
available in the literature and initiated ex- 
perimental and theoretical studies to derive 
the desired physical properties as far as is 
feasible. In this report, we present an equa- 
tion of state (EOS) for ammonia-water liq- 
uid to determine liquid density as a function 
of composition, temperature, and pressure. 
We then apply our EOS (1) to obtain esti- 
mates of the densities of the ammonia hy- 
drate solids at 1 bar as functions of temper- 
ature and (2) to begin investigation of the 
dynamics of ammonia-water volcanism on 
the icy satellites. 

THE LIQUID NHj-HZ0 EQUATION OF STATE 

Data. Density measurements over the 
full range (0.0 to 1.0) of the mass fraction X 
of NH3 in water solution between tempera- 
tures of 260 and 300°K were adopted from 
the international critical tables edited by 
Gillespie (1928). Density values for pure 
liquid NH3 between 190 and 290°K were 
taken from Haar and Gallagher (1978). 
These data are shown in Fig. 1. Measure- 
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adopted International Critical Table (ICT) 
data and liquid NH3-HZ0 density measure- 
ments by Sourirajan and Kennedy (1963). 
These latter data, while agreeing to within a 
few thousandths gram per cubic centimeter 
with the ICT data in absolute density, show 
systematic deviations in the volume coeffi- 
cient of thermal expansion from the ICT 
data, as seen in Fig. 2. Therefore, we made 
a series of density runs near X = 0.29 from 
300°K down to freezing near 190°K to re- 
solve the ambiguity. Those measurements 
are described below. Since our thermal ex- 
pansion data are consistent with extrapola- 
tions of the ICT data, we did not include the 
data of Sourirajan and Kennedy in our cal- 
culations at low pressure because of the ap- 
parent systematic deviations. 

0 Hildenbrond 8 Glouque (19531 

250 

Temperature, “K 

FIG. 1. Density-temperature-composition relations 
for liquid ammonia-water at 1 bar. Solid curves were 
calculated from Eqs. (2) and (3) for the mass% NH3 
values shown. All of the data points shown were used 
in the least-squares fit except the two points of Hilden- 
brand and Giauque (1953). The dashed line indicates 
the density of ice Ih. 

ments at X 5 0.4 are at atmospheric pres- 
sure. Measurements at larger values of X at 
the upper end of our temperature range are 
confined against their own vapor pressure, 
a maximum of about 10 bars for pure NH3 
near 300°K. 

Density measurements at high pressure 
were adopted from Haar and Gallagher 
(1978) for pure NH3 (0 to 5 kbar) and from 
Haar et al. (1984) for pure HZ0 (0 to 30 
kbar). The only density measurements 

2500, , 1 , / , , , ., , 
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The published data for liquid NHj-Hz0 
well characterize the densities of the pure 
end-members from about 300°K down to 
their respective freezing points, but only 
data relatively far from the freezing points 
were available for intermediate composi- 
tions (X 2 0.2) as may be seen in Fig. 1. 
Thus estimation of the densities of the con- 
gruent liquids of the ammonia hydrates at 
their respective melting points required 
considerable extrapolation. Extrapolation 
schemes were rendered uncertain by the 
well-known density inversion of Hz0 near 
freezing, but also by comparisons of the least-squares solution. 

FIG. 2. Volume coefficient of thermal expansion of 
ammonia-water liquid for selected ammonia contents 
and temperatures. Solid lines are derived from the ICT 
data, dotted lines from Sourirajan and Kennedy 
(1%3), and the dashed line from averages of the data in 
Table I. The Sourirajan and Kennedy data show large 
systematic differences from our data and the ICT data. 
The slight curvature of the individual composition 
curves prompted the parabolic form for cyy used in the 
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above ambient pressure at intermediate 
compositions are those of Sourirajan and 
Kennedy (1963) (0 to 1.4 kbar). As men- 
tioned above, Sourirajan and Kennedy’s 
absolute densities agree within a few 1Oths 
of a percent with densities from our other 
data sources. Also, the derived bulk moduli 
match those derived from the data of Haar 
and Gallagher (1978) and Haar et al. (1984) 
for the pure end-members to within a few 
percent. Thus the data of Sourirajan and 
Kennedy (1963) are used in the construc- 
tion of the EOS at high pressure and inter- 
mediate compositions. 

Experimental measurements. The den- 
sity of commercially available analytical re- 
agent grade ammonium hydroxide was de- 
termined by volumetric analysis for 
temperatures down to the peritectic freez- 
ing point. A graduated volumetric flask was 
filled with about 1015 ml of liquid at 
273.15”K, which then was sealed. The den- 
sity of the liquid at 273.15”K was adopted 
from the International Critical Tables (Gil- 
lespie 1928). The flask was cooled in vari- 
ous constant-temperature baths. Pressure 
effects on the density were deemed negligi- 
ble as the pressure inside the sealed flask 

during each run began at 1 bar and de- 
creased as the flask cooled. The tempera- 
ture of the flask’s contents was monitored 
using a chrome]-alumel thermocouple in- 
serted to the center of the flask. When ther- 
mal equilibrium in the flask was closely ap- 
proached as determined by temperature 
measurements of the flask and the bath, the 
volume of the liquid was measured and then 
normalized to the volume at 273.15”K to 
yield the density as a function of tempera- 
ture. Minor corrections were applied to ac- 
count for the thermal expansion of the 
flask. The volume expansivity of the flask 
was determined by calculating the differ- 
ence between the known density of water 
(from the ICT) and the measured density of 
water in the flask over the temperature 
range 273 to 363°K. The density differen- 
tials as a function of temperature, assumed 
to be due to expansion of the flask, yield a 
volume expansivity of about 6 + 1 x lO-(j 
“K-i. The density data for three experimen- 
tal runs are given in Table I and are illus- 
trated along with previously published data 
in Fig. 1. The first and third runs analyzed 
the densities of liquids with assays of 29.4 
wt% NH,, while the second run used a liq- 

TABLE I 

AMMONIUM HYDROXIDE DENSITY DATA 

Run No. 1 Run No. 2 
29.4 wt% NH, 28.9 wt% NH, 

Temperature Density Temperature Density 
(“W (g cm-? (“W k cm-3) 

Run No. 3 
29.4 wt% NH, 

Temperature Density 
(“RI (g cm-‘) 

273.2 0.9056 
272.2 0.9059 
271.8 0.9061 
270.4 0.9066 
267.0 0.9077 
256.9 0.9149 
251.3 0.9177 
245.3 0.9201 
237.0 0.9233 
233.7 0.9246 

273.4 0.9069 
272.6 0.9069 
271.3 0.9082 
262.6 0.9127 
202.0 0.9384 
196.8 0.9405 
195.3 0.9419 
195.0 0.9422 
176.2 0.9484 

274.1 0.9047 
273.3 0.9056 
267.9 0.9087 
266.2 0.9093 
241.7 0.9217 
234.3 0.9249 
232.9 0.9259 
226.8 0.9284 
225.4 0.9284 
214.5 0.9317 
205.7 0.9348 
201.4 0.9360 
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uid with 28.9 wt% NH3. The formal uncer- 
tainty in the densities from all sources is 
7 X 10m4 g cm- 3 at the lower temperatures 
and somewhat less at higher temperatures. 

