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ABSTRACT 
We describe the concept of  distributed problem solving and define it as the cooperative solution of 
problems by a decentralized and loosely coupled collection of  problem solvers. This approach to 
problem solving offers the promise of  increased performance and provides a useful medium for 
exploring and developing new problem-solving techniques. 

We  present a framework called the contract net that specifies communication and control in a 
distributed problem solver. Task distribution is viewed as an interactive process, a discussion carried 
on between a node with a task to be executed and a group of  nodes that may  be able to execute the 
task. We  describe the kinds of  information that must be passed between nodes during the discussion in 
order to obtain effective problem-solving behavior. This discussion is the origin of the negotiation 
metaphor: Task distribution is viewed as a form of  contract negotiation. 

We  emphasize that protocols for distributed problem solving should help determine the content of  the 
information transmitted, rather than simply provide a means of  sending bits from one node to another. 

The use of  the contract net framework is demonstrated in the solution of  a simulated problem in 
area surveillance, of  the sort encountered in ship or air traffic control. We discuss the mode of 
operation of  a distributed sensing system, a network of  nodes extending throughout a relatively large 
geographic area, whose primary aim is the formation of a dynamic map of  traffic in the area. 

From the results of  this preliminary study we abstract features of  the framework applicable to 
problem solving in general, examining in particular transfer of control. Comparisons with PLANNER, 
CONNIVER, HEARSAY-n, and PUP6 are used to demonstrate that negotiation--the two-way transfer of 
information--is a natural extension to the transfer of  control mechanisms used in earlier problem- 
solving systems. 
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1. Introduction 

Traditional work in problem solving has, for the most part, been set in the 
context of a single processor. Recent  advances in processor fabrication tech- 
niques, however,  combined with developments  in communication technology, 
otter the chance to explore new ideas about problem solving employing 
multiple processors. 

In this paper  we describe the concept of distributed problem solving, charac- 
terizing it as the cooperative solution of problems by a decentralized, loosely 
coupled collection of problem solvers. We find it useful to view the process as 
occurring in four phases: problem decomposition, sub-problem distribution, 
sub-problem solution, and answer synthesis. We focus in this paper  primarily 
on the second phase, exploring how negotiation can help in matching problem 
solvers to tasks. 

We find three issues central to constructing frameworks for distributed 
problem solving: (i) the fundamental  conflict between the complete knowledge 
needed to ensure coherence and the incomplete knowledge inherent in any 
distribution of problem solving effort, (ii) the need for a problem solving 
protocol, and (iii) the utility of negotiation as an organizing principle. We 
illustrate our approach to those issues in a f ramework called the contract net. 

Section 2 describes our concept of distributed problem solving in more detail, 
contrasting it with the more widely known topic of distributed processing. 
Section 3 explores motivations, suggesting what we hope to gain from this 
work. In Section 4 we consider the three issues listed above, describing what 
we mean by each and documenting the importance of each to the problems at 
hand. 

Section 5 describes how a group of human experts might cooperate  in solving 
a problem and illustrates how this metaphor  has proved useful in guiding our 
work. Section 6 then considers how a group of computers  might cooperate  to 
solve a problem and illustrates how this has contributed to our work. 

Section 7 describes the contract net. We focus on its use as a f ramework for 
orchestrating the efforts of a number  of loosely coupled problem solvers. More 
detailed issues of its implementation,  as well the tradeoffs involved in its 
design, are covered elsewhere (see, e.g., [26, 27, 28]). Section 8 describes an 
application of the contract net. We consider a problem in distributed sensing 
and show how our approach permits a useful degree of self-organization. 

Section 9 then takes a step back to consider the issue of transfer of control. 
We show how the perspective we have deve loped- -notab ly  the issue of 
negotiat ion--offers  useful insights about the concept of control transfer. We 
review invocation techniques from a number  of programming languages and 
illustrate that the whole range of them can be viewed as a progression from 
simple to increasingly more sophisticated information exchange. In these terms 
the negotiation technique used in the contract net becomes a natural next step. 
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Sections 10 and 11 consider the sorts of problems for which our approach is 
well suited and describe the limitations and open problems in our work to date. 

2. Distributed Problem Solving: Overview 

In our  view, some of the defining characteristics of distributed problem solk, ing 
are that it is a cooperative activity of a group of decentralized and loosely 
coupled knowledge-sources (KSs). The KSs cooperate  in the sense that no one 
of them has sufficient information to solve the entire problem: information 
must be shared to allow the group as a whole to produce an answer. By 
decentralized we mean that both control and data are logically and often 
geographically distributed; there is neither global control nor global data 
storage. Loosely coupled means that individual KSs spend most of their t ime in 
computat ion rather  than communication.  

Interest  in such problem solvers arises from the promise of increased speed, 
reliability, and extensibility, as well as ability to handle applications with a 
natural spatial or functional distribution, and the potential for increased 
tolerance to uncertainty in data and knowledge. 

Distributed problem solving differs in several fundamental  respects from the 
more widely known topic of distributed processing. Perhaps the most important  
distinction arises f rom examining the origin of the system and the motivations 
for interconnecting machines. 

Distributed processing systems often have their origin in the at tempt  to 
synthesize a network of machines capable of carrying out a number  of widely 
disparate tasks. Typically, several distinct applications are envisioned, with 
each application concentrated at a single node of the network, as for example 
in a three-node system intended to do payroll, order  entry, and process control. 
The aim is to find a way to reconcile any conflicts and disadvantages arising 
from the desire to carry out disparate tasks, in order to gain the benefits of 
using multiple machines (sharing of data bases, graceful degradation, etc.). 

Unfortunately,  the conflicts that arise are often not simply technical (e.g., 
word sizes, database formats,  etc.) but include sociological and political prob- 
lems as well (see, e.g., [6]). The at tempt  to synthesize a number  of disparate 
tasks thus leads to a concern with issues such as access control and protection, 
and results in viewing cooperation as a form of compromise between potentially 
conflicting desires. 

In distributed problem solving, on the other hand, there is a single task 
envisioned for the system and the resources to be applied have no other 
predefined roles to carry out. We are building up a system de novo and can as a 
result choose hardware,  software, etc. with one aim in mind: the selection that 
will lead to the most effective environment  for cooperative behavior. This also 
means we view cooperation in terms of benevolent  problem solving behavior, 
i.e., how can systems that are perfectly willing to accommodate  one another  act 
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so as to be an effective team? Our  concerns are thus with developing frame- 
works for cooperative behavior between willing entities, rather than frameworks 
for enforcing cooperation as a form of compromise between potentially in- 
compatible entities. 

A second important distinction arises from our focus on traditional issues of 
problem solving. We intend, for example, that the system itself should include 
as part of its basic task the partitioning and decomposition of a problem. Work 
in distributed processing, by comparison, has not taken problem solving as a 
primary focus. It has generally been assumed that a well-defined and a priori 
partitioned problem exists. The major  concerns lie in an optimal static dis- 
tribution of tasks, methods for interconnecting processor nodes, resource 
allocation, and prevention of deadlock. Complete  knowledge of the problem 
has also been assumed (i.e., explicit knowledge of timing and precedence 
relations between tasks) and the major  reason for distribution has been 
assumed to be load-balancing (e.g., [1, 2]). Since we do not make these 
assumptions, we cannot take advantage of this pre-planning of resources. As 
will become clear, this makes for significant differences in the issues which 
concern us and in the design of the system. 

A final distinction results from the lack of substantial cooperation in most 
distributed processing systems. Typically, for instance, most of the processing is 
done at a central site and remote processors are limited to basic data collection 
(e.g., credit card verification). The word distributed is usually taken to mean 
spatial distribution of data--distr ibution of function or control is not generally 
considered. 

One way to view the various research efforts is in terms of the three levels 
indicated in Fig. 1. At the lowest level the focus is the processor architecture. 
The main issues here are the design of the individual nodes and the inter- 
connection mechanism. The components  of an individual node must be selec- 
ted (e.g., processors and memory),  and appropriate  low-level interconnection 
methods must be chosen (e.g., a single broadcast channel, complete inter- 
connection, a regular lattice, etc.). 

The middle level focuses on systems aspects. Among the concerns here are 
issues of guaranteeing message delivery, guaranteeing database consistency, 
and techniques for database recovery. 

PROBLEM SOLVING I 

II II 
SYSTEMS ] 

li II 
ARCHITECTURE [ 

FIG. 1. A layered approach to distributed problem solving. 
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The focus at the top level is problem solving, where the concerns are 
internode control and knowledge organization; in particular how to achieve 
effective problem-solving behavior from a collection of asynchronous nodes. 
There  is therefore a greater concern with the content of the information to be 
communicated between nodes than with the form in which the communication 
is effected. 

All of these levels are important foci of research and each successive level 
depends on the ones below it for support. Our concern in this paper, however, 
lies primarily at the level of problem solving. 

For the remainder of this paper we will assume that the hardware is a 
network of loosely coupled, asynchronous nodes. Each node has a local 
memory; no memory is shared by all nodes. Each node typically contains 
several distinct KSs. There  is no central controller; each node makes its own 
choices about tasks to work on. The nodes are interconnected so that every 
node can communicate with every" other by sending messages, perhaps over a 
broadcast channel. We also assume the existence of a low-level protocol to 
effect communication of bit streams between nodes. 

3. Distributed Problem Solving: Motivation 

A major motivation for this work lies in the potential it offers for making 
available more problem solving power, by applying a collection of processors to 
the solution of a single problem. It may, for example, prove much easier to 
coordinate the actions of twenty medium-sized machines than it is to build a 
single machine twenty (or even ten) times as large. 

A distributed approach may also be well suited to problems that have either 
a spatial distribution or a large degree of functional specialization. Spatial 
distribution often occurs in problems involving interpretation of signal data 
from multiple sensors (e.g., [20]). Functional specialization may occur in 
problems like understanding continuous speech (e.g., [7]): information from 
many different knowledge-sources (e.g., signal processors, parsers, etc.) must 
be combined to solve the problem. 

Distributed problem solving also offers a way to apply to problem solving the 
recent advances in both processor fabrication and communication technology. 
Low-cost, small-scale VLSI processors are now commonplace, with larger scale 
processors expected in the near future [21]. The synthesis of advanced com- 
puter and communication technology that has resulted in networks of resource- 
sharing computers (e.g., [13, 15]) offers a foundation for work on distributed 
architectures. With these two developments as foundations, work can begin 
focusing on techniques for effective use of networks of machines. 

One reason for interest in distributed architectures in general is their 
capacity for reliable computation and graceful degradation. By placing problem 
solving in this environment,  we have the chance to make it similarly reliable. 
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The use of an approach like the contract net, which distributes both control 
and data, also makes possible additional responses to component  failure. In 
addition to the standard response of continuing to function as before (albeit 
more slowly), the option may exist of having the system reconfigure itself to 
take into account the hardware available. 

Finally, and somewhat  more speculatively, there is the issue of 'bounded 
rationality'.  Some tasks appear  difficult because of their size. They are ' too 
big' to contemplate  all at once and are not easily broken into modular  
sub-problems (e.g., the working of the national economy, the operation of a 
large corporation).  In such cases it may be difficult, both conceptually and 
practically, for a single problem solver to deal effectively with more than a 
small part of all of the data or knowledge required to solve the problem. Trying 
to scale up the hardware of a single problem solver may ease the practical 
problem but does not solve the conceptual difficulty. It may instead prove more 
effective to use multiple problem solvers, each of which handles some fraction 
of the total problem, and to provide techniques for dealing with the interaction 
between the sub-problems. 

Recent work has explored a number  of ideas relevant to accomplishing this 
goal. There  is, for example,  the original HEARSAY-n model of cooperating KSs 
([7]), in which each KS had a sharply limited domain of expertise. It demon- 
strated the practicality of using a number  of independent KSs to encode large 
amounts of knowledge about a domain. The work in [17] reports on an 
experiment that distributed knowledge and data, and to a limited degree, 
control. In Section 7 we describe an approach to distributing problem solving 
effort that dynamically distributes knowledge, data and control. 

4. The Fundamental  Issues 

Our study of distributed problem solving to date has identified three issues that 
appear  to be central to the undertaking: (i) the fundamental  difficulty of 
ensuring global coordination of behavior when that behavior  results from the 
aggregation of actions based on local incomplete knowledge, (ii) the necessity 
of a protocol dealing with problem solving rather than with communication, and 
(iii) the utility of negotiation as a fundamental  mechanism for interaction. In 
this section we describe each of the issues briefly, Sections 5 and 6 then 
demonstrate  how these issues arise from basic considerations of the task at 
hand)  

4.1. Global coherence and limited knowledge 

One obvious problem that arises in employing multiple problem solvers is 

IOther work on distributed problem solving is based on similar issues. Work described in [18], 
for example, also finds (i) and (ii) above to be central issues. 
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'coherence' .  Any time we have more than one active agent in the system there 
is the possibility that their actions are in some fashion mutually interfering 
rather than mutually supportive. There  are numerous ways in which this can 
happen. We may have conflict over resources, one agent may unknowingly 
undo the results of another, the same actions may be carried out redundantly, 
etc. In general terms, the collection of agents may somehow fail to act as a 
well-coordinated, purposeful team. 