Form of EOS. An equation of state of the 
following form was adopted: 

p = p,(T,) exp[ - 1: (Y” dT}[$$ + l]“K’, 

(1) 

where p,(T,) is a reference density at an ar- 
bitrary reference temperature T,, CY~ is the 
volume coefficient of thermal expansion, 
KC, and K& are, respectively, the bulk mod- 
ulus and pressure derivative of the bulk 
modulus, T is temperature, and P is pres- 
sure. The portion of Eq. (1) in square 
brackets is the pressure term in the 
Murnaghan equation of state (Murnaghan 
1944) obtained by integrating the relation 
K = Ko + K&P. The term in the exponen- 
tial is simply the integral form of the defini- 
tion of the volume coefficient of thermal ex- 
pansion, CQ = -llp(&laT). 

RESULTS 

Equation of state. The numerical fit to 
Eq. (1) was done in two nearly independent 
steps: (1) a fit to p,(T,) and the exponential 
thermal expansion term using only low- 
pressure density data and (2) a subsequent 
fit to the pressure term using bulk moduli 
derived from the high-pressure density 
data. 

The low-pressure fit was obtained by 
least-squares (Bevington 1969) using 182 
low-pressure points (Fig. 1). The derived 
expressions are 

p(T, X, P = 0) 
= p,(288.15”K) exp{al(T - 288.15) 

+ aJ2 [(T - T,)* - (288.15 - T”J2] 

+ ax/3 [(T - T,,J3 - (288.15 - T,,J3, (2a) 

where 

p,(288.15”K) = 0.9991 - 0.4336X 

+ 0.3303X2 + 0.2833X3 - 1.9716X4 

+ 2.1396X5 - 0.7294X” (2b) 

a, = -1.0 x lO+(-92.88 

+ 1371.05x + 185.91X2) (2c) 

a2 = -1.0 x lo-y14.51 

- 47.50X + 42.35X2) (2d) 

a3 = - 1.0 x 10-6(-0.0764 

+ 0.3118X - 0.2465X2), (2e) 

and the melting point, T,,,, fit piece-wise to 
the five sections of the NH3-Hz0 liquidus 
(data from Rollet and Vuillard 1956, Gilles- 
pie 1928): 

for X 5 0.329, T,,, 

= 273.15 - 53.07X - 1651.4X2 

+ 11,842X3 - 46,269X4 + 56,695X5 (3a) 

0.329 < X I 0.353, T, = 184.7 - 29.17X 

(3b) 

0.353 < X % 0.572, T, 

= 248.07 - 1789.77X + 8585.6X2 

- 14479X3 + 8064X4 (3~) 

0.572 < X 5 0.803, T, 

= -1435.42 + 7867.6X - 14,140X2 

+ 1 1,357X3 - 3524X4 (3d) 

0.803 < X I 1.0, T,,, = 172.44 - 239.48X 

+ 504.3X2 - 241.7X3. (3e) 

The liquidus solid phase for each expres- 
sion is, in order of increasing X: Hz0 (Eq. 
(3a)), NH3 * 2H20 (Eq. (3b)), NH3 . Hz0 
(Eq. (3c)), 2NH3 . H20 (Eq. (3d)), and NH3 
(Eq. (3e)). Liquidus liquid phase densities 
and density isograms for selected composi- 
tions computed from Eq. (2) are shown in 
Fig. 1. 

The fit to the pressure term in Eq. (1) was 
obtained by determining expressions for the 
bulk modulus, KO, and its pressure deriva- 
tive, K&. Because of the independence of 
the three data sets utilized, the fit consists 
of three parts: independent fits to KO and 
K& for each of the pure end-members and 
an interpolation formula for intermediate 
compositions. 

The expressions for NH3 were obtained 
by least-squares fit to 70 density points se- 
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lected from Haar and Gallagher (1978) in 
the range of 195 to 400°K in temperature 
and 0 to 5 kbar in pressure, including the 11 
low-pressure points indicated by crosses in 
Fig. 1. The results are 

K. = 48.503 exp(-1.0134 

x 10m3 T’.3M7)kbar (4a) 

K& = 4.0858 x lOI T-6.6o83 + 4.1831. 

(4b) 

The expressions for Hz0 were obtained 
by least-squares fit to 50 density points se- 
lected from Haar et d. (1984) in the range 
of 273 to 400°K in temperature and 0 to 10 
kbar in pressure, including points equiva- 
lent to the 6 points for pure H20 at 1 bar in 
Fig. 1. The results are 

K. = -73.184 + 0.5910T 

- 9.139 x 1O-4 T2 (4~) 

Kb = 39.999 - 0.2058T 

+ 3.111 x 1O-4 T2 (4d) 

The interpolation formula was obtained 
by comparison of the bulk moduli of NH3 
and H20 at 273, 283, and 298°K and the 
bulk moduli of three intermediate composi- 
tions (X = 0.2565, 0.4365, and 0.718) ob- 
tained by least-squares fit to 69 selected 
density points from Sourirajan and Ken- 
nedy (1963) at the same temperatures. The 
15 values of KCJ and Kb so derived are 
shown in Fig. 3. A cubic polynomial inter- 
polation function was found to provide a 
reasonable fit. Because of the presumed 
greater accuracy of the end-member bulk 
moduli and because of apparent systematic 
differences of a few percent between the 
three data sets, the end points of the inter- 
polation function were required to match 
the bulk moduli of NH3 and H20 at each 
temperature. This determined two of the 
constants of the interpolation equation; the 
other two were determined by least-squares 
fit to the intermediate data points. Thus the 
final interpolation formula for K. is 

Ko(X) = Ko(H20)(1 - X) + Ko(NH3)X 
+ C(X2 - X) + D(X3 - X), (5a) 

I I! 11 11 1 ” 
OO 

I 
0.5 1.0 

Mass Froclion NH, 

FIG. 3. Calculated bulk moduli (circles) and pressure 
derivative of the bulk moduli (squares) for ammonia- 
water liquid as a function of the ammonia mass frac- 
tion and temperature. Filled symbols are at 273”K, 
half-tilled at 283”K, and open symbols at 298°K. The 
solid lines are a computed fit at the labeled tempera- 
tures to the bulk moduli. The heavy dashed line is a 
geometric mean fit to the pressure derivatives. The 
light dashed line is a geometric mean fit to the bulk 
moduli of the end-members only. 

where 

C = -638.89 + 1.9519T (5b) 

and 

D = 316.84 - 0.99616T, (5c) 

where Ko(NH3) is calculated from Eq. (4a) 
and Ko(H20) is calculated from Eq. (4~). 
The solid lines in Fig. 3 are calculated from 
Eqs. (Sa)-(5c) for the temperatures shown. 
The fit is seen to be a reasonable one. 