We believe that this problem is due to the fundamental difficulty of obtaining 
coordinated behavior when each agent has only a limited, local view. We could, 
of course, guarantee coordination if every agent 'knew everything', i.e., it had 
complete knowledge. If, for example, every problem solver had complete 
knowledge of the actions of all the others, it would be possible to avoid 
redundant or conflicting ettortsJ 

Yet any reasonable model of distribution appears to require incomplete, 
local views of the problem. Complete information is, for example, at least 
impractical. As we argue in Section 6, bandwidth limitations make it un- 
reasonable to consider having every node constantly informed of all develop- 
ments. 

A limited local view also simplifies the problem conceptually. The problem 
becomes far more difficult to think about (and to program) if every problem 
solver has to keep track of everything. It also seems contrary to the basic 
notion of distribution: Part of the motivation is to allow a problem solver to 
focus on one part of the problem and ignore the rest. 

For these reasons at least, then, any distribution of problem solving effort 
appears to imply incomplete, local knowledge. 

And when we say "incomplete knowledge", we include in "knowledge" the 
information indicating "who needs to know what".  That  is, we do not assume 
that we start out with a map of subproblems and their interactions. Without 
such a map, there is the chance that necessary interactions are overlooked and 
hence we lose a guarantee of coordinated behavior. 

As noted earlier, we consider problem decomposi t ion-- the  creation of the 
map of subproblems-- to  be part of the system's task. Once the system creates 
its best guess at such a map, we can count on the locality of action and 
information to make distributed problem solving practical. By locality of action 
and information, we mean that the problems typically attacked in AI are 
generally decomposable into a set of subproblems in which the effects of 
actions and the relevance of information is local. The  actions taken to 
solve one subproblem generally affect only a few other  subproblems; the 

~rhis  difficulty is not limited to distributed problem solving, it is only more  painfully obvious 
there.  The  s tandard notion of problem dera:mlposition in centralized sys tems results  in limited, local 
knowledge, and  the  same difficulty manifests  itself as the  well-known problem of interacting 
subgoals.  
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in fo rmat ion  d i scovered  in solving one  s u b p r o b l e m  is genera l ly  re levan t  to only 
a few o the r  subprob lems .  3 A s  a result ,  each  p r o b l e m  solver  will have  to in teract  
with at most  a few others ,  mak ing  l imi ted  bandwid th  a chal lenging  but  not  fatal  
const ra int .  

To  summar ize :  the  conflict ar ises  because  d is t r ibu t ion  seems  by its na tu re  to 
requ i re  supply ing  each p r o b l e m  solver  with only a l imited,  local view of the  
p rob lem,  yet  we wish to accompl ish  a g lobal  e f f e c t - - t h e  solut ion of the  
p r o b l e m  at hand.  It is not  obv ious  how we can gua ran tee  overa l l  coo rd ina t ion  
f rom aggrega t ions  of  ac t ions  based  on local views with i nc omple t e  in format ion .  
Thus,  while  the  local i ty  of act ion and in format ion  means  that  d i s t r ibu ted  
p r o b l e m  solving is feasible ,  the  necess i ty  of i ncomple t e  knowledge  means  that  
g u a r a n t e e i n g  c o o r d i n a t e d  act ivi ty is difficult. 

O n e  genera l  answer  is to p rov ide  someth ing  that  ex tends  across  the  ne twork  
of  nodes ,  someth ing  that  can be  used  as a founda t ion  for  coope ra t i on  and  
organ iza t ion .  A s  will b e c o m e  clear,  th ree  e l emen t s  of  our  f r a m e w o r k  he lp  
p rov ide  that  founda t ion :  (i) the  concep t  of nego t i a t ion  as a mechan i sm for 
in te rac t ion  (Sect ion 7.1), (ii) the  ne twork  of  tasks  that  resul ts  f rom d e c o m p o s i n g  
a p r o b l e m  (Section 8.2), and  (iii) a c o m m o n  language  sha red  by all nodes  
(Section 7.4). T h e  a n n o u n c e m e n t - - b i d - - a w a r d  sequence  of messages  (Section 
7.3) also offers some  suppor t .  Even  though  each p r o b l e m  solver  has only a 
l imi ted  view of  the  p rob l em,  these  messages  offer one  way for  a node  to find 
out  who else has  re levan t  in fo rmat ion .  Toge the r ,  all of these  mechan i sms  
p rov ide  an init ial  s tep  toward  a basis  for  achieving c o o r d i n a t e d  behavior .  

4.2. The need for a problem solving protocol 

In most  work  on p ro toco l s  for  d i s t r ibu ted  c o m p u t a t i o n  the emphas i s  has  been  
on es tabl ishing re l iab le  and  efficient communica t i on .  Some  degree  of success 
has  been  achieved,  at levels ranging  f rom indiv idual  packe t s  to  a tomic  act ions  
(see, e.g., [29]). But these  p ro toco l s  a re  only a p re requ i s i t e  for  d i s t r ibu ted  
p r o b l e m  solving. In the  same  sense that  co mmun ic a t i on  among  a g roup  of 
en t i t ies  needs  a careful ly  cons t ruc ted  commun ic a t i on  pro tocol ,  so p r o b l e m  
solving by a g roup  of ent i t ies  requ i res  a p r o b l e m  solving pro tocol .  C o o p e r a t i o n  
canno t  be  e s t ab l i shed  be tween  nodes  s imply by indica t ing  how they are  to 
c o m m u n i c a t e ;  we must  also ind ica te  what  they should  say to  each other .  

The  issue can also be v iewed  in the  te rms  sugges ted  by Fig. 1. At  each level 
we need  to  give careful  cons ide ra t ion  to the  basic  a rch i t ec tu re  and we need  the 

3The first half of this observation--the locality of the effects of actions--is typically used to 
justify informal solutions to the frame problem. We can, for instance, account for the effects of an 
action with a list of consequences, because that list tends to be short and predictable. 

Similarly, the impact of information tends to be local. If I, as one member of a team, am working 
on one part of a problem, most of what is discovered about the rest of the problem is irrelevant to 
me. Keeping me up to date on every detail will only prove to be a distraction. 
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appropriate  protocols. In the same sense that we pay attention to hardware and 
systems architecture, so we need to consider a 'problem solving architecture ' ;  
as we have protocols that organize the communication of bits and files, so we 
need protocols to organize the problem solving activity. 

As discussed in Section 7, the contract net takes a first step in this direction 
by providing a set of message types indicating the kind of information that 
nodes should exchange in order  to effect one form of cooperation.  

4.3. The utility of negotation 

The central element in our approach to a problem solving protocol is the 
concept of negotiation. By negotiation, we mean a discussion in which the 
interested parties exchange information and come to an agreement.  For our 
purposes negotiation has three important  components:  (a) there is a two-way 
exchange of information, (b) each party to the negotiation evaluates the 
information from its own perspective, and (c) final agreement  is achieved by 
mutual selection. 

Negotiation appears to have multiple applications. In Section 7, for example,  
we explore its application to the problem of matching idle problem solvers to 
outstanding tasks. This matching is carried out by the system itself, since, as 
noted, we do not assume that the problem has already been decomposed and 
distributed. 

In Section 9.2 we explore a second application of negotiation by considering 
its utility as a basis for transfer of control and as a way of viewing invocation as 
the matching of KSs to tasks. This view leads to a more powerful mechanism 
for control transfer, since it permits a more informed choice from among the 
alternative KSs which might be invoked. The view also leads to a novel 
perspective on the outcome of the interaction. In most previous systems, the 
notion of selecting what to do next typically involves taking the best choice 
from among those currently available. As will become clear, in the contract net 
either party has the option of deciding that none of the currently available 
options is good enough, and can decide instead to await further developments.  

5. A Cooperating Experts Metaphor 

A familiar metaphor  for a problem solver operating in a distributed environ- 
ment is a group of human experts experienced at working together,  trying to 
complete a large task. 4 Of  primary interest to us in examining the operation of 
a group of human experts are: (a) the way in which they interact to solve the 
overall problem, (b) the manner  in which the workload is distributed among 
them, and (c) how results are integrated for communication outside the group. 

*'I'his metaphor has been used as a starting point by [l l] ,  [16] and [18], but has resulted in 
systems that differ from ours in several ways. The different systems are compared in Section 9. 
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For reasons discussed above, we assume that no one expert is in total control of 
the others, although one expert may be ultimately responsible for com- 
municating the solution of the top-level problem to the customer outside the 
group. 

One possible model for the interaction involves group members  cooperating 
in the execution of individual tasks, a mode we have called ' task-sharing'  [28]. 
In such a situation we might see each expert spending most of his t ime working 
alone on various subtasks, pausing only occasionally to interact with other 
members  of the group. These interactions generally involve requests for 
assistance on subtasks or the exchange of results. 

An expert (El )  may request assistance because he encounters either a task 
too large to handle alone, or a task for which he has no expertise. If the task is 
too large, he will first at tempt to partition it into manageable subtasks and then 
at tempt to find other experts who have the appropriate  skills to handle the new 
tasks. If the original task is beyond his expertise, he at tempts right away to find 
another,  more appropriate  expert to handle it. 

In either case, E l ' s  problem is now to find experts whose skills match the 
tasks that he wishes to distribute. If E l  knows which other experts have the 
necessary expertise, he can notify them directly. If he does not know anyone in 
particular who may be able to assist him (or if the tasks require no special 
expertise), he can simply describe the tasks to the entire group. 

If another,  available expert (E2) believes he is capable of carrying out the 
task that E1 announced, he informs E1 of his availability and perhaps indicates 
as well any especially relevant skills he may have. E1 may wind up with several 
such volunteers and can choose from among them. The chosen volunteer might 
then request additional details from E1 and the two will engage in further 
direct communication for the duration of the task. 

In order to distribute the workload in a group of experts, then, those with 
tasks to be executed must find others capable of executing those tasks. At the 
same time, it is the job of idle experts to find suitable tasks on which to work. 
Those with tasks to be executed and those capable of executing the tasks thus 
engage in a form of negotiation to distribute the workload. They become linked 
together by agreements  or informal contracts, forming subgroups of varying 
sizes that are created and broken up dynamically during the course of work. ~ 

6. Observations and Implications 

The metaphor  of a group of human experts offered several suggestions about 

5Subgroups of this type offer two advantages. First, communication among the members does not 
needlessly distract the entire group. This is important, because communication itself can be a major 
source of distraction and difficulty in a large group (see for example [9]). Thus one of the major 
purposes of organization is to reduce the amount of communication that is needed. Second, the 
subgroup members may be able to communicate with each other in a language that is more efficient 
for their p u ~  than the language in use by the entire group (for more on this see [27]). 
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organizing problem solving effort. Here we consider how a group of computers 
might cooperate and examine what that can tell us about how to proceed. We 
approach this by comparing the use of multiple, distributed processors with the 
more traditional model of operation on a uniprocessor. We list several basic 
observations characterizing the fundamental differences and consider the im- 
plications that follow. While the list is not exhaustive, it deals with the 
differences we find most important. 

Communication is slower than computation. 

That is, bits can be created faster than they can be shipped over substantial 
distances. 6 With current technology, communication over such distances is in 
fact much slower than computation. Attempting to interconnect large numbers 
of high speed processors can easily lead to saturation of available bandwidth. 
Present trends indicate [23] that this imbalance in speed will not only continue, 
but that the disparity is likely to increase. It appears as well that the relative 
costs of communication and computation will follow a similar trend. 

Several implications follow from this simple observation (Fig. 2). It means for 
example that we want problem decompositions that yield loosely coupled 
systems--systems in which processors spend the bulk of their time computing 
and only a small fraction of their time communicating with one another. The 
desire for loose coupling means in turn that we need to pay attention to the 
efficiency of the communication protocol: With a more efficient protocol, fewer 
bits need to be transmitted and less time is spent in communicating. It also 
means that we need to pay attention to both the modularity and grain size of 
the problems chosen. Problems should be decomposed into tasks that are both 
independent and large enough to be worth the overhead involved in task 
distribution. Non-independent tasks will require communication between pro- 
cessors, while for very small tasks (e.g., simple arithmetic) the effort involved in 
distributing them and reporting results would likely be greater than the work 
involved in solving the task itself. 

Communication is slower than computation 
---, loose-coupling 

--+ efficient protocol 
- ,  modular problems 
- ,  problems with large grain size 

FIG. 2. Observations and implications. 

6Over short distances, of course, permanent hardwired links can be very effective. Where 
distances arc large or varying (e.g., mobile robots), bandwidth again becomes a limiting factor. 

Note also that we mean communicating all the bits involved in a computation, not just the final 
answer. Otherwise communicating, say, one bit to indicate the primality of a lO0-digit number 
would surely be faster than doing the computation to determine the answer. 
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We have argued above for loose coupling and based the argument on 
technological considerations. The point can be argued from two additional 
perspectives as well. First, the comments  earlier concerning the locality of 
action and information suggest that, for the class of problems we wish to 
consider, tight coupling is unnecessary. The activities and results of any one 
problem solver are generally relevant to only a few others. More widespread 
dissemination of information will mostly likely only prove to be distracting. 

A second argument,  described in [18], takes a more emphatic position and 
argues for loose coupling even where it is known to produce temporary 
inconsistencies. They note that standard approaches to parallelism are typically 
designed to ensure that all processors always have mutually consistent views of 
the problem. Such complete consistency, and the tight coupling it requires, is, 
they claim, unnecessary. They suggest instead that distributed systems can be 
designed to be 'functionally accurate ' ,  i.e., the system will produce the correct 
answer eventually even though in an intermediate state some processors may 
have inconsistent views of the problem. 

Thus we have arguments against tight coupling based on technological 
considerations (the communicat ion/computat ion imbalance), pragmatic issues 
(the locality of action and information), and empirical results which suggest that 
it may be unnecessary. 

Any  unique node is a potential bottleneck. 

Any node with unique characteristics is potentially a bottleneck that can slow 
down the system (Fig. 3). If those characteristics make the distinguished 
node useful to enough other nodes in the system, eventually those nodes 
may be forced to stand idle while they wait for service. This is equally true 
for a resource like data (for which the issue has been extensively studied) and a 
' resource'  like control (for which considerably less work has been done). If one 
node were in charge of directing the activities of all other nodes, requests for 
decisions about what to do next would eventually accumulate faster than they 
could be processed. 7 

What steps can we take to reduce the likelihood of bottlenecks due to 
centralized control? First, we can distribute it: Each node should have some 

Any unique node is a potential bottleneck 
-* distribute data 
--, distribute control 

--, organized behavior is hard to guarantee 

FIG. 3. Further observations and implications. 

7Such a node would also be an Achilles' heel in the system, since its failure would result in total 
failure of the system. 
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degree of au tonomy in generating new tasks and in deciding which task to do 
next. By so dividing up and distributing the responsibility for control, we 
reduce the likely load on any one node. Second, we might distribute it 
redundantly: If more  than one node is capable of making decisions about 
control, we further reduce the likelihood that any one node becomes saturated, 
and can ensure that no one node is unique. Finally, we can distribute control 
dynamically: We might provide a mechanism that allows dynamic redistribu- 
tion in response to demands of the problem. 

Organized behavior is difficult to guarantee if control is decentralized. 

In a system with completely centralized control, one processor is responsible 
for directing the activities of all the others. It knows what all the other 
processors are doing at any given time, and, armed with this global view of the 
problem, can assign processors to tasks in a manner  that assures organized 
behavior  of the system as a whole. By 'organized' ,  we mean that (among other 
things) all tasks will eventually be at tended to, they will be dealt with in an 
order that reduces or eliminates the need for one processor to wait for results 
f rom another,  processor power  will be well matched to the tasks generated, etc. 
In more general terms, the set of processors will behave like a well-coor- 
dinated, purposeful team. 

In the absence of a global overview, coordination and organization becomes 
much more difficult. When control is decentralized, no one node has a global 
view of all activities in the system; each node has a local view that includes 
information about  only a subset of the tasks. The appropriate  organization of a 
number  of such subsets does not necessarily result in appropriate  organization 
and behavior  of the system as a whole. 

In Section 4 we described the general problem of ensuring well-coordinated 
behavior;  this is a specific instantiation of that problem with respect to control. 
We are trying to achieve a global effect (coherent behavior) from a collection 
of local decisions (nodes organizing subsets of tasks). We cannot centralize 
control for reasons noted above, yet it is not clear how to ensure coherent 
behavior  when control is distributed. 

7. A Framework for Distributed Problem Solving 

7.1. A view of distributed problem solving 

We view distributed problem solving as involving four central activities: 
problem decomposit ion,  sub-problem distribution, solution of sub-problems, 
and synthesis of the overall solution. By decomposit ion we mean the standard 
notion of breaking a large problem into smaller, more manageable  pieces; 
distribution involves the matching of sub-problems with problem solvers 
capable of handling them; the sub-problems are then solved; and finally those 
individual solutions may need to be synthesized into a single, overall solution. 
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Each of these can happen several times as a problem is decomposed into 
several levels of subproblems. 

These four activities may occur individually and in the sequence noted, or 
may be combined or carried out in parallel. The point is simply that all of them 
can make important contributions to the problem solving process, so we need 
some mechanism for dealing with each. a 

7.2. Task-sharing, negotiation and the connection problem 

We have emphasized above the importance of having a protocol for organizing 
problem solving activity and proposed negotiation as a plausible basis for that 
protocol. But what shall we negotiate? Our  work to date has followed the lead 
suggested by the cooperating experts metaphor  and explored the distribution of 
tasks as an appropriate  subject. Thus, in this paper  we focus on application of 
the contract net to the distribution phase of distributed problem solving and 
show how negotiation appears to be an effective tool for accomplishing the 
matching of problem solvers and tasks. 

To  illustrate this, recall that the group of experts distributed a problem by 
decomposing it into ever smaller subtasks and distributing the subtasks among 
the group. We term this mode of operation ' task-sharing' ,  because cooperation 
is based on the dynamic decomposition and distribution of subproblems. 9 But 
to enable distribution of the subproblems, there must be a way for experts with 
tasks to be executed to find idle experts capable of executing those tasks. We 
call this the 'connection problem' .  

The contract net protocol supplies a mechanism to solve the connection 
problem: As we will see, nodes with tasks to be executed negotiate with idle 
nodes over  the appropriate  matching of tasks and nodes. 

This approach is appropriate  for a distributed problem solver because it 
requires neither global data storage nor global control. It also permits some 
degree of dynamic configuration and reconfiguration. A simple example of 
dynamic configuration is given in Section 8.3; reconfiguration is useful in the 
event of node failure or overloading. We have explored a number  of simple 
mechanisms for detecting node failure and reconfiguring in response [26, 22], 
but the problem is not yet well studied. 

A few words of terminology will be useful. The collection of nodes is 
referred to as a con t rac t  net. Each node in the net may take on the role of a 
m a n a g e r  or a contractor .  A manager  is responsible for monitoring the execu- 

SFor some problems the first or last activity may be trivial or unnecessary. Where a problem is 
geographically distributed, for example, the decomposition may be obvious (but see the discussion 
of the sensor net in Section 8). In problems of distributed control (e.g., traffic light control), there 
may be no need to synthesize an "overall" answer. 

'~l'ask-sharing in its simplest form can be viewed as the distributed version of the traditional 
notion of problem decomposition. For a different approach to distribution, see [18]. 
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t ion of a task and  process ing  the  resul ts  of its execut ion .  A c on t r a c to r  is 
r e spons ib le  for  the  ac tual  execu t ion  of the  task.  ~° 

Ind iv idua l  nodes  are  not  de s igna t ed  a priori as m a n a g e r s  o r  con t rac to r s ;  
these  are  only roles ,  and  any node  can t ake  on e i the r  role  dynamica l ly  dur ing  
the  course  of p r o b l e m  solving.  Typica l ly  a node  will t ake  on bo th  roles ,  of ten  
s imul t aneous ly  for  di f ferent  cont rac ts .  This  has the  a d v a n t a g e  that  indiv idual  
nodes  are  not  s ta t ical ly  t ied to  a con t ro l  h ie rarchy .  

F o r  the  sake  of expos i t ion ,  we desc r ibe  the  p ro toco l  in successive layers  of 
deta i l ,  descr ib ing  first the  content of the  messages  exchanged  (Section 7.3), then 
the i r  format (Sect ion 7.4), and  finally the  de ta i l s  of the  language in which they 
are  wr i t ten  (Sect ion 7.5). 

7.3. Contract  net p r o t o c o l - - m e s s a g e  content 

Message  con ten t  is the  hear t  of the  issue, s ince it indica tes  what  k inds  of things 
nodes  should  say to one  a n o t h e r  and  p rov ides  the  basis  for  c oope ra t i on .  

Nego t i a t ion  is in i t i a ted  by the gene ra t ion  of  a new task.  A s  sugges ted  in the  
exper t s  m e t a p h o r ,  this may  occur  when one  p r o b l e m  so lver  d e c o m p o s e s  a task 
into  sub- tasks ,  or  when it dec ides  that  it does  not  have  the  k n o w l e d g e  o r  da t a  
r equ i r ed  to  ca r ry  out  the  task.  W h e n  this occurs ,  the  node  that  gene ra t e s  the  
task  adver t i ses  ex i s tence  of the  task with a task announcement message  (Fig. 4). 
It then acts as the  m a n a g e r  of  tha t  task for  its dura t ion .  Many  such announce -  
men t s  a re  m a d e  ove r  the  course  of  t ime as new tasks  are  gene ra t ed .  

Meanwhi l e ,  nodes  in the  net  a re  l is tening to  the  task a n n o u n c e m e n t s  (Fig. 5). 
They  eva lua t e  the i r  own level of in teres t  in each  task with respec t  to  the i r  
spec ia l ized  resources  (ha rdware  and  sof tware) ,  using task evaluation pro- 
cedures specific to  the  p r o b l e m  at hand.  11 

When  a task is found  to be of sufficient in teres t ,  a node  submi ts  a bid  (Fig. 
6). A b id  message  indica tes  the  capabi l i t i es  of the  b i d d e r  that  a re  r e l evan t  to 
execu t ion  of  the  a n n o u n c e d  task.  

A m a n a g e r  may  rece ive  severa l  bids in r e sponse  to a single task announce -  
men t  (Fig. 7). Based  on the  in fo rma t ion  in the  bids,  it selects  one  o r  m o r e  
nodes  for  execu t ion  of the  task,  using a task-specif ic  bid evaluation procedure. 

The  se lec t ion  is c o m m u n i c a t e d  to  the  successful  b idde r s  th rough  an award 
message  (Fig. 8). T h e  se lec ted  nodes  assume respons ib i l i ty  for  execut ion  of the  
task,  and  each is ca l led  a c o n t r a c t o r  for  that  task.  

A con t r ac to r  will typica l ly  par t i t ion  a task and  e n t e r  in to  (sub)cont rac ts  with 

l(~3ae basic idea of contracting is not new. For example, a rudimentary bidding scheme was used 
for resource allocation in the Distributed Computing System (DCS) [8]. The contract net takes a 
wider perspective and allows a broader range of descriptions to be used during negotiation. For a 
detailed discussion see [27]. 

lilt is in general up to the user to supply this and other task-specific procedures, but useful 
defaults are available (see [26l). 



78 

MANAGER 

TASK ANNOUNCEMENT 

R. DAVIS AND R.G. SMITH 
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FIG. 6. Node submit t ing a bid. 
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FIG. 7. Manager  listening to bids coming in. 
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FIG. 8. Manager making an award. 

other nodes. It is then the manager for those contracts. This leads to the 
hierarchical control structure that is typical of task-sharing. 

A report is used by a contractor to inform its manager that a task has been 
partially executed (an interim report) or completed (a final report). The report 
contains a result description that specifies the results of the execution. 12 

The manager may terminate contracts with a termination message. The 
contractor receiving such a message terminates execution of the contract and 
all related outstanding subcontracts. 

A contract is thus an explicit agreement between a node that generates a 
task (the manager) and a node that executes the task (the contractor, Fig. 9). 
Note that establishing a contract is a process of mutual selection. Available 
contractors evaluate task announcements until they find one of interest; the 
managers then evaluate the bids received from potential contractors and select 
the ones they determine to be most appropriate. Both parties to the agreement 
have evaluated the information supplied by the other and a mutual selection 
has been made. 

We have dealt here with a simple example in order to focus on the issue of 

12Interim reports are useful when generator-style control is desired. A node can be set to work 
on a task and instructed to issue interim reports whenever the next result is ready. It then pauses, 
awaiting a message that instructs it to continue and produce another  result. 
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MANAGER 

cONTRACTOR'~.~ 

FIG. 9. A contract established. 

cooperation.  Additional complications which arise in implementing the proto- 
col are discussed in detail in [26]; we note them briefly here for reference. 
Focused addressing is a more  direct communication scheme used where the 
generality of broadcast  is not required. Directed contracts are used when a 
manager  knows which node is appropriate  for a task. A request-response 
mechanism allows simple transfers of information without the overhead of 
contracting. And  finally, a node-available message allows reversal of the 
normal negotiation process: When the computat ion load on the net is high, 
most task announcements  will not be answered with bids because all nodes will 
already be busy. The  node-available message allows an idle node to indicate 
that it is searching for a task to execute. The protocol is thus load-sensitive in 
response to changing demands  of the task: When the load is low, the spawning 
of a task is the important  event;  when the load is high, the availability of a 
node is important.  