The values for Kb are also shown in Fig. 
3. The scatter is considerable and shows no 
particular dependence on temperature. 
Thus a simple geometric mean (indicated 
by the heavy dashed line) was deemed suffi- 
cient for interpolation between the pure 
end-members: 

K&(X) = [Kb(NH3)1XK6(H20)1-X, (5d) 

where Kb(NH3) is determined from Eq. 
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(4b) and Ko(H,O) is determined from Eq. 
(4d). 

The equation of state of NH3-HZ0 liquid 
as expressed by Eqs. (2) through (5) is ad- 
mittedly a complex numerical recipe. The 
behavior modeled, however, is also com- 
plex. Our equation of state is comparable in 
complexity to the equation of state for pure 
NH3 developed by Mills et al. (1984) and 
utilizes similar parameterizations. The 
forms and P, T, or X dependencies of our 
parameterizations were determined solely 
by empirical analysis of the data and their 
peculiarities. A good example of these is 
the dependency of bulk modulus on com- 
position and temperature illustrated in Fig. 
3. Other parameterizations, such as that of 
Edwards et al. (1978) for the activity coeffi- 
cient of ammonia-water liquid, were not 
used because they could not fit the data. 
Similarly, the number of significant figures 
retained in the empirical constants are the 
same as in the EOS of Mills et al. (1984) and 
are required for computation to match the 
accuracy of our data, which are given to 
four and five significant figures. Empirical 
parameterizations are used because deriva- 
tion of the physical behavior of ammonia- 
water liquid from first principles, e.g., mo- 
lecular dynamics, is a substantial challenge 
not within the scope of this paper. Simpler 
versions of our EOS were tried, including 
fewer terms in p,(TJ, constant and linear 
expressions in T for (Ye, and fewer terms in 
the KO interpolation function, but the fits 
were markedly inferior to the current form. 
The liquidus temperature relations were 
convolved primarily because the inversion 
of the density curves at the water-rich end 
of the low-pressure data in Fig. 1 is related 
to the proximity of freezing. Normalization 
to the freezing curve yielded the approxi- 
mate superposition of (Ye for the various 
compositions seen in Fig. 2, resulting in 
fairly simple expressions for (Ye. Different 
convolutions are possible, but would al- 
most certainly be of comparable complexity 
to obtain comparable accuracy. 

The uncertainties in the densities com- 

puted from the EOS vary in different re- 
gions of P-X-T space. The formal RMS un- 
certainty in the low-pressure calculation is 
only 0.0004 g/cm3. Thus the fit is very good 
in the regions where data exist. The reliabil- 
ity of the interpolation into the large area in 
Fig. 1 where virtually no data exist is obvi- 
ously problematical. The only measure- 
ments made prior to this report in the 
mid-range of ammonia content at low tem- 
peratures are the two points of Hildenbrand 
and Giauque (1953) shown in Fig. 1. The 
compositions for these two measurements 
are stoichiometric ammonia monohydrate 
and ammonia hemihydrate. The corre- 
sponding composition density curves calcu- 
lated from Eqs. (2) and (3) are indicated by 
the arrows. The monohydrate point is well 
fit, but the calculated hemihydrate curve 
falls outside the experimental error bars. 
Hildenbrand and Giauque stated that their 
measurements were “rough,” but the dis- 
crepancy remains. We note, however, the 
similar slopes of our data near X = 0.29 and 
that of the pure ammonia curve that bracket 
the region in question. If the hemihydrate 
point is correct, then a large negative anom- 
aly in the thermal expansion must develop 
for X between 0.3 and 0.6 that then be- 
comes strongly positive for X above 0.7 to 
match the observed pure ammonia curve. 
We deem this unlikely and suggest that the 
hemihydrate point is in error. 

The formal errors in expressions for KO 
and K& for NH3 and HZ0 are all at the 5% 
level. The uncertainty in the interpolation 
for intermediate values of X are seen in Fig. 
3 to be near 5% also. For NH3 this trans- 
lates into a formal rms error of 0.004 g/cm3 
for the 70 high-pressure points. Thus where 
high-pressure data exist, the uncertainties 
in the densities are near 1%. The validity of 
extrapolation beyond the range of the data 
is difficult to assess because the derived 
equations are empirical interpolation func- 
tions. For example, the bulk modulus of the 
dihydrate congruent liquid near its freezing 
point is of interest. The arc in Fig. 3 labeled 
176°K is an extrapolation calculated from 



AMMONIA-WATER LIQUID 285 

Eqs. 4 and 5. The computed arc is not in- 
consistent with a visual extrapolation of the 
existing data. The arrow indicates the dihy- 
drate composition. The inferred bulk modu- 
lus of 32 kbar is similar to the measured KO 
for liquid NH3 at its freezing point of 37 
kbar and that for liquid Hz0 of 20 kbar. 
Thus the extrapolated liquid dihydrate bulk 
modulus is not unreasonable. However, di- 
rect measurements should eventually be 
made. 

Our analysis of the data did indicate 
some features of physical interest. The bulk 
modulus data for intermediate composi- 
tions shown in Fig. 3 exhibit a substantial 
deviation from the values obtained by sim- 
ple averaging techniques, such as is illus- 
trated by the 283°K geometric mean curve. 
The maximum deviation from the simple 
average occurs near X = 0.4. The density 
data show a similar trend. Equation (2b) is a 
fit to the ICT data at 288.15”K, the only 
temperature at which density measure- 
ments over the entire range of ammonia- 
water compositions are available. The data 
used in determining Eq. (2b) are shown in 
Fig. 4. Also shown in Fig. 4 is the theoreti- 
Cal curve for the density, PNI, calculated 
from the pure end-members assuming no 
interaction between the ammonia and water 
molecules: 

PNI = [ 
I-X x -1 

--- 

PHlO I PNH, . 