7.4. Contract  net protocolmmessage format 

Each message is composed of a number  of slots that specify the kind of 
information needed in that type of message. A task announcement  message, 
for example,  has four mairk slots (Fig. 10). x3 The  eligibility specification is a list 

13There are also slots that contain bookkeeping information. 
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FIG. 10. Task announcement format. 

Main Task Announcement Slots 

Eligibility specification 
Task abstraction 
Bid specification 
Expiration time 

of criteria that a node  must meet  to be eligible to submit  a bid. The  task 
abstraction is a brief description of the task to be executed.  It enables a node 
to rank the announced  task relative to o ther  announced  tasks. The  bid 
specification is a description of the expected form of a bid. It gives a manager  
a chance to say, in effect, " H e r e ' s  what I consider  impor tant  about  a node  that 
wants to bid on this task."  This provides a c o m m o n  basis for compar ison of 
bids, and enables a node to include in a bid only the information about  its 
capabilities that are relevant to the announced  task. Finally, the expiration time 
is a deadline for receiving bids. 

For  any given application, the information that makes  up the eligibility 
specification, etc., must be supplied by the user. Hence  while the contract  net 
protocol  offers a f ramework specifying the types of information that are 
necessary, it remains the task of the user to supply the actual information 
appropr ia te  to the domain at hand. 

7.5. Contract net protocol--the common internode language 

Finally, we need a language in which to specify the information in the slots of a 
message. For  a number  of  reasons, it is useful to specify a single, relatively high 
level language in which all such information is expressed. We  call this the 
common internode language. This language forms a c o m m o n  basis for com- 
municat ion among  all the nodes. 

As  an example,  consider a task announcemen t  message that might be used in 
a system working on a signal processing task. Assume that one  node  at tempting 
to analyze a signal determines  that it would be useful to have a Fourier  
t ransform of that signal. Unwilling or  unable to do the task itself (perhaps 
because of hardware  limitations), it decides to announce  the task in order  to 
solicit assistance. It might issue a task announcemen t  of the sort shown in Fig. 
11. 

The  announcement  is broadcast  to all nodes  within range ("To:  *"), and 
indicates that there is a TASK of TYPE FOURIER-TRANSFORM to be done.  In order  to 
consider bidding on it a node must have an F~rBOX and a bid should specify 
est imated time to complet ion of the task. 

The  c o m m o n  internode language is currently built a round a very simple 
attribute, object, value representation.  There  are a number  of predefined 
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TO: * 

From: 25 
Type: TASK ANNOUNCEMENT 
Contract: 43-6 

Eligibility Specification 
MUST-HAVE FFTBOX 

Task Abatraction 
TASK TYPE FOURIER-TRANSFORM 
NUMBER-POINTS 1024 
NODE NAME 25 
POSITION I_AT 64N LONG 10W 

Bid Specification 
COMPLETION-TIME 

Expiration Time 
29 1645Z NOV 1980 

FIG. 11. Task announcement  example.  

(domain-independent) terms (like TYPE of TASK); these are supplemented with 
domain-specific terms (like FelBox). The domain-independent terms are part of 
the language offered to the user and help him organize and specify the 
information he has to supply. The domain-specific terms have to be added by 
the user as needed for the application at hand. 

All of this information is stated in terms of something we here called a 
common internode language. The two important points here are that the 
information in messages is viewed as statements in a language, and that the 
language is common to all the nodes. 

It is useful to view the messages as statements in a language because this sets 
the appropriate perspective on the character of the interaction we are trying to 
achieve. Vie~,ing the message exchange as, say, pattern matching would lead to 
a much more restricted form of communication: A pattern either matches or 
fails; if it succeeds the only information available comes from the bindings of 
pattern variables. Viewing the messages as statements in a language offers the 
chance for a more interesting exchange of information, since the nodes are 
examining and responding to the messages, not simply matching patterns. In 
particular, we find the two-way exchange of information an important capability 
(see Section 9). 

It is useful to identify a common 'core '  language shared by all the nodes. 
This makes it much easier to add new nodes to the net. Any new node, 
preloaded with only the common internode language, can use that language to 
isolate the information it needs to begin to participate in solving the problem at 
hand. It can listen to and understand task announcements and express a 
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reques t  for the  t ransfer  of any requ i red  in format ion .  If the re  were  a n u m b e r  of 
dist inct  i n t e rnode  languages,  then a new node  en te r ing  the  net cou ld  in teract  
with only a l imi ted  subset  of the  nodes,  those  which spoke  its l anguageJ  4 This  
would  m a k e  add i t ion  of new nodes  to the  net  less effective.  

A c o m m o n  language  also makes  poss ib le  invoca t ion  schemes  that  are  more  
flexible than s t anda rd  p r o c e d u r e  invocat ion ,  and  this also faci l i ta tes  add i t ion  of 
a new node  to the  net. Fo r  example ,  a c o m m o n  language  makes  it poss ib le  to 
use invocat ion  based  on descr ib ing  tasks  to  be  done ,  ~5 ra the r  than  naming  
specific KSs (p rocedures )  to invoke  next.  W h e n  this t echn ique  is used,  new 
nodes  can s imply be a d d e d  to the  exist ing col lec t ion;  they  will find thei r  own 
place  in the scheme of things by l istening to task announcemen t s ,  issuing bids, 
etc. Wi th  more  t rad i t iona l  invocat ion  schemes  (e.g., s t anda rd  p rocedu re  cal- 
ling), a new node  would  have  to be l inked  expl ic i t ly  to o the r s  in the  ne twork .  

8. Example: Distributed Sensing 

The  p ro toco l  desc r ibed  above  has been  i m p l e m e n t e d  in INTERLISP and  used to 
solve severa l  p r o b l e m s  in a s imula ted  mul t i -p rocesso r  env i ronment .  T h e  prob-  
lems inc luded search (e.g., the  8-queens  p r o b l e m )  and signal i n t e rp re t a t ion  (for 
deta i l s  see [26]). In this sect ion we descr ibe  use of  the  cont rac t  net on one  such 
p r o b l e m  in signal in t e rp re ta t ion :  a rea  surve i l lance  of the  sort  e n c o u n t e r e d  in air  
o r  ship traffic control .  W e  exp lore  the  ope ra t i on  of a ne twork  of nodes ,  each 
having e i ther  sensing or  process ing capabi l i t i es  and  all sp read  th roughou t  a 
re la t ive ly  large geograph ic  area.  W e  refer  to such a ne twork  as a d i s t r ibu ted  
sensing system (DSS). 

A l though  an ope ra t iona l  DSS may have severa l  functions,  ranging f rom 
passive analysis  to act ive cont ro l  over  vehicle  courses  and speeds ,  we focus 
here  on the analysis  funct ion.  The  task involves de tec t ion ,  classif ication,  and  
t rack ing  of vehicles;  the  solut ion to the p rob l e m is a dynamic  m a p  of traffic in 
the  area .  Cons t ruc t ion  and ma in t enance  of the  map  requ i res  i n t e rp re t a t ion  of 
the  large quan t i ty  of sensory  in format ion  rece ived  by the  col lec t ion  of sensor  
e lements .  

Since we want  to p roduce  a single map  of the  en t i re  area ,  we may  choose  to 
have one  p rocessor  n o d e - - w h i c h  we will call the  m o n i t o r  n o d e - - c a r r y  out  the  
final in tegra t ion  of in format ion  and t ransmi t  it to the  a p p r o p r i a t e  des t ina t ion .  
It is also useful to  assign that  node  the respons ib i l i ty  for beg inn ing  the 
ini t ia l izat ion of the  DSS. Its total  set of respons ib i l i t i es  t he re fo re  includes  
s tar t ing the  ini t ia l izat ion as the  first s tep in net  ope ra t i on ,  in tegra t ing  the  overal l  

14Note that the extreme case (in which every pair of nodes communicates in its own private 
language) is precisely standard procedure invocation. To decode a procedure call, one must know 
the expected order, type, and number of arguments. This is information which is shared only by the 
caller and procedure involved, in effect a private language used for communication between them. 

~SAs is also done in PLANNER and the other pattern-directed languages. 
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map as the last step in analysis, and then communicating the result to the 
appropriate  agent. We will see that this monitor  node does not, by the way, 
correspond to a central controller. 

Since the emphasis in this work has been on organizing the problem solving 
activities of multiple problem solvers, work on the signal interpretation aspects 
did not include construction of low-level signal processing facilities. Instead it 
assumed the existence of appropriate  signal processing modules and focused on 
the subsequent symbolic interpretation of that information. 

8.1. Hardware 

All communication in the DSS is assumed to take place over  a broadcast 
channel (using for example packet radio techniques [14[). The nodes are 
assumed to be in fixed positions known to themselves but not known a priori to 
other nodes in the net. Each node has one of two capabilities: sensing or 
processing. The sensing capability includes low-level signal analysis and feature 
extraction. We assume that a variety of sensor types exists in the DSS, that the 
sensors are widely spaced, and that there is some overlap in sensor area 
coverage. Nodes with processing capability supply the computat ion power 
necessary to effect the high-level analysis and control in the net. They are not 
necessarily near the sensors whose data they process. 

Fig. 12 is a schematic representation of a DSS. 
In the example that follows, some assumptions about such things as node 

locations, what one node knows about another,  etc., may seem to be carefully 
chosen rather than typically what one would expect to find. This is entirely 
true. We have combined a number  of plausible but carefully chosen (and 
occasionally atypical) assumptions about hardware and software available in 
order to display a number  of the capabilities of the contract net in a single, 
brief example.  
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FIG. 12. A distributed sensing system. M: monitor node; P: processor node; G: sensor node. 
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8.2. Data and task hierarchy 

The DSS must integrate a large quantity of data, reducing it and transforming 
it into a form meaningful to a human decision maker.  We view this process as 
occurring in several stages, which together form a data hierarchy (Fig. 13). 

As we have chosen to solve the problem for this illustration, at any given 
moment  a particular node handles data at only one level of the data hierarchy, 
but may communicate  with nodes at other levels. In addition, the only form of 
signal processing we consider is narrow band spectral analysis. 16 

At the bot tom of the hierarchy we have audio signals, which are described in 
terms of several features: frequency, time of detection, strength, changes in 
strength, name and position of the detecting node, and name, type, and 
orientation of the detecting sensor. 

Signals are formed into signal groups, collections of related signals. One 
common signal group is the harmonic set, a collection of signals in which the 
frequency of each signal is an integral multiple of the lowest frequency. In the 
current example, a signal group is described in terms of its fundamental  
frequency, time of formation, identity of the detecting node, and features of 
the detecting sensor. 

OVERALL AREA MAP 

AREA MAP 

VEHICLE 

SIGNAL GROUP 

SIGNAL 

FIG. 13. Data hierarchy. 

~6Noise radiated by a vehicle typically contains narrow band signal components caused by 
rotating machinery. The frequencies of such signals are correlated with the type of rotating 
machine and its speed of rotation; hence they are indicators of the classification of the vehicle. 
Narrow band signals also undergo shifts in frequency due to Doppler effect or change in the speed 
of rotation of the associated machine; hence they also provide speed and directional information. 
(Unfortunately, alterations in signal strength occur both as a result of propagation conditions and 
variations in the distance between the vehicle and the sensor.) 
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FIG. 14. Task hierarchy. 
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The next level of the hierarchy is the description of the vehicle. It has one or 
more signal groups associated with it and is further specified by position, speed, 
course, and classification. Position can be established by triangulation, using 
matching groups detected by several sensors with different positions and 
orientations. Speed and course must generally be established over time by 
tracking. 

The area map  forms the next level of the data hierarchy. It contains 
information about the vehicle traffic in a given area. There will be several such 
maps for the DSS-- together  they span the total area of coverage of the system. 

The final level is the complete or overall area map, produced in this example 
by the monitor, which integrates information in the individual area maps. 

The hierarchy of tasks, Fig. 14, follows directly from the data hierarchy. The 
monitor node manages several area contractors. These contractors are respon- 
sible for the formation of traffic maps in their immediate areas. Each area 
contractor, in turn, manages several group contractors that provide it with 
signal groups for its area. Each group contractor integrates raw signal data 
from signal contractors that have sensing capabilities. 

The area contractors also manage several vehicle contractors that are res- 
ponsible for integrating information about individual vehicles. Each of these 
contractors manages a classification contractor that determines vehicle type, a 
localization contractor that determines vehicle position, and a tracking con- 
tractor that tracks the vehicle. 