The data show a substantial deviation from 
the noninteracting case, with densities be- 
ing as much as 9% greater in the real mix- 
tures, the maximum deviation again occur- 
ring near X = 0.4. Both data sets indicate 
significant molecular interactions resulting 
in a closer molecular packing in the mixed 
liquid than in either pure liquid. Edwards et 
al. (1978) also find deviations from simple 
mixing for the activity coefficient, although 
with a somewhat different dependence 
on composition. Thus accurate thermody- 
namic calculations involving ammonia-wa- 
ter mixtures should not rely on models 
which assume the adequacy of simple mix- 

FIG. 4. Density of ammonia-water liquid at 288.15”K 
as a function of ammonia composition. Data points are 
from ICT and the solid line is the theoretical density 
curve of mixed compositions between ammonia and 
water assuming no molecular interactions. The large 
deviation implies a strong attraction between these 
two polarized molecules. The closed circles represent 
data at atmospheric pressure given to four significant 
figures. The open circles are data taken in closed tubes 
under the component’s own vapor pressure and are 
given to only three significant figures. 

ing of thermodynamic properties of pure 
water and ammonia. 

APPLICATIONS 

Solid ammonia hydrate densities at 1 
bar. In this section we derive estimates for 
the volume coefficient of thermal expan- 
sion, (Ye, and density, p, of each of the am- 
monia hydrates at 1 bar. We adopt the fol- 
lowing form for the thermal expansion: 

(Ye = ATB, (6) 

from which the density is obtained by inte- 
gration: 

c A 
P = PO exp -- TB+l 1 B+l ’ (7) 

where A and B are empirical constants and 
po is the density at 1 bar and absolute zero. 
Least-squares fits of Eqs. (6) and (7) to data 
for ice Ih and NH3 I are given in Table II. 
The uncertainty in the fit to 20 ice density 
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TABLE II 

EQUATIONS FOR DENSITY AND THERMAL 
EXPANSION OF THE NH,-H20 SOLIDS 

A. Volume coefficient of thermal expansion: 
cyv = ATB 

Compound A B Notes 

Hz0 2.437 x lo+ 1.582 Derived, 20 
data points 

NH3 . 2H20 2.239 x lo-’ 1.375 Adopted 
NH3 . Hz0 2.239 x lo-’ 1.375 Derived, 2 

data points 
2NH, . Hz0 2.239 x lo-’ 1.375 Adopted 
NH3 0.93235 x 10m6 1.2207 Derived, 25 

data points 
B. Density at 1 bar: 

P = PO exp [ - (&) TB+‘] 
Compound PO A/(B + 1) Bfl 

Hz0 0.9338 k 0.0008 9.438 x 1O-9 2.582 
NH3 2Hz0 0.9826 2 0.0062 9.427 x 1O-8 2.375 
NH3 . Hz0 0.9588 k 0.0031 9.427 x lo-* 2.375 
2NHj . Hz0 0.9364 k 0.0100 9.427 x IO-* 2.375 
NH3 0.8659 -+ 0.0020 4.198 x lo-’ 2.2207 

values (Hobbs 1974, p. 348) is 0.0008 g/cm3. 
The uncertainty in the fit to 20 NH3 thermal 
expansion values (Manzhelii and Tolka- 
chev 1966) and 5 NH3 density points 
(Olovsson and Templeton 1959b, Tolka- 
chev and Manzhelii 1966, Blum 1975) is 
also 0.0008 g/cm’. Curves showing the den- 
sity of solid NH3 and Hz0 computed from 
Eq. (7) and the constants in Table II are 
shown in Fig. 5. Only the five NH3 density 
points are shown for clarity. The other 
points (presumably smoothed data) would 
all fall within the thickness of the drawn 
curves. Thus the fits are seen to represent 
the data well. 

The density data for the ammonia hy- 
drate solids are much more limited. Only 
single X-ray diffraction measurements exist 
for the densities of each of the three ammo- 
nia hydrates: 0.9768 + 0.0062 at 105°K for 
ammonia dihydrate (NH3 * 2H20, Bertie 
and Shehata 1984), 0.9520 + 0.0031 at 
113°K for ammonia monohydrate (NH3 . 
H20, Olovsson and Templeton 1959a), and 
0.9171 ? 0.0100 g/cme3 at 178°K for ammo- 
nia hemihydrate (2NH3 * H20, Siemons and 
Templeton 1954). These data are shown in 

0.801 5 ’ ’ h t ’ h ’ c ‘:I c t ’ 0 50 100 150 200 250 
Temperature,'K 

FIG. 5. Density-temperature curves for the five ammonia-water solids at 1 bar. Solid lines are least- 
squares fits to various data sets (see text and Table II). Dashed lines are approximate limits to the 
ammonia hydrate densities assuming thermal expansions for water ice (smaller thermal expansion) and 
solid ammonia (larger thermal expansion). Closed circles are measured points; the open circle is the 
calculated point given in Table III. Subscript “s” refers to solid state, “1” refers to liquid. 
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TABLE III 

AMMONIA-WATER HYDRATE PHASE CHANGE SUMMARY 

Compound HzG NH, . 2HZO NH, . Hz0 2NH, Hz0 NH, 

Molecular weight 18.01534 53.0613 35.0460 52.0766 17.03061 
Mass fraction NH3 0.00 0.3210 0.4860 0.6541 1.0 
Melt temp. at 1 bar, “K 273.15 176.16” 194.15b 194.32* 195.36’ 
Latent heat of fusion, J/g 333.5d 131.9” 187.2b 189.0b 322.2c 
dT/dP(,,t,, “Kikbar -7.38’ 2.59’;.;: 4.60 + 0.60/ 8.00 -+ 0.43 8.3879 

6V cmy/g = 4 $ -0.09011 - 0.0444 - 0.1383 
m m fO.0058 

6V cm3/g = V, - V, -0.09069 0.0191 - 0.0778 0.1464 
PI (TnJ 0.99983h 0.9454’ 0.8973’ 0.8521’ 0.7342’ 
ps (Tm) 0.91671 0.9628 0.9345 0.9126 0.8226’ 

~0.00005~ +0.0097 ?0.0051” +0.0035’ 
-0.0133’ 

L1 Chan and Giauque (1964). 
b Hildenbrand and Giauque (1953). 
c Overstreet and Giauque (1937). 
d Hobbs (1974, p. 362). 
e Hobbs (1974, p. 351). 
f Johnson et a!. (1985). 
g Mills et al. (1982). 
h Hat-r et al. (1984). 
i Eq. (3), at the appropriate stoichiometric compositions. 
j NHl(s) EOS, Table 2. 
k Hobbs (1974, p. 346). 
’ Calculated assuming av of NH3 H,O(s). Error bars represent densities calculated assuming oy of 

H,O(s) and NH,(s). 
m The uncertainty in this density is derived from the estimated uncertainty in the Clapeyron slope. 