8.3. Contract net implementation 

There are two phases to this problem: initialization of the net and operation. 
Although there are interesting aspects to both of these phases, our concern 
here is primarily with initialization, since this phase most easily illustrates the 
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transfer of control issues that form one focus of this paper. The operation 
phase is dealt with only briefly; for further discussion see [25]. 

The terminology in the discussion that follows highlights the fact that the 
nodes in the contract net play a dual role: They are simultaneously contractors 
obligated to carry out a task that they were awarded, and managers for any 
tasks which they in turn announce.  For example, node number 2 in Fig. 15 
is simultaneously (i) a contractor for the area task (and hence is charged with 
the duty of producing area maps from vehicle data), (ii) a m a n a g e r  for group 
formation tasks which it announces  and contracts out, and (iii) a manager  for 
any vehicle tasks which it contracts out. Nodes  are thus simultaneously both 
workers and supervisors. (Compare Fig. 14 and Fig. 15.) 

8.3.1. Init ial izat ion 

The monitor node is responsible for initialization of the DSS and for formation 
of the overall map. It must first select nodes to be area contractors and 
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FIG. 15. Nodes and their roles. 
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partition the system's span of coverage into areas based on the positions of the 
nodes selected. For purposes of illustration we assume that the monitor node 
knows the names of the nodes that are potential area contractors, but must 
establish their positions in order to do the partitioning. 

It begins by announcing the task of area map formation. Because it knows 
the names of potential contractors, it can avoid using a general broadcast and 
instead uses focused addressing. The components of the announcement of 
interest here are the task abstraction, the eligibility specification, and the bid 
specification. The task abstraction is simply the task type. The eligibility 
specification is blank, since in this case the monitor node knows which nodes 
are potential contractors and can address them directly. The bid specification 
informs a prospective area contractor to respond with its position. 

Recall that the purpose of a bid specification is to inform a node of how to 
bid so that a manager can select from all of the bidders the most appropriate 
one(s) to execute the task. In this case, node position is the relevant in- 
formation. Potential area contractors respond with their positions, and, given 
that information, the monitor node can partition the overall span of coverage 
into approximately equal-sized areas. It then selects a subset of the bidders to 
be area contractors, informing each of its area of responsibility in an award 
message. The negotiation sequence thus makes available to the monitor node 
the positions of all of the potential area contractors, making possible a 
partitioning of the overall area of the DSS based on these positions. This in 
turn enables the DSS to adjust to a change in the number or position of 
potential area contractors. 

Area contractors integrate vehicle data into area maps. They must first 
establish the existence of vehicles on the basis of group data. To do this, each 
area contractor solicits other nodes to provide that data. In the absence of any 
information about which nodes are suitable, each area contractor announces 
the task using a general broadcast. The task abstraction in this message is the 
type of task. The eligibility specification is the area for which the area 
contractor is responsible. ~7 The bid specification is again node position. Poten- 
tial group contractors respond with their respective positions, and based on this 
information the area contractors award contracts to nodes in their areas of 
responsibility. 

The group contractors integrate signal features into groups, and start by 
finding a set of contractors to provide the signal features. Recall that we view 
node interaction as an agreement between a node with a task to be done and a 
node capable of performing that task. Sometimes the perspective on the ideal 
character of that agreement differs depending on the point of view of the 

17This ensures  that  a node  is eligible to bid on this task only if it is in the  s a m e  a rea  as the  

announc ing  a rea  con t r ac to r  and  helps  to p reven t  a case in which a g r o u p  con t r ac to r  is so far  away  

f rom its m a n a g e r  that  rel iable c o m m u n i c a t i o n  is difficult to achieve.  
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participant. For example, from the perspective of the signal task managers, the 
best set of contractors would have an adequate spatial distribution about the 
surrounding area and an adequate distribution of sensor types. From the point 
of view of the signal task contractors, on the other hand, the ideal match 
involves finding managers that are closest to them (in order to minimize 
potential communication problems). 

The ability to express and deal with such disparate viewpoints is one 
advantage of the contract net framework. To see how the appropriate resolu- 
tion is accomplished, consider the messages exchanged between the signal 
managers and potential signal contractors. Each signal manager announces its 
own signal task, using a message of the sort shown in Fig. 16. The task 
abstraction is the type of task, the position of the manager making the 
announcement, and a specification of its area of responsibility. This enables a 
potential contractor to determine the manager to which it should respond. The 
eligibility specification indicates that the only nodes that should bid on the task 
are those which (a) have sensing capabilities, and (b) are located in the same 
area as the manager that announced the task. The bid specification indicates 
that a bid should contain the position of the bidder and the number of each of 
its sensor types, information that a manager needs to select a suitable set of 
sensor nodes. 

The potential signal contractors listen to the task announcements made by 
signal managers. They respond to the nearest manager with a bid (Fig. 17) that 
supplies their position and a description of their sensors. The managers use this 

To: • 

From: 25 
Type: TASK ANNOUNCEMENT 
Contract: 22-3-1 

Eligibility Specification 
MUST-HAVE SENSOR 
MUST-HAVE POSITION AREA A 

Task Abstraction: 
TASK TYPE SIGNAL 
POSITION I_AT 47N LONG 17E 
AREA NAME A SPECIFICATION (. . . )  

Bid Specification 
POSITION I_AT LONG 
EVERY SENSOR NAME TYPE 

Expiration Time 
28 1730Z FEB 1979 

FIG. 16. Signal task announcement. 
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To: 25 
From: 42 
Type: BID 
Contract: 22-3-1 

Node Abstraction 
LAT 62N LONG 9W 
SENSOR NAME S1 TYPE S 
SENSOR NAME S2 TYPE S 
SENSOR NAME TI TYPE T 

FIG. 17. Signal bid. 

informat ion to select a set of  bidders that covers their area of responsibility 
with a suitable variety of  sensors, and then award signal contracts  on this basis 
(Fig. 18). 

The  signal contract  is a good  example  of the negotiat ion process. It involves 
a mutual  decision based on local processing by both the managers  and the 
potential  contractors .  T he  potential  contrac tors  base their decision on a dis- 
tance metric and respond  to the closest manager .  The  managers  use the 
n u m b e r  of sensors and distribution of  sensor  types observed in the bids to 
select a set of contrac tors  that covers each area with a variety of sensors. Thus  
each par ty  to the contract  evaluates the proposals  made  by the o ther  using its 
own distinct evaluat ion procedure .  

To  review the initialization process:  we have a single moni to r  node  that 
manages  several area contractors .  Each  area cont rac tor  manages  several g roup  
contractors ,  and each g roup  cont rac tor  manages  several signal contractors .  The  
data  initially flows f rom the bo t t om to the top of this hierarchy. The  signal 
contrac tors  supply signal features;  each g roup  cont rac tor  integrates the features 
f rom several signal contrac tors  to form a signal group,  and these groups  are 
passed along to the area contractors ,  which eventually form area maps by 
integrating informat ion based on the data  f rom several g roup  contractors .  All 

FIG. 18. Signal award. 

To: 42 
From: 25 
Type: AWARD 
Contract: 22-3-1 

Task Specification 
SENSOR NAME $1 
SENSOR NAME $2 
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the  a rea  maps  are  then passed  to the  m o n i t o r  which forms the final traffic 
map.  18 

The  ini t ia l izat ion process  r ev iewed  a b o v e  may  a p p e a r  at first g lance  to be 
somewha t  more  e l a b o r a t e  than  is str ictly necessary .  W e  have  purpose ly  taken  a 
fairly genera l  app roach  to the  p r o b l e m  to emphas i ze  two aspects  of cont rac t  
net  pe r fo rmance .  First ,  as i l lus t ra ted  by the signal contrac t ,  con t rac t  nego-  
t ia t ion is an in te rac t ive  process  involving (i) a two-way transfor of information 
(task a n n o u n c e m e n t s  f rom manage r s  to  con t rac tors ,  b ids  f rom con t rac to r s  to 
managers ) ,  (ii) local evaluation (each pa r ty  to the  nego t ia t ion  has its own local 
eva lua t ion  p rocedure ) ,  and  (iii) mutual selection (b idders  select  f rom a m o n g  
task announcemen t s ,  manage r s  select  f rom among  bids).  

Second,  the  con t rac t  nego t ia t ion  process  offers a useful  deg ree  of flexibili ty,  
mak ing  it well  su i ted  to A I  p r o b l e m s  whose  de c ompos i t i on  is not  known a 
pr ior i  and  well su i ted  to p r o b l e m s  whose  conf igura t ion  is l ikely to change  ove r  
t ime.  To  i l lus t ra te  this, cons ide r  that  exact ly  the  same ini t ia l izat ion process  will 
work  across  a large var ia t ion  in the  n u m b e r  of and  pos i t ion  of nodes  ava i lab le  
( indeed  the  descr ip t ion  given never  men t ions  how many  nodes  the re  are,  whe re  
they  are  located,  o r  how wide  the to ta l  a r ea  of cove rage  is). T h e r e  are  c lear ly  
l imits to  this f lexibil i ty:  If the  a rea  of cove rage  were  large enough  to requ i re  
severa l  t housand  a r ea  cont rac tors ,  it might  p rove  useful  to in t roduce  a no the r  
level of d i s t r ibu t ion  in the  h ie ra rchy  (Fig. 14) be tween  the  m o n i t o r  node  and  
the  a rea  con t rac tor .  But  the  cur ren t  a p p r o a c h  works  with a wide range  of 
ava i lab le  resources  and needs  no modif ica t ion  within that  range.  This  can be 
useful  when avai lab le  h a r d w a r e  resources  cannot  be  ident i f ied  a pr ior i  with 
cer ta in ty ,  or  when ope ra t ing  e n v i r o n m e n t s  a re  host i le  enough  to m a k e  h a r d w a r e  
fa i lure  a significant occur rence .  

8.3.2. Operation 

W e  now cons ide r  the  activi t ies of the  sys tem as it begins  ope ra t ion .  F o r  the  
sake  of brevi ty  the  ac t ions  are  desc r ibed  at the  level of task announcemen t s ,  
bids,  and  contracts .  Fo r  add i t iona l  de ta i l s  and  examples  of messages  sent,  see 

[251. 
W h e n  a signal is d e t e c t e d  or  when a change  occurs  in the  fea tu res  of a 

known signal,  the  de tec t ing  signal con t r ac to r  repor t s  this fact to  its manage r .  
This  node ,  in turn,  a t t emp t s  e i the r  to  in tegra te  the  in fo rmat ion  into  an exist ing 
signal g roup  o r  to  form a new signal g roup  (recall  that  the  m a n a g e r  for  the  
signal task is also a con t r ac to r  for the  task of g roup  fo rmat ion ,  Fig. 15). 

~SAs noted, in this example one area contractor manages several group contractors and each 
group contractor in turn manages several signal contractors. It is possible, however, that a single 
group contractor could supply information to several area contractors, and a single signal 
contractor could supply information to several group contractors. It may be useful, for instance, to 
have a particular group contractor near an area boundary report to the area contractors on both 
sides of the boundary. This is easily accommodated within our framework. 
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Wheneve r  a new g roup  is detected,  the con t rac tor  reports  existence of  the 
g roup  to its manager  (an area contractor) .  The  area con t rac tor  a t tempts  to find 
a node  to execute  a vehicle contract ,  which involves classifying, localizing, and 
tracking the vehicle. The  area cont rac tor  must first de te rmine  whether  the 
newly detec ted  g roup  is at t r ibutable to a known vehicle. To  do this, it uses a 
request - response  in terchange to get f rom all current  vehicle contractors  an 
indication of their belief that  the new group  can in fact be at t r ibuted to one  of 
the known vehicles. 19 Based on the responses,  the area cont rac tor  ei ther  starts 
up a new vehicle cont rac tor  (if the g roup  does not seem to fit an existing 
vehicle) or  augments  the current  contract  of the appropr ia te  vehicle contractor ,  
adding to it the task of making certain that the new group  corresponds  to a 
known vehicle. This may entail such things as gather ing new data  via the 
adjus tment  of sensors or  the creation of  contracts  with new sensor nodes. 

The  vehicle cont rac tor  then makes  two task announcements :  vehicle 
classification and vehicle localization. A classification cont rac tor  may be able to 
classify directly, given the signal g roup  informat ion or  it may  require more  
data,  in which case it can communica te  directly with the appropr ia te  sensor 
nodes.  2° The  localization task is a simple tr iangulation which is awarded  to the 
first bidder.  

Once  the vehicle has been localized, it must  be tracked.  This is handled by 
the vehicle contractor ,  which issues additional localization contracts  f rom time 
to t ime and uses the results to update  its vehicle description. Alternatively,  the 
area con t rac tor  could award separate  tracking contracts .  The  decision as to 
which me thod  to use depends  on loading and communica t ion .  If, for example,  
the area con t rac tor  is very busy with integrat ion of data  f rom many group  
contractors ,  it seems more  appropr ia te  to isolate it f rom the additional load of 
tracking contracts.  If, on the o ther  hand, the area cont rac tor  is not overly busy, 
we can let it handle  upda ted  vehicle contracts,  taking advantage  of  the fact that 
it is in the best position to integrate the results and coordina te  the efforts of 
multiple tracking contractors .  In this example,  we assume that the managemen t  
load would be too large for the area contractor .  