Fig. 5 along with the respective congruent 
liquid density curves calculated from Eqs. 
(2) and (3). A second density point for NH3 
. Hz0 at the melting point may be obtained 
from the calculated liquid density for the 
congruent liquid and other available ther- 
modynamic data using a form of the 
Clausius-Clapeyron equation: 

1 1 L dT 

m - Ps 
-_ - = 6V = MT, dP m, (8) 

where pl and ps are, respectively, the liquid 
and solid densities at the melting tempera- 
ture, T,,,, SV is the volume difference at T,, 
M is the molecular weight, L is the latent 
heat of fusion, and dTldPI, is the Clapey- 
ron slope at melting. The appropriate ther- 
modynamic data for each of the five NHj- 
Hz0 compounds at melting are given in 

Table III. A complete set of experimental 
data is available for pure Hz0 and NHj, 
allowing a comparison between the values 
for 6V computed from the observed densi- 
ties (left-hand term in Eq. (8)) and the ther- 
modynamic data (right-hand term in Eq. 
(8)). The percentage difference in the 6V’s 
is about 0.6% for Hz0 and 5.8% for the 
NH3, giving an idea of the uncertainties in- 
volved. The thermodynamic data for NH3 * 
Hz0 are used to obtain a solid density at 
melting of 0.9345 k 0.0051 g/cm3, shown in 
Fig. 5. The two dashed curves shown in 
Fig. 5 for NH3 . Hz0 are derived by apply- 
ing the equations of thermal expansion for 
ice Ih and NH3 I to the single observed den- 
sity point for NH3 . HzO. The calculated 
melting point density for NH3 . Hz0 is seen 
to fall near the mean of the densities ob- 
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tained by extrapolation using the HZ0 and 
NH3 ice thermal expansions. Thus the ther- 
mal expansion of NH3 * H20, intermediate 
between that of solid Hz0 and NH,, ap- 
pears to approximate the behavior of a sim- 
ple mixture. However, the uncertainty in 
our calculated value is -30% of the differ- 
ence between the two dashed curves at 
melting; thus deviations from simple mixing 
on the order of the deviation in the density 
data (Fig. 4) may be found by future direct 
measurements of ov for NH3 * H20. The 
two monohydrate density values allow 
computation of two of the three constants 
in Eqs. (6) and (7), given the third. Lacking 
the data for a more precise interpolation, 
we adopt a geometric mean for the expo- 
nent B for NH3 . HZ0 in Eq. (6) between the 
B values for ice Ih and NH3 and derive A 
and po from the density data. The results 
are given in Table II, and shown by the 
solid line in Fig. 5. 

A similar procedure cannot be carried 
out for the dihydrate and monohydrate be- 
cause their Clapeyron slopes at atmo- 
spheric pressure have not been directly 
measured (although a slope for the dihy- 
drate using high-pressure data has been es- 
timated; see below). We therefore adopt 
the thermal expansion derived for NH3 . 
HZ0 for the other two ammonia hydrates, 
as indicated in Table II, and derive po for 
each from the observed densities. The re- 
sulting density curves are shown in Fig. 5, 
bracketed in each case by dashed curves 
representing extrapolations obtained by 
adopting the ice Ih and NH3 I thermal ex- 
pansions, which should in each case repre- 
sent reasonable uncertainty limits. The 
hemihydrate curve cuts off at 54°K because 
of a solid-state phase change indicated at 
that temperature in the heat capacity data 
of Hildenbrand and Giauque (1953) similar 
to low-temperature phase changes seen in 
solid CH4, Nz, and CO. Estimates for the 
Clapeyron slopes at 1 bar for the dihydrate 
and hemihydrate may now be obtained by 
working back from the adopted solid den- 
sity curves, the calculated liquid density 

curves, and the thermodynamic data in Ta- 
ble III. This we have done, with the results 
given in Table III. The upper and lower un- 
certainties in the slopes are derived, re- 
spectively, from the solid densities calcu- 
lated from the ice Ih and NH3 I thermal 
expansions. 

We emphasize that the Clapeyron slopes 
for the dihydrate and hemihydrate in Table 
III are based entirely on the thermody- 
namic data in the table and on the solid and 
liquid densities at atmospheric pressure 
computed from the equations derived in 
this report. However, a Clapeyron slope of 
=lS”K/kbar is derived for the dihydrate 
from the melting point at one bar and the 
melting point near 8 kbar inferred by John- 
son et al. (1985) and Johnson and Nicol 
(1987). This is substantially larger than the 
=2”K/kbar determined here. We maintain 
that the slope inferred from the high-pres- 
sure data cannot apply down to atmo- 
spheric pressure, because, given the ther- 
modynamic data in Table III and the 
experimentally determined densities of a 
near-dihydrate liquid, a Clapeyron slope of 
15”K/kbar yields a solid density for the di- 
hydrate at one atmosphere and 176°K of 
1.05 g/cm3, a density clearly incompatible 
with the X-ray diffraction density of the di- 
hydrate found by Bertie and Shehata (1984) 
seen in Fig. 5. We therefore suggest that the 
dihydrate phase inferred by Johnson et al. 
(1985) is not the same as that seen at 1 bar, 
but may be a high-pressure phase discussed 
in detail in the next section. 

The calculated di- and hemihydrate Cla- 
peyron slopes are shown in Fig. 6 along 
with the measured slopes of the monohy- 
drate Hz0 and NH3 as a function of the 
ammonia mass fraction. We note that the 
slopes exhibit a consistent functional de- 
pendence on the ammonia mass fraction, a 
property possibly shared by the MgO-SiOz 
system (Deer et al. 1971, p. 199, Bottinga 
and Richet 1978, Cox et al. 1979, Chapt. 3), 
a system which bears several other striking 
similarities to the NH3-HZ0 system. 

We recognize the large uncertainties in 
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FIG. 6. Clapeyron slope at 1 bar for the five ammo- 
nia-water solids as functions of ammonia weight frac- 
tion. Dots are measured values; triangles are calcu- 
lated from thermodynamic properties and calculated 
liquid and solid densities. 

our derived and adopted relations in Table 
II. The leanness of the data base points up 
the need for further measurements. How- 
ever, the density relations given in Table II 
are based on the presently available data 
and are presented in the spirit of reasonable 
approximations necessary for preliminary 
examination of the consequences of includ- 
ing the ammonia hydrates in models of the 
icy satellites. 