A variety of  o ther  issues have to be considered in the design and opera t ion 
of a real distributed sensing system. Most of them, however ,  are quite specific 
to the DSS application and hence  outside the main focus of this paper.  

Jgln r e sponse  to  the  reques t ,  the  vehic le  con t r ac to r  has  two opt ions .  It can c o m p u t e  the answer  
itself,  or, if it dec ides  tha t  tha t  would  requ i re  more  process ing  power  than  it can spare ,  it can issue 

a cont rac t  and  have  a n o t h e r  node  c o m p u t e  the  answer .  

2°As this  e x a m p l e  i l lus t ra tes ,  it is poss ib le  in the con t rac t  net  for two con t rac to r s  to c o m m u n i c a t e  
d i rect ly  (i.e., hor izon ta l  c o m m u n i c a t i o n  across  the h ie ra rchy)  as well  as via  the  m o r e  t r ad i t iona l  
(ver t ical)  c o m m u n i c a t i o n  be tween  m a n a g e r s  and  cont rac tors .  Th is  is accompl i shed  wi th  reques t -  
r e sponse  exchanges .  If the  ident i ty  of the  rec ip ien t  of the  reques t  is not  k n o w n  by name ,  then  the  
reques t  can be  sent  out  using the  focused address ing  s cheme  m e n t i o n e d  in Sect ion 7.3. 
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9. A Progression in Mechanisms for Transfer of Control 

9.1. The basic questions and fundamental differences 

The contract net appears to offer a novel perspective on the traditional 
concepts of invocation and transfer of control. To illustrate this, we examine 
a range of invocation mechanisms that have been created since the earliest 
techniques were developed, and compare  the perspective implicit in each 
to the perspective used in the contract net. 

In doing this comparison, we consider the process of transfer of control from 
the perspective of both the caller and the respondent.  We focus in particular on 
the issue of selection and consider what opportunities a calling process has for 
selecting an appropriate  respondent and what opportunities a potential res- 
pondent has for selecting the task on which to work. In each case we consider 
two basic questions that either the caller or the respondent  might ask: 

What is the character of the choice available? (i.e., at runtime, 
does the caller know about all potential respondents and can it 
choose from among them; similarly does each respondent know 
all the potential callers for whom it might work and can it choose 
from among them?) 

On what kind of information is that choice based? (e.g., are 
potential respondents given, say, a pattern to match, or some 
more complex form of information? What information is the 
caller given about the potential respondents?) 

The answers to these questions will demonstrate  how our view of control 
transfer differs from that of the earlier formalisms with respect to: 

Information transfer: The announcement-bid-award sequence 
means that there is the potential for more information, and more 
complex information, transferred in both directions (between 
caller and respondent)  during the invocation process. 

Local evaluation: The computation devoted to the selection 
process, based on the information transfer noted above, is more 
extensive and more complex that that used in traditional ap- 
proaches. It is local in the sense that information is evaluated in a 
context associated with, and specific to, an individual KS (rather 
than embodied in a global evaluation function). 

Mutual selection: The local selection process is symmetric, in the 
sense that the caller evaluates potential respondents from its 
perspective (via the bid evaluation procedure) and the respon- 
dents evaluate the available tasks from their perspective (via the 
task evaluation procedures). 
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To put it another  way, in the contract net the issue of transfer of control is 
more broadly viewed as a problem of connecting managers (and their tasks) 
with contractors (and their KSs). This view is inherently symmetric in that both 
the caller (manager) and respondents (bidders) have a selection to make. This 
symmetry in turn leads to the concept of establishing connection via negotiation 
between the interested parties. Then,  if we are to have a fruitful discussion, the 
participants need to be able to 'say'  interesting things to one another  (i.e., they 
need the ability to transfer complex information). As the discussion below 
should made clear, previous models of invocation do not share these qualities. 
They view transfer of control as an essentially unidirectional process (from 
caller to respondent),  offer minimal opportunity for selection at runtime, and 
provide restricted channels of communication between caller and respondent.  

9.2. The comparison 

In discussing the various approaches to invocation we often refer to ' s tandard '  
or ' traditional '  forms of these approaches.  Each of them could conceivably be 
modified in ways that would render our comments  less relevant, but our point 
here is to examine the techniques as conceived and as typically used. 

Standard subroutine (procedure) invocation represents,  by our standard, a 
degenerate  case. All the selection of routines to be invoked is done beforehand 
by the programmer  and is hardwired into the code. The possible respondents 
are thus named explicitly in the source code, leaving no opportunity for choice 
or nondeterminism at runtime. 

In traditional production rule systems, a degree of choice for the caller (in 
this case the interpreter) is available, since a number  of rules may be retrieved 
at once. A range of selection criteria have been used (called conflict resolution 
schemes- - see  [5]), but these have typically been implemented with a single 
syntactic criterion hardwired into the interpreter.  One standard scheme, for 
instance, is to assign a fixed priority to each rule and then from among those 
retrieved for possible invocation, simply select the rule with the highest 
priority. Selection is thus determined by a single procedure applied uniformly 
to every set of rules. 

In this approach to invocation there is some choice available in selecting a 
KS to be invoked (since more than one rule may be retrieved), but the 
mechanism provided for making that choice allows for only a single, preselec- 
ted procedure that is to be applied in all cases. In addition, all of the selection 
is done by the 'caller ' ;  there is no mechanism that offers the rules any ability to 
select how they are to be invoked (e.g., if a rule can match the database in 
several ways, which of the possible matches will actually be used.'?). Finally, 
only minimal information is transferred from potential respondents  back to the 
caller (at most a specification of what items in the database have been matched, 
and how). 
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PLANNER'S [11] pattern-directed invocation provides a facility at the pro- 
gramming language level for nondeterministic KS retrieval, by matching goal 
specifications (patterns) against theorem patterns. In the simplest case, 
theorems are retrieved one by one and matched against the goal specification 
until a match is found. The order in which the theorems are tried is not defined 
by the language and is dependent  on implementat ion decisions. 

PLANNER does offer, in the recommendation list, a mechanism designed to allow 
the user to encode selection information. The use construct provides a way of 
specifying (by name) which theorems to try in which order. The theorem base 
filter construct offers a way of invoking a predicate function which takes one 
argument  (the name of the next theorem whose pattern has matched the goal) 
and which can veto the use of that theorem. 

Note that there is a degree of selection possible here, since the theorem base 
filter offers a way of choosing among the theorems that might possibly be used. 
The selection may involve a considerable amount of computation by the 
theorem base filter, and is local, in the sense that filters may be specific to a 
particular goal pattern. However,  the selection is also limited in several ways. 
First, in the standard PLANNER invocation mechanism, the information available 
to the caller is at best the name of the next potential respondent.  The caller 
does not receive any additional information (such as, for instance, exactly how 
the theorem matched the pattern), nor is there any easy way to provide for 
information transfer in that direction. Second, the choice is, as noted, a simple 
veto based on just that single KS. That is, since final judgment is passed on 
each potential KS in turn, it is not possible to make comparisons between 
potential KSs or to pass judgment on the whole group and choose the one that 
looks by some measure the best. Both of these shortcomings could be over- 
come if we were willing to create a superstructure on top of the existing 
invocation mechanism, but this would be functionally identical to the 
announcement-bid-award mechanism described above. The point is simply that 
the standard PLANNER invocation mechanism has no such facility, and the 
built-in depth-first search with backtracking makes it expensive to implement.  

CONNIVER [19] represents a useful advance in nondeterministic invocation, 
since the result of a pattern-directed call is a 'possibilities list' containing all 
the KSs that match the pattern. While there is no explicit mechanism parallel 
to PLANNER'S recommendat ion list, the possibilities list is accessible as a data 
structure and can be modified to reflect any judgments the caller might make 
concerning the relative utility of the KSs retrieved. Also, paired with each KS 
on the possibilities list is an association-list of pattern variables and bindings, 
which makes possible a determination of how the calling pattern was matched 
by each KS. This mechanism offers the caller some information about each 
respondent that can be useful in making the judgments noted above. CONNIVER 
does not, however, offer the respondent any opportunity to perform local 
processing to select from among callers. 
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T h e  HEARSAY-|I [7] sys tem i l lus t ra tes  a n u m b e r  of s imi lar  facil i t ies in a 
d a t a - d i r e c t e d  sys tem.  In par t icu la r ,  the  focus of  a t t en t ion  mechan i sm has a 
po in t e r  to  all the  KSs  that  a re  r eady  to be  i nvoked  (i.e., those  whose  stimulus 
frames have  been  matched) ,  as well as in fo rmat ion  (in the  response frame) for  
e s t ima t ing  the  po ten t i a l  con t r ibu t ion  of each of the  KSs. T h e  sys tem can effect 
some  deg ree  of se lec t ion  regard ing  the  KSs ready  for  invoca t ion  and has 
ava i lab le  to  it a body  of k n o w l e d g e  abou t  each KS on which to  base  its 
se lect ion.  T h e  response  f r ame  thus  p rov ides  in fo rmat ion  t ransfe r  f rom respon-  
den t  to ca l ler  that ,  whi le  fixed in fo rmat ,  is more  ex tens ive  than p rev ious  
mechan isms .  C o n s i d e r a b l e  c o m p u t a t i o n  is also d e v o t e d  to  the  se lect ion 
process .  Note ,  however ,  that  the  se lect ion is not  local,  s ince the re  is a single, 
g lobal  s t ra tegy  used  for  every  se lect ion.  

The  concep t  of me ta - ru l e s  [3] offers a fu r the r  advance  in mechan i sms  to 
suppor t  more  e l a b o r a t e  con t ro l  schemes .  It suggests  that  KS select ion can be 
v iewed  as p r o b l e m  solving and can be effected using the same  mechan i sm 
e m p l o y e d  to solve  p r o b l e m s  in the  task doma in .  It views select ion as a process  
of p run ing  and  r e o r d e r i n g  the app l i cab le  KSs and p rov ides  local se lect ion by 
a l lowing me ta - ru l e s  to  be  assoc ia ted  with specific goals.  2~ 

T h e r e  are  severa l  things to no te  abou t  the  sys tems r ev iewed  thus  far. First ,  
we see an increase  in the  a m o u n t  and var ie ty  of in fo rmat ion  that  is t r ans fe r red  
f rom ca l le r  to  r e s p o n d e n t  (e.g., f rom explici t  naming  in subrout ines ,  to pa t t e rns  
in PLANNER) and f rom r e s p o n d e n t  to ca l le r  (e.g., f rom no response  in subrou-  
t ines to  the  r e sponse  f rames  of  HEARSAY-H). Note ,  however ,  that  in no case do  
we have  ava i lab le  a gene ra l  in fo rmat ion  t ransmiss ion  mechan i sm.  In all cases,  
the  mechan i sms  have  been  des igned  to  car ry  one  pa r t i cu la r  sort  of in fo rmat ion  
and are  not  easi ly modif ied .  

Second ,  we see a p rogress ion  f rom the re t r ieva l  of  a single KS to the  
re t r ieva l  of the  en t i re  set of po ten t i a l ly  useful  KSs, p rov id ing  the o p p o r t u n i t y  
for  more  complex  var ie t i es  of se lect ion.  

Final ly ,  no te  that  all the  se lect ion so far is f rom one  pe rspec t ive ;  the  
se lect ion of r e s p o n d e n t s  by the  cal ler .  In none  of these  sys tems do  the 
r e s p o n d e n t s  have  any choice  in the  mat te r .  

T o  i l lus t ra te  this last point ,  cons ide r  tu rn ing  HEARSAY-II a r o u n d  and  c rea t ing  a 
sys tem w h e r e  r e s p o n d e n t s  p e r f o r m e d  the se lec t ion:  a ' task  b l a c k b o a r d '  system. 
The  s imples t  fo rm of such a sys tem would  have  a cent ra l  task b l a c k b o a r d  that  
conta ins  an u n o r d e r e d  list of tasks  that  need  to be  p e r f o r m e d .  A s  a KS works  
on its cu r ren t  task,  it may  d i scover  new (sub) tasks  that  r equ i re  execu t ion  and 
add  t hem to the  b l a c k b o a r d .  W h e n  a KS finishes its cur ren t  task,  it looks  at the  
b l a c k b o a r d ,  eva lua t e s  the  lists of tasks  there ,  and  dec ides  which one  it wants  to 
execute .  