High-pressure phase diagram of ammo- 
nia-water system. In this section we apply 
our results on the volume of the liquid am- 
monia-water solution to interpret the high- 
pressure data of Johnson and Nicol (1987). 
In particular, we will show that the dihy- 
drate phase they identified at high pressure 
must be significantly denser than the low- 
pressure dihydrate solid if it is to satisfy 
thermodynamic constraints. In presenting 
our calculations we caution the reader that 
the Johnson and Nicol high-pressure data 
are currently under dispute; the possibility 
has been raised that dihydrate is not the 
stable solid phase at moderate (30%) am- 
monia concentrations and ~10 kbar pres- 
sure (Nicol 1987, personal communication). 

The analysis detailed below is intended to 
demonstrate by example the utility of our 
low-pressure results in interpreting data on 
the phase diagram at high pressure. If dihy- 
drate is ultimately found not to be a stable 
high-pressure phase, the results of this sec- 
tion will also need revision, but the analytic 
technique will be the same. 

The congruent melting point of dihydrate 
as a function of pressure is given by inte- 
grating the differential form of the 
Clausius-Clapeyron relationship: 

T(P) - T(Po) = T - TO = g (P - PO), 

where 6S, 6V are the entropy and volume 
change in going from the dihydrate solid to 
a liquid of congruent composition and PO is 
the reference or starting pressure. We as- 
sume the entropy change is that given by 
Chan and Giauque (1964), 4 x IO8 ergs/ 
mole/OK, for transition from low-pressure 
dihydrate to the liquid at 176°K. The vol- 
ume of the liquid at higher pressures is cal- 
culated using two alternative equations of 
state: (a) The equation of state derived 
above (Eq. (l)), for a 66% water liquid, is 

Vl(Pkbar, T”K) 

= 53/(0.8889 exp[-3.6638 x 1O-4 q 

- 1.81315 x lo+ q2 + 5.7060 x 10-10 q3 

+ 6.03979 x 10-2,[z P + l]“Kb}, (9) 

where q = T - 179.61 and KO and Kb are 
calculated from Eqs. (5a) and (5d) for X = 
0.321. (b) The equation of state for liquid 
water from Lupo and Lewis (1979) is multi- 
plied by a numerical factor to yield the cor- 
rect liquid volume at 1 bar (56.1 cm3/mole; 
see Table III): 

V, = 56.0 x [1.0014 + q . 3.4 x 1O-4 
{ 

+ q2 - 8.6 x lo-’ - P/22.4 + 

-3.4 
P. 3.4 X low2 exp 7 

[ II 
. 
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The volume of the dihydrate solid is pa- 
rameterized in the form 

v, = vo exp(-KP + aq), 

where K = compressibility, (Y = thermal ex- 
pansion coefficient, and V. = volume of the 
solid at 1 bar. Initially, the compressibility 
and thermal expansion coefficients were 
treated as constant adjustable parameters; 
as explained below, better results are ob- 
tained with CY a function of temperature and 
K a function of pressure. 

Figure 7 shows the congruent melting 
curve for dihydrate assuming a volume of 
the solid at 1 bar and 176°K of 54.7 cm3/ 
mole, as calculated from X-ray diffraction 
data by Bertie and Shehata (1984). Also 
shown are constraints based upon the data 
of Johnson et al. (1985) and Johnson and 
Nicol (1987). These include a congruent 
melting point of 294°K at 8 kbar and a con- 
gruent melting range of 250 to 270°K in the 
pessure regime 1.4 to 4.2 kbar. The latter is 
based upon observed melting of the dihy- 
drate to a liquid composition of 20% ammo- 
nia at 2.8 + 1.4 kbar by Johnson and Nicol 
(1987). The congruent melting temperature 
must be equal to, or higher than, the ob- 
served point. 

Figure 7 shows that neither data con- 
straint can be met by a dihydrate solid with 
the specified volume from low-pressure 
structural studies, for reasonable solid ther- 
mal expansion and compressibility coeffi- 
cients (i.e., we exclude a compressibility 
for the solid greater than that for the liquid). 
An alternative possibility, that the entropy 
change at higher pressures is much smaller 
than the one measured by Chan and 
Giauque (1964), is unlikely since the value 
required is so small that the solid would 
have to be a glass. We assume in the analy- 
sis presented here that the dihydrate solid 
seen at high pressure by Johnson et al. 
(1985) and Johnson and Nicol (1987) is a 
high-density polymorph of the low-pressure 
phase, in analogy with structural changes in 
water ice solid phases. This allows us to 
choose the volume of the solid at the solid- 

300 
x 

0 2 4 6 8 
Pressure, kb 

FIG. 7. Congruent melting curve of ammonia dihy- 
drate assuming a single solid phase from 1 to 10,000 
bars. For the solid line, K = 10m4 bar-‘, a = 10e6 “K-l; 
for the dashed line, K = lO-5 bar’, 01 = lO-5 “Km’; for 
the dotted line, K = 10-e bar-l, Q = 10e5 “Km’. The 
volume of the solid at 1 bar is taken to be 54.7 cm31 
mole; the liquid equation of state derived in the text is 
used. X’s and box denote constraints from data of 
Johnson and Nicol (1987), and the low-pressure con- 
gruent melting point estimated to be 177°K. 

solid phase transition to be a free parame- 
ter. We choose this transition to be at 1 
kbar, which is roughly where the melting 
curve for the low-pressure dihydrate solid 
becomes horizontal (dT/dP = 0) for reason- 
able values of ~(510~~ bar-‘). In the water 
ice system, the first high-pressure transition 
is at 2 kbar (Eisenberg and Kauzmann 
1969). A transition pressure higher than 1 
kbar for the dihydrate would require a vol- 
ume change from the low- to the high-pres- 
sure solid phase larger than that calculated 
below. 

Figure 8 shows melting curves assuming 
a solid-solid transition at 1 kbar and the 
liquid volume given by Eq. (9), for several 
values of Vb (the solid volume at 1 kbar), K, 

and (Y. The curve in the 2- to 4-kbar region, 
where the first data constraint is located, is 
most sensitive to the choice of Vb. The 
shape of the curve at 8 kbars depends 
largely upon the choice of thermal expan- 
sion and compressibility coefficients. A 
value of K greater than 1O-4 bar-l or less 
than 10m6 bar’ is probably unreasonable 
based upon data for other water and ammo- 
nia solids (see above, and Lupo and Lewis 
1979). Likewise, the value of (Y is con- 
strained to be within -10m3 to 10m4 “K-l. 
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FIG. 8. Same as Fig. 7, assuming a solid-solid phase 
transition at 1 kbar. For the solid line, K = 10m5 bar’, 
a = 2 x lOA “K-t, and VA = 41.0 cm3/mole, where V& 
is the volume of the high-pressure dihydrate phase at 1 
kbar; for the dashed line, K = 10m6 bar-t, (Y = lo-) 
“K-l, Vb = 35.0 cm3/mole; for the dotted line, K = 10e6 
bar’, a = 2 x 10d3 OK-‘, V& = 41.0 cm3/mole; for the 
dot-dashed line, K = 1O-6 bat-t, (Y = lo-’ “K-l, V& = 
41.0 cm3/mole. 

Within this rather large range, an accept- 
able fit to the Johnson and Nicol(l987) data 
requires a large value of ff. 

A plausible modification based upon the 
behavior of other ices is a temperature-de- 
pendent (Y. We chose the form 

(Y = A + B(1 - exp [ - $ + 11). 

We also select a pressure-dependent K: 

K = c - ~(1 - exp [lo3 -p%(bars)]). 
Figure 9 shows the resulting best fit to the 
Johnson and Nicol data, with Vb = 43 cm3/ 
mole, A = 3 x 10P4 “K-i, B = 2.5 X 10m3 
OK-i, C = 1 x 10-j bar-‘, D = 9.0 X 10m6 
bar-‘, P, = 10,000 bars, T, = 179”K, and 
Eq. (9). The modified Lupo and Lewis 
equation of state requires a somewhat 
larger solid thermal expansion coefficient 
and a somewhat smaller (by -5%) Vb to fit 
the Johnson and Nicol data. All of the phys- 
ical parameters listed above are reasonable 
based upon the values for other ammonia- 
water and water ice phases. In fitting the 
Johnson and Nicol data, the curve in Fig. 9 
passes through 260°K at 4.3 kbar, rather 
than at 2.8 kbar. In view of their error bars, 
this fit is acceptable. A steeper melting 

0 2 4 6 8 IO 
Pressure, kb 

FIG. 9. Same as Fig. 8, but for a thermal expansion 
coefficient varying with temperature and a compress- 
ibility varying with pressure. The parameters were 
chosen to best fit the data constraints and are given in 
the text. 

curve (passing through 260°K at a lower 
pressure) would require a larger volume 
jump between solid phases at 1 kbar and 
less plausible compressibility and thermal 
expansion parameters to bend the curve 
over to fit the Johnson and Nicol data at 8 
kbar. 

Figure 10 plots solid and liquid volumes 
for the congruent melting curve of Fig. 
9.The solid density at 1 kbar is 1.23 g/cm3, a 
27% increase over the low-pressure dihy- 
drate. This is somewhat larger than the den- 
sity constrasts among water ice poly- 
morphs (Eisenberg and Kauzmann 1969). 
We have assumed a single phase from 1 to 
10 kbars. A piecewise fit with several new 
dihydrate phases is also possible and sug- 
gested by the fact that water ice changes 
phase three times along its melting curve in 
that pressure regime. However, the John- 

Pressure. kb 

FIG. 10. Molar volumes of solid (dashed line) and 
liquid (solid line) dihydrate phases for the congruent 
melting curve given in Fig. 9. 
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son and Nicol data do not allow us to distin- 
guish between these possibilities. 

Solid-liquid density contrast and ammo- 
nia-water volcanism. In this section we 
briefly consider some of the possible impli- 
cations for ammonia-water volcanism on 
small icy satellites indicated by the liquid 
ammonia-water densities. Since we are 
considering only the smaller satellites, this 
discussion is based entirely on the low- 
pressure data. The density of the ammonia- 
water peritectic liquid at melting (-175°K) 
is about 0.946 g/cm3. In an undifferentiated 
icy satellite with typical densities near 1.3 
g/cm3 or larger, the peritectic liquid should 
have no problem reaching the surface. Thus 
on small satellites where the interior tem- 
peratures reach 175°K only over a small 
volume near the center, limited areas of 
surface flooding would be expected, proba- 
bly confined to preexisting depressions as 
the maria basalts are on the Moon (Wood 
1973). In larger satellites where the peritec- 
tic melting point is reached over large frac- 
tions of the interior, enough peritectic melt 
is generated (based on cosmic abundance 
estimates) to bury the original surfaces un- 
der a layer of ammonia hydrate solids sev- 
eral tens of kilometers thick. Consequently, 
late-arriving liquids must penetrate a thick 
ammonia hydrate layer to continue to reach 
the surface. If the surface NH3-Hz0 layers 
consist of ice Ih and ammonia monohydrate 
as suggested by Lunine and Stevenson 
(1985), then the density at 60°K (appropri- 
ate to the Uranian satellites) is about 0.945 
g/cm3 and about 0.936 g/cm3 at melting. If 
equilibrium compositions are obtained, the 
surface layer would consist of a mixture of 
ammonia monohydrate and ammonia dihy- 
drate with a density of 0.980 g/cm3 at 60°K 
and 0.962 g/cm3 at melting. In either case, 
the peritectic liquid is nearly neutrally 
buoyant relative to the solid. A few percent 
porosity in the uppermost kilometer or two 
could prevent any liquid from reaching the 
surface. 

The condition of near neutral buoyancy 
for ammonia-water melt in a fairly thick 

ice-ammonia hydrate crust provides some 
interesting morphological possibilities. 
Much of the later igneous activity may be 
primarily plutonic, producing limited sur- 
face flooding but possibly extensive surface 
tectonics such as groove-like structures due 
to dike swarms or the formation of magma 
chambers. If large magma chambers form, 
continued fractionation of the melt is possi- 
ble under certain conditions, allowing the 
formation of a wide range of magma com- 
positions, which, because of the strong de- 
pendence of viscosity of ammonia-water 
mixtures on composition (Kargel 1987), 
could give rise to a wide variety of surface 
flow morphologies. In addition, magmas 
reaching the surface may be partly con- 
gealed, thus possessing very large viscosi- 
ties and thereby capable of forming very 
thick flows such as those seen on Ariel 
(Smith et al. 1986). Johnson and Nicol 
(1987) have considered the implications of 
dihydrate near-neutral buoyancy in Titan’s 
interior. 

These density considerations thus indi- 
cate mechanisms for producing volcanic 
and tectonic structures by ammonia-water 
volcanism in addition to those proposed by 
Stevenson (1982), particularly for the case 
of volcanism in a thick water ice-ammonia 
hydrate crust. We note also that the density 
relationships derived here will alter several 
details in a geological and oceanographical 
scenario for planets with ammonia water 
oceans presented by Foward (1984). 

ACKNOWLEDGMENTS 

This work was supported by NASA Grants NSG741 

(SKC, JK) and NAGW 1039 (JIL). 

REFERENCES 

BERTIE, J. E., AND M. R. SHEHATA 1984. Ammonia 
dihydrate: Preparation, X-ray powder diffraction 
pattern and infrared spectrum of NH3 2HzO at 
1OOK. J. Chem. Phys. 81, 27-30. 