2LThe concept of negotiation in the contract net grew, in part, from generalizing this perspective 
to make it "bi-directionaF: Both managers and potential contractors can devote computational 
effort to selecting from the alternatives available to them. 
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Note that in this system the respondents would have all the selection 
capability. Rather  than having a caller announce a task and evaluate the set of 
KSs that respond, we have the KSs examining the list of tasks and selecting the 
one they wish to work on. It is thus plausible to invert the standard situation, 
but we still have unidirectional selection--in this case, on the part of the 
respondent rather than the caller. 

PUP6 [16], on the other hand, was the first system to suggest that transfer of 
control could be viewed as a discussion between the caller and potential 
respondents. In that system, if a KS receives more than one offer to execute a 
task, a special 'chooser '  KS momentari ly takes control and asks 'questions'  of 
the respondents to determine which of them ought to be used. This is 
accomplished by querying the parts of the KS. Each KS is composed of a 
standard set of parts, each part designed to deal with a particular question 
about that KS. For example, the procedures in the W H E N  and COM- 
PLEXITY parts of a KS answer the questions "When should you take 
control?" and " H o w  costly are you?"  This interchange is highly stylized and 
not very flexible, but does represent an at tempt to implement explicit two-way 
communication. 

The contract net differs from these approaches in several ways. First, from 
the point of view of the caller (the manager),  the standard task broadcast and 
response interchange has been improved by making possible a more in- 
formative response. That is, instead of the traditional tools that allow the caller 
to receive only a list of potential respondents, the contract net has available a 
mechanism that makes it possible for the caller to receive a description of 
potential utility from each respondent (the bidders). The caller also has 
available (as in other approaches) a list of respondents rather  than a sequence 
of names presented one at a time. 22 Both of these make it possible to be more 
selective in making decisions about invocation. 

Second, the contract net emphasizes local evaluation. An explicit place in the 
f ramework has been provided for mechanisms in which the caller can invest 
computational  effort in selecting KSs for invocation (using its bid evaluation 
procedure) and the respondents can similarly invest effort in selecting tasks to 
work on (using their task evaluation procedures). These selection procedures 
are also local in the sense that they are associated with and written from the 
perspective of the individual KS (as opposed to, say, HEARSAY-n's global focus 
of attention procedure). 

Third, while we have labeled this process selection, it might more ap- 
propriately be labeled deliberation. This would emphasize that its purpose for 
the caller is to decide in general what to do with the bids received and not 
merely which of them to accept. Note that one possible decision is that none of 
the bids is adequate and thus none of the potential respondents would be 

22More precisely, the caller has available a list of all those that have responded by the expiration 
time of the contract. 
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invoked (instead, the task may be r e - a n n o u n c e d  later). 23 This choice is not  

typically avai lable in other  p rob lem solving systems and emphasizes  the wider 
perspect ive taken by the contract  net  on the t ransfer  of control  issue. 

Finally,  there  appears  to be  a novel symmetry  in the t ransfer  of control  
process. Recall that PLANNER. CONNIVER, and  HEARSAY-II all offer the caller some 
ability to select f rom among  the respondents ,  while a task b lackboard  system 

allows the r e sponden t s  to select from among  the tasks. The  contract  net  (and 
PUP6), however ,  use an interactive,  mutual selection process where  task dis- 
t r ibut ion is the result of a discussion be tween  processors. As a result of the 
in format ion  exchanged in this discussion, the caller can select from among  
potent ia l  r e sponden t s  while the KSs can select from among  potent ia l  tasks. 

I0. Suitable Applications 

In this section we consider  the sorts of problems for which the contract  net  is 

well suited. 
The  f ramework  has, for instance,  been  designed to provide a more  powerful  

mechan i sm for t ransfer  of control  than is available in current  problem-solving 
systems. This mechan i sm will be useful when we do not  know in advance which 
KS should be invoked  or do not  know which node  should be given the task in 
quest ion.  In the first of these s i t u a t i o n s - - n o t  knowing  in advance which KS to 
i n v o k e - - w e  requi re  some machinery  for making  the decision. The  contract  
ne t ' s  negot ia t ion  and  de l ibera t ion  process is one  such mechanism.  It will prove 
most useful for p rob lems  in which especially careful selection of KSs is 
impor tan t  (i.e., p rob lems  for which we prefer the 'knowledge '  end  of the 
knowledge  vs. search tradeoff). 

The  second s i t u a t i o n - - m a t c h i n g  nodes  and  tasks - - i s  inheren t  in a dis t r ibuted 
archi tecture,  since no one  node  has comple te  knowledge  of ei ther  the capabili-  
ties of or  the busy/ idle  state of every node in the network.  We have labeled this 
the connec t ion  p rob lem and  have explored the negot ia t ion and del ibera t ion  
process as a way of solving it as well. 

The  f ramework  is wel l -matched to p rob lems  that can be viewed in terms of a 
hierarchy of tasks (e.g., heurist ic search), or levels of data abstract ion (e.g., 

23Similarly the potential bidders deliberate over task announcements received and may decide 
that none is worth submitting a bid. Note also that receiving bids but deciding that none is good 
enough is distinctly different from receiving no bids at all. In a system using pattern-directed 
inference, receiving no bids is analogous to finding no KSs with matching patterns; receiving bids 
but turning down all of them after due consideration has no precise analogy in existing languages. 

Agenda-based systems come close, in that KSs put on the agenda may have such a low ranking 
that they are effectively ignored. But this is not the same, for two reasons. First, if the queue ever 
does get sufficiently depleted, those KSs will in fact be run. Second, and more important, there is 
no explicit decision to ignore those KSs, simply an accident of the ordering, or perhaps the KS's 
own estimation of its individual utility. The contract net offers a mechanism for making the 
decision explicitly and based on an evaluation of all the candidates. 
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applications that deal with audio or video signals). Such problems lend them- 
selves to decomposition into a set of relatively independent tasks with little 
need for global information or synchronization. Individual tasks can be assig- 
ned to separate processor nodes; these nodes can then execute the tasks with 
little need for communication with other nodes. 

The manager-contractor structure provides a natural way to effect hierar- 
chical control (in the distributed case, it's actually concurrent hierarchical 
control), and the managers at each level in the hierarchy are an appropriate 
place for data integration and abstraction. 

Note, by the way, that these control hierarchies are not simple vertical 
hierarchies but are more complex generalized hierarchies. This is illustrated by 
the existence of communication links other than those between managers and 
contractors. Nodes are able to communicate horizontally with related contrac- 
tors or with any other nodes in the net, as we saw in the DSS example, where 
classification contractors communicated directly with signal contractors using 
the request-response style of interaction. 

The framework is also primarily applicable to domains where the subtasks 
are large and where it is worthwhile to expend a potentially nontrivial amount 
of computation and communication to invoke the best KSs for each subtask. It 
would, for instance, make little sense to go through an extended mutual 
selection process to get some simple arithmetic done or to do a simple database 
access. While our approach can be abbreviated to an appropriately terse degree 
of interchange for simple problems (e.g., directed contacts and the request- 
response mechanism), other systems are already capable of supporting this 
variety of behavior. The primary contribution of our framework lies in ap- 
plications to problems where the more complex interchange provides an 
efficient and effective basis for problem solving. 

Finally, the contract net is also useful in problems where the primary 
concerns are in distributing control, achieving reliability, and avoiding bot- 
tlenecks, even if, in these problems, the more complex variety of information 
exchange described above is unnecessary. The contract net's negotiation 
mechanism offers a means for distributing control: sharing responsibility for 
tasks between managers and contractors offers a degree of reliability; and the 
careful design of the message types in the protocol helps aw~id saturating the 
communication channel and causing bottlenecks. 

11. Limitations,  Extensions,  Open Problems 

11.1. The other stages ' 

Earlier we noted that this paper focuses on application of the contract net to. 
the distribution stage of distributed problem solving. The other stages--  
decomposition, sub-problem solution, and answer synthesis--are important foci 
for additional work. Problem decomposition, for example, is not a well- 
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understood process. It is easy to recognize when it is done well or badly, but 
there are relatively few principles that can be used prospectively to produce 
good decompositions. We address below the issue of sub-problem solution, 
noting that a more cooperative app roach - -on e  in which individual nodes share 
partial solutions as they work- -can  be useful in a variety of problems. Finally, 
as we have explored elsewhere [4], there are a number  of approaches to 
synthesizing individual sub-problem results, each addressing a different anti- 
cipated level of problem interaction. In future work we intend to explore 
applications of the contract net and the negotiation metaphor  to each of these 
topics. 

11.2. Instantiating the framework 

The f ramework we have p roposed- - the  task announcement ,  bid, award 
sequence, the common internode language, e tc . --offers  some ideas about what 
kinds of information are useful for distributed problem solving and how that 
information can be organized. There  is still a considerable problem involved in 
instantiating the f ramework in the context of a specific task domain. Our 
protocol provides a site for embedding particular types of information (e.g. an 
eligibility specification), but does not specify exactly what that information is 
for any specific problem. 

In this sense the contract net protocol is similar to AI  languages like 
PLANNER, CONNIVER, QLISP [24], etc., which supply a f ramework for problem 
solving (e.g., the notions of goal specifications, theorem patterns, etc.), but 
leave to the user the task of specifying the content of that f ramework for any 
given problem. We expect that further experience with our f ramework will lead 
to additional structure to help guide its use. 

11.3. Alternate models of cooperation 

We have emphasized task-sharing as a means of internode cooperat ion and 
have a t tempted to provide some mechanisms for the communicat ion required 
to effect this mode of cooperation. We have not as yet, however,  adequately 
studied result-sharing [28] as a means of cooperation. In what approach,  nodes 
assist each other through sharing of partial results. This type of cooperation 
appears  to be of use in dealing with several sorts of problems. For problems 
where erroneous data or knowledge lead to conflicting views at individual 
nodes, sharing results can help to resolve those inconsistencies (as for example 
in [17]). For some tasks, any individual subproblem is inherently ambiguous 
even when data and knowledge are complete and exact (e.g., the blocks world 
scene identification in [31]); here the sharing of intermediate results can be an 
effective means of reducing or removing ambiguity. It is our  intention to 
examine the structure of communication for this mode of cooperation wi th~-  
view to extending the contract net f ramework to incorporate it. 
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It would also be useful to develop a more advanced form of task-sharing. In 
our current formulation, task distribution results in the traditional form of 
"hand out a subtask and get back a result" interaction. We are currently 
exploring the possibility of expanding this to a more cooperative form of 
interaction in which "what is to be done" is negotiated as well as "who is to do 
it". 

We are also exploring further development of the dynamic configuration 
capability which the contract net makes possible. As noted in Section 8.3, 
initialization of the DSS can take into account the resources available (number 
of sensors, etc.). We intend to extend this to dynamic reconfiguration: the 
negotiation technique should provide a mechanism that allows nodes which 
have become overloaded to shed some of their workload by distributing tasks 
to other available nodes. 

11.4. Optimality of the negotiation process 

As noted, a major goal of the contract net framework is to provide a 
mechanism for solving the connection problem--achieving an appropriate 
matching of tasks to processor nodes. Yet it is easily seen that the negotiation 
process described above does not guarantee an optimal matching of tasks and 
nodes. 

There are two reasons why this may occur. First, there is the problem of 
timing. A node that becomes idle chooses a task to bid on from among the task 
announcements it has heard up to that time. Similarly, a manager chooses what 
to do on the basis of the bids it has received by the expiration time for its task 
announcement. But since the net operates asynchronously, new task 
announcements and new bids are made at unpredictable times. A better 
matching of nodes to tasks might be achieved if there were some way to know 
that it was appropriate for a node to wait just a little longer before bidding, or 
for a manager to wait a little longer before awarding a task. 

Second, at any given instant in time, the complete matching of nodes and 
tasks results from a number of local decisions. Each idle node chooses the most 
interesting task to bid on, without reference to what other idle nodes may be 
choosing; each manager chooses the best bid(s) it has received without 
reference to what any other manager may be doing. The best global assignment 
does not necessarily result from the simple concatenation of all of the best local 
assignments. 24 

Consider for example a situation in which two managers (A and B) have 
both announced tasks, and two potential contractors (X and Y) have each 
responded by bidding on both tasks. Imagine further that from A's  perspective, 
X's bid is rated 0.9 (on a 0 to 1 scale), while Y's is rated 0.8 (Fig. 19). 
Conversely, from B's perspective, X is rated 0.8 and Y is rated 0.2. 

24This appears to be a variety of the 'prisoner's dilemma' problem (see e.g., [10, ~]). 
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A B 
X 0.9 X 0.8 
Y 0.8 Y 0.2 

FIG. 19. Managers  rating bids from prospective contractors. 

From a purely local perspective, both of the managers want X as their 
contractor;  f rom a more global perspective it may make more sense to have A 
'settle '  for Y, and give X to B. Yet we cannot in general create the more global 
perspective without exchanging what may turn out to be extensive amounts of 
information. 