BEVINGTON, P. R. 1969. Data reduction and error 
analysis for the physical sciences. McGraw-Hill, 
New York. 

BLUM, A. 1975. Crystalline character of transparent 
solid ammonia. Radiat. Eff. 24, 277-279. 



AMMONIA-WATER LIQUID 293 

BO~INGA, Y., AND P. RICHET 1978. Thermodynam- 
ics of liquid silicates, a preliminary report. Earth 
Planet. Sci. Lett. 40, 382-400. 

CHAN, J. P., AND W. F. GIAUQUE 1964. The entropy 
of NH3 2H20 heat capacity from 15 to 300K. J. 
Phys. Chem. 68, 3053-3057 (Erratum, 3912). 

Cox, K. G., J. D. BELL, AND R. J. PANKHURST 1979. 
The Interpretation of Igneous Rocks. Allen & Un- 
win, London. 

DEER, W. A., R. A. HOWIE, AND J. ZUSSMAN 1971. 
Rock Forming Minerals, Framework Silicates, Vol. 
4. Longman, London. 

DORSEY, N. E. 1940. Properties of Ordinary Water- 
Substance. Reinhold, New York. 

EDWARDS, T. J., J. NEWMAN, AND J. M. PRAUSNITZ 
1978. Thermodynamics of vapor-liquid equilibria 
for the ammonia-water system. Znd. Eng. Chem. 

Fundam. 17, 264-269. 
EISENBERG, D., AND W. KAUZMANN 1969. The Struc- 

ture and Properties of Water. Oxford Univ. Press, 
London/New York. 

FOWARD, R. L. 1984. The Flight of the Dragonfly. 
Simon & Schuster, New York. 

GILLESPIE, L. J. (Ed.) 1928. Density and thermal ex- 
pansion of aqueous solutions of inorganic sub- 
stances and strong electrolytes. In International 
Critical Tables, Vol. 3, p. 59. 

HAAR, L., AND J. S. GALLAGHER 1978. Thermody- 
namic properties of ammonia. J. Phys. Chem. Ref. 
Data 7, 635-792. 

HAAR, L., J. S. GALLAGHER, AND G. S. KELL 1984. 
NBS/NRC Steam Tables. Hemisphere Pub., Wash- 
ington , DC. 

HILDENBRAND, D. L., AND W. F. GIAUQUE 1953. 
Ammonium oxide and ammonium hydroxide. Heat 
capacities and thermodynamic properties from 15 to 
300”. J. Amer. Chem. Sot. 75, 2811-2818. 

HOBBS, P. V. 1974. Ice Physics. Oxford Univ. Press 
(Clarendon), London/New York. 

JOHNSON, M. L., AND M. NICOL 1987. The ammonia- 
water phase diagram and its implications for icy sat- 
ellites. .Z. Geophys. Res. 92, 6339-6349. 

JOHNSON, M. L., A. SCHWAKE, AND M. NICOL 1985. 
Partial phase diagram for the system NH3-H20: 
The water-rich region. In Ices in the Solar Sys- 
tem (J. Klinger et al., Eds.), p. 39-47. Reidel, 
Dordrecht. 

KARGEL, J. S. 1987. Density and viscosity measure- 
ments of ammonia-water liquids. Lunar Planet. Sci. 
XVZZZ, 475-476. The Lunar and Planetary Institute, 
Houston. 

LEWIS, J. S. 1972. Low temperature condensation 
from the solar nebula. Icarus 16, 241-252. 

LUNINE, J. I., AND D. J. STEVENSON 1985. Thermody- 
namics of clathrate hydrate at low and high pres- 
sures with application to the outer Solar System. 
Astrophys. J. Suppl. Ser. 58, 493-531. 

LUPO, M. J., AND J. S. LEWIS 1979. Mass-radius rela- 
tionships in icy satellites. Icarus 40, 157-170. 

MANZHELII, V. G., AND A. M. TOLKACHEV 1966. 
Thermal expansion of crystalline ammonia. Sov. 
Phys. Solid State 8, 827-830. 

MILLS, R. L., D. H. LIEBENBERG, AND PH. PRUZAN 
1982. Phase diagram and transition properties of 
condensed ammonia to 1Okb. J. Phys. Chem. 86, 
5219-5222. 

MILLS, R. L., D. H. LIEBENBERG, R. LESAR, AND PH. 
PRUZAN 1984. Equation of state of fluid NH3 from P- 
V-T and ultrasound measurements to 12 kb. In High 
Pressure in Science and Technology, Proc. 9th 
AZRAPTZnt. High Press. Conf. (C. Homan, R. K. 
MacCrone, and E. Whalley, Eds.), Part 2, pp. 43- 
50. North-Holland, New York. 

MURNAGHAN, E. D. 1944. The compressibility of me- 
dia under extreme pressures. Proc. Natl. Acad. Sci. 
30, 244-247. 

OLOVSSON, I., AND D. H. TEMPLETON 1959a. The 
crystal structure of ammonia monohydrate. Acta 
Crystall. 12, 827-832. 

OLOVSSON, I., AND D. H. TEMPLETON 1959b. X-ray 
study of solid ammonia. Acta Crystall. 12, 832-836. 

OVERSTREET, R. AND W. F. GIAUQUE 1937. Ammo- 
nia. The heat capacity and vapor pressure of solid 
and liquid. Heat of vaporization. The entropy values 
from thermal and spectral data. J. Amer. Chem. 
Sot. 59, 254-259. 

ROLLET, A.-P., AND G. VUILLAIUI 1956. Sur un novel 
hydrate de l’ammoniac. C.R. Acad. Sci. Paris 243, 
383-386. 

SIEMONS, W. J., AND D. H. TEMPLETON 1954. The 
crystal structure of ammonium oxide. Acta Crystall. 
7, 194-198. 

SMITH, B. A., AND THE VOYAGER IMAGING TEAM 
1986. Voyager 2 in the Uranian system: Imaging sci- 
ence results. Science 233, 43-64. 

SOURIRAJAN, S., AND G. C. KENNEDY 1963. Specific 
volumes of liquid ammonia-water mixtures in the 
temperature range 0” to 25” and pressure range 100 
to 1400 bars. J. Geophys. Res. 68, 4149-4155. 

STEVENSON, J. D. 1982. Volcanism and igneous pro- 
cesses in small icy satellites. Nature 298, 142-144. 

TOLKACHEV, A. M., AND V. G. MANZHELII 1966. 
Density of solidified gases. Sov. Phys. Solid State 7, 
1711-1713. 

WOOD, J. A. 1973. Bombardment as a cause of the 
lunar asymmetry. Moon 8, 73-103. 