The first of the two problems (timing) appears  unavoidable given that we 
have chosen to deal with the kinds of problems typically attacked in AI, 
problems whose total decomposition is not known a priori. In a speech 
understanding problem, for instance, we cannot set up a fixed sequence of KS 
invocations beforehand because the utility of any given KS is not predictable in 
advance. Similarly, in a DSS, we have the same inability to predict KS utility, 
plus the added difficulty of new signals arriving at unpredictable moments.  

If we do not know in advance which subtasks will arise and when, or exactly 
which KSs will be useful at each point, then we clearly cannot plan the optimal 
assignment of nodes to tasks for the entire duration of the problem. Some 
planning may be possible, however, even if we lack complete knowledge of a 
problem's  eventual decomposition. We are currently studying ways to make 
use of partial information about tasks yet to be encountered or nodes that are 
soon going to be idle. 

The second problem (local decisions) appears  inherent in any decen- 
tralization of control and decision making. As noted earlier, we want to 
distribute control (for reasons of speed, problem-solving power, reliability, etc.). 
Given distributed control, however,  globally optimal control decisions are 
possible only at the cost of transmitting extensive amounts  of information 
between managers  every time an award is about to be made. With that 
approach,  inefficiencies due to suboptimal control decisions are traded for 
inefficiencies arising from transmission delays and channel saturation. We are 
currently studying this tradeott and exploring ways of minimizing the difficulties 
that arise from this problem. 

It appears  then, that as a result of the unpredictability of the timing of 
subtasks and the necessity of making local decisions, precisely optimal match- 
ing of nodes to tasks is not possible. Note, however,  that our stated goal is an 
appropriate assignment of nodes to tasks. Operat ion of the contract net is not 
predicated on optimal matching. In addition, the small set of experiments  we 
have done so far (see [27]) indicate that overall performance is not seriously 
degraded by suboptimal matching. 
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11.5. Coherent behavior 

We do not yet fully understand the more general problem of achieving globally 
coherent behavior in a system with distributed control. The fundamental 
difficulty was described earlier: We require distributed control in order to effect 
loose coupling, yet coherent behavior  usually requires a global perspective. 

Some aspects of the contract net protocol were motivated by attempts to 
overcome this problem. First, the task abstraction supplies information which 
enables a node to compare  announcements  and select the most appropriate.  In 
a similar fashion, information in bids (the node abstraction) enables managers 
to compare  bids from different nodes and select the most appropriate.  Second, 
each node in a contract net maintains a list of the best recent task announce- 
ments it has s e en - - a  kind of window on the tasks at hand for the net as a 
whole. This window enables the nodes to compare announcements  over time, 
helping to avoid mistakes associated with too brief a view of the problem at 
hand. 

We still have the problem that good local decisions do not necessarily add up 
to good global behavior, as the example in the previous section showed. 
However,  the steps noted at least contribute to local decisions that are made on 
the basis of an extended (not snapshot) view of system performance and 
decisions that are based on extensive information about tasks and bids. 

In the most general terms we see our efforts aimed at developing a problem 
solving protocol. The protocol should contain primitives appropriate  for talking 
about and doing problem solving, and should structure the interaction between 
problem solvers in ways that contribute to coordinated behavior  of the group. 
We have thus far taken an initial step in this direction with the development of 
the task announcement,  bid, and award sequence. 

12. Sununary 

The preceding discussion considered the contract net in a number  of different 
contexts. In the most specific view, it was considered a mechanism for building 
a distributed sensing system. More generally, it offered an approach to dis- 
tributed problem solving and a view of distributed processing. In the most 
general view, it was considered in the context of AI  problem solving tech- 
niques. In the sections that follow we consider the advantages offered by the 
contract net in each of these contexts, reviewing in the process the central 
themes of the paper. 

12.1. Contributions to distributed processing 

A distributed processing approach to computat ion offers the potential for a 
number of benefits, including speed and the ability to handle applications that 
have a natural spatial distributon. The design of the contract net framework 
attempts to ensure that these potential benefits are indeed realized. 
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In order to realize speed in distributed systems, we need to avoid bot- 
tlenecks. They can arise in two primary ways: by concentrating disproportionate 
amounts  of computat ion or communication at central resources, and by 
saturating available communicat ion channels so that nodes must remain idle 
while messages are transmitted. 

To  avoid bottlenecks we distribute control and data. In the DSS example,  
data is distributed dynamically as a result of the division of the net into areas 
during the initialization phase. Control  is distributed dynamically through the 
use of a negotiation process to effect the connection of tasks with idle 
processors. 

The contract net design also tries to avoid communication channel saturation 
by reducing the number  and length of messages. The information in task 
announcements  (like eligibility specifications), for instance, helps eliminate 
extra message traffic, thereby helping to minimize the amount  of channel 
capacity consumed by communicat ion overhead.  Similarly, bid messages can be 
kept short and ' to  the point '  through the use of the bid specification 
mechanism. 

Finally, the ability to handle applications with a natural spatial or functional 
distribution is facilitated by viewing task distribution as a connection problem 
and by having the processors themselves negotiate to solve the problem. This 
makes  it possible for the collection of available processors to 'spread them- 
selves' over  the set of tasks to be done, distributing the workload dynamically. 

12.2. Contributions to distributed problem solving 

As we noted earlier (Section 6), a central issue in distributed problem solving is 
organization: How can we distribute control and yet maintain coherent 
behavior? 

One way to accomplish this is by what we have called task-sharing, the 
distribution around the net of tasks relevant to solving the overall problem. As 
we have seen, the contract net views task-sharing in terms of connecting idle 
nodes with tasks yet to be done. It effects this matching by structuring 
interaction around negotiation as an organizing principle. 

Negotiation in turn is implemented by focusing on what it is that processors 
should say to one another.  The  motivation for our protocol is thus to supply 
one idea on what  to say rather  than how to communicate.  

As the example in Section 8 showed, use of the contract net makes it 
possible for the system to be configured dynamically, taking into account (in 
that example) such factors as the number  of sensor and processor nodes 
available, their location, and the ease with which communication can be 
extablished. Such a configuration offers a number  of improvements  over  a 
static, a priori configuration. It provides, for instance, a degree of simplicity: 
The same software is capable of initializing and running networks with a wide 
variation of available hardware.  If the configuration were static, each new 
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configuration would presumably require human intervention for its basic design 
(e.g., assigning nodes to tasks) and might require modifications to software as 
well. 

Dynamic configuration also means that most nodes that must cooperate  are 
able to communicate  with one another  directly. This reduces the amount of 
communication needed, since it reduces the need for either indirect routing of 
messages or the use of powerful transmitters. 

The contract net also offers advantages in terms of increased reliability. By 
distributing both control and data, for instance, we ensure that there is no one 
node or even a subset of nodes whose loss would totally cripple the system. In 
addition, recovery from failure of a node is aided by the presence of explicit links 
between managers and their contractors. The failure of any contractor can be 
detected by its manager;  the contract for which it was responsible can then be 
re-announced and awarded to another  node. There is, in addition, the possibility 
of reliability arising from "load-sensitive redundancy".  When load on the net is 
low, we might take advantage of idle processors by making redundant awards of 
the same contract. The system thus offers the opportunity to make resource 
allocation decisions opportunistically, taking advantage of idle resources to 
provide additional reliability. 

The framework also makes it reasonably easy to add new nodes to the net at any 
time. This is useful for replacing nodes that have failed or adding new nodes in 
response to increased computational  load on the net. Two elements of the 
framework provide the foundation for this capability. First, the contract 
negotiation process uses a form of "anonymous  invocation": the KSs to be 
invoked are described rather than named. Second, there is a single language 
"spoken"  by all the nodes. 

The 'concept  of describing rather than naming KSs has its roots in the goal- 
directed invocation of various AI  languages and the notion of pattern-directed 
invocation generally (see, e.g. [32]), where it was motivated by the desire for more 
sophisticated forms of KS retrieval. It also however,  turns out to offer an 
interesting and useful form of "substitutability", simply because where names are 
unique, descriptions are not, and a wide range of KSs may satisfy a single 
description. As a result, in a system with invocation by name, the addition of a new 
KS requires modification of the existing code to ensure that the new KS is indeed 
invoked. When invocation is by description, adding a new KS involves simply 
making it available to the existing collection of KSs; it will be invoked whenever its 
description is matched (in our case, whenever it chooses to bid on a task 
announcement).  The contract net thus shares with other systems using anonymous 
invocation the ability to add new KSs by simply "throwing them into the pot".  

Second, the use of a single language ' spoken '  by all the nodes simplifie s 
communication. If we are to add a new node, it must have some way of 
communicating with other nodes in the net. The contract net simplifies this 
issue by providing a very compact language: The basic protocol (task 
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announcement ,  bid, award) provides the e lementary 'syntax'  for com- 
munication, while the common internode language provides the vocabulary 
used to express message content. 

Thus, anonymous  invocation means that it is possible for a new node to 
begin participating in the operat ion of the net by listening to the messages 
being exchanged. (If invocation were by name, listening to message traffic 
would do no good.) The use of a single language means that the node will 
understand the messages, and the use of a very simple language means that the 
task of initializing a node is easier. 

12.3. Contributions to artificial intelligence 

The contract net offers a novel view on the nature of the invocation process. As 
we have seen, it views task distribution as a problem of connecting tasks to KSs 
capable of executing those tasks, and it effects this connection via negotiation. 

In Section 9 we used this perspective to examine existing models of in- 
vocation and evaluate them along several dimensions. This discussion showed, 
first, that in previous models connection is typically effected with a transfer of 
information that is unidirectional; hence the connection process is asymmetric.  
Control resides either with the tasks (goal-driven invocation) or with the KSs 

(data-dr iven invocation). In the contract net view, by contrast, the transfer is 
two-way, as each participant in the negotiation offers information about itself. 
This in turn means that control can be shared by both; the problem becomes 
one of mutual selection. 

We then showed that the information transferred is typically limited in 
content. In the contract net, on the other  hand, the information is not limited 
to a name or pattern,  but is instead expanded to include statements expressible 
in the common internode language. 

Third, the discussion showed that information about a more complete 
collection of candidate KSs is available before final selection is made. This 
makes possible a wider range of KS and task selection strategies than are 
possible if KSs and tasks must be selected or rejected as they are encountered.  

Finally, we noted that this expanded view of invocation effects a true 
deliberation process, since one possible outcome of the negotiation is that none 
of the bids received is judged good enough, and hence none of the potential 
contractors will be selected. This appears  to be a useful advance that has no 
precise analogy in previous programming languages and applications. 

12.4. Conclusion: the major themes revisited 

Two of the major  themes of this paper  are the notion of protocols aimed at 
problem solving rather  than communication and the concept of negotiation as a 
basic mechanism for interaction. The first was illustrated by the use of message 
types like task announcement ,  bid, and award. This focused the contract net 
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p r o t o c o l  at t he  leve l  of  p r o b l e m  so lv ing  and  p r o v i d e d  a s t ep  t o w a r d  i nd i ca t i ng  

wha t  k inds  of  i n f o r m a t i o n  s h o u l d  be  t r a n s f e r r e d  b e t w e e n  nodes .  

T h e  ut i l i ty  of  n e g o t i a t i o n  as an i n t e r a c t i o n  m e c h a n i s m  was  d e m o n s t r a t e d  in 

t w o  se t t ings .  Firs t ,  o u r  bas ic  a p p r o a c h  to  c o o p e r a t i o n  re l ies  on  t a sk - sha r ing ,  

a n d  n e g o t i a t i o n  is u sed  to  d i s t r i bu t e  tasks  a m o n g  t h e  n o d e s  of  t he  net .  T h i s  

m a k e s  poss ib le  d i s t r i bu t ion  ba sed  on m u t u a l  s e l ec t i on ,  y i e ld ing  a g o o d  m a t c h  

of  n o d e s  and  tasks.  S e c o n d ,  n e g o t i a t i o n  was  used  to  ef fec t  t r ans f e r  of  con t ro l .  

In tha t  se t t ing  it o f f e r ed  a f r a m e w o r k  in wh ich  the  m a t c h i n g  of  KSs  to  tasks  was  

ba sed  on  m o r e  i n f o r m a t i o n  t h a n  is usua l ly  a v a i l a b l e  (due  to  t he  t r ans f e r  of  

i n f o r m a t i o n  in b o t h  d i r ec t ions ,  and  t h e  t r a n s f e r  of  m o r e  c o m p l e x  i n f o r m a t i o n ) .  

A s  a resul t ,  n e g o t i a t i o n  m a k e s  it poss ib le  to  ef fec t  a f iner  d e g r e e  of  con t ro l  a n d  

to  be  m o r e  s e l e c t i v e  in m a k i n g  dec i s ions  a b o u t  i n v o c a t i o n  than  is t he  case  wi th  

p r e v i o u s  m e c h a n i s m s .  
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