
ARTIFICIAL INTELLIGENCE 63

Negotiation as a Metaphor for
Distributed Problem Solving

Randall Davis
Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, Cambridge, MA 02139, U.S.A.

Reid G. Smith*
Defence Research Establishment Atlantic, Dartmouth,
Nova Scotia B2Y 3Z7, Canada

Recommended by Lee Erman

ABSTRACT
We describe the concept of distributed problem solving and define it as the cooperative solution of
problems by a decentralized and loosely coupled collection of problem solvers. This approach to
problem solving offers the promise of increased performance and provides a useful medium for
exploring and developing new problem-solving techniques.

We present a framework called the contract net that specifies communication and control in a
distributed problem solver. Task distribution is viewed as an interactive process, a discussion carried
on between a node with a task to be executed and a group of nodes that may be able to execute the
task. We describe the kinds of information that must be passed between nodes during the discussion in
order to obtain effective problem-solving behavior. This discussion is the origin of the negotiation
metaphor: Task distribution is viewed as a form of contract negotiation.

We emphasize that protocols for distributed problem solving should help determine the content of the
information transmitted, rather than simply provide a means of sending bits from one node to another.

The use of the contract net framework is demonstrated in the solution of a simulated problem in
area surveillance, of the sort encountered in ship or air traffic control. We discuss the mode of
operation of a distributed sensing system, a network of nodes extending throughout a relatively large
geographic area, whose primary aim is the formation of a dynamic map of traffic in the area.

From the results of this preliminary study we abstract features of the framework applicable to
problem solving in general, examining in particular transfer of control. Comparisons with PLANNER,
CONNIVER, HEARSAY-n, and PUP6 are used to demonstrate that negotiation--the two-way transfer of
information--is a natural extension to the transfer of control mechanisms used in earlier problem-
solving systems.

* The author's current address is: Schlumberger-Doll Research, Ridgefleld, CT 06877, U.S.A.

Artificial Intelligence 20 (1983) 63-109

0004-3702/83/0000-0000/$03.00 © 1983 North-Holland

64 R. DAVIS AND R.G. SMITH

1. Introduction

Traditional work in problem solving has, for the most part, been set in the
context of a single processor. Recent advances in processor fabrication tech-
niques, however, combined with developments in communication technology,
otter the chance to explore new ideas about problem solving employing
multiple processors.

In this paper we describe the concept of distributed problem solving, charac-
terizing it as the cooperative solution of problems by a decentralized, loosely
coupled collection of problem solvers. We find it useful to view the process as
occurring in four phases: problem decomposition, sub-problem distribution,
sub-problem solution, and answer synthesis. We focus in this paper primarily
on the second phase, exploring how negotiation can help in matching problem
solvers to tasks.

We find three issues central to constructing frameworks for distributed
problem solving: (i) the fundamental conflict between the complete knowledge
needed to ensure coherence and the incomplete knowledge inherent in any
distribution of problem solving effort, (ii) the need for a problem solving
protocol, and (iii) the utility of negotiation as an organizing principle. We
illustrate our approach to those issues in a f ramework called the contract net.

Section 2 describes our concept of distributed problem solving in more detail,
contrasting it with the more widely known topic of distributed processing.
Section 3 explores motivations, suggesting what we hope to gain from this
work. In Section 4 we consider the three issues listed above, describing what
we mean by each and documenting the importance of each to the problems at
hand.

Section 5 describes how a group of human experts might cooperate in solving
a problem and illustrates how this metaphor has proved useful in guiding our
work. Section 6 then considers how a group of computers might cooperate to
solve a problem and illustrates how this has contributed to our work.

Section 7 describes the contract net. We focus on its use as a f ramework for
orchestrating the efforts of a number of loosely coupled problem solvers. More
detailed issues of its implementation, as well the tradeoffs involved in its
design, are covered elsewhere (see, e.g., [26, 27, 28]). Section 8 describes an
application of the contract net. We consider a problem in distributed sensing
and show how our approach permits a useful degree of self-organization.

Section 9 then takes a step back to consider the issue of transfer of control.
We show how the perspective we have deve loped- -notab ly the issue of
negotiat ion--offers useful insights about the concept of control transfer. We
review invocation techniques from a number of programming languages and
illustrate that the whole range of them can be viewed as a progression from
simple to increasingly more sophisticated information exchange. In these terms
the negotiation technique used in the contract net becomes a natural next step.

NEGOTIATION AS A METAPHOR 65

Sections 10 and 11 consider the sorts of problems for which our approach is
well suited and describe the limitations and open problems in our work to date.

2. Distributed Problem Solving: Overview

In our view, some of the defining characteristics of distributed problem solk, ing
are that it is a cooperative activity of a group of decentralized and loosely
coupled knowledge-sources (KSs). The KSs cooperate in the sense that no one
of them has sufficient information to solve the entire problem: information
must be shared to allow the group as a whole to produce an answer. By
decentralized we mean that both control and data are logically and often
geographically distributed; there is neither global control nor global data
storage. Loosely coupled means that individual KSs spend most of their t ime in
computat ion rather than communication.

Interest in such problem solvers arises from the promise of increased speed,
reliability, and extensibility, as well as ability to handle applications with a
natural spatial or functional distribution, and the potential for increased
tolerance to uncertainty in data and knowledge.

Distributed problem solving differs in several fundamental respects from the
more widely known topic of distributed processing. Perhaps the most important
distinction arises f rom examining the origin of the system and the motivations
for interconnecting machines.

Distributed processing systems often have their origin in the at tempt to
synthesize a network of machines capable of carrying out a number of widely
disparate tasks. Typically, several distinct applications are envisioned, with
each application concentrated at a single node of the network, as for example
in a three-node system intended to do payroll, order entry, and process control.
The aim is to find a way to reconcile any conflicts and disadvantages arising
from the desire to carry out disparate tasks, in order to gain the benefits of
using multiple machines (sharing of data bases, graceful degradation, etc.).

Unfortunately, the conflicts that arise are often not simply technical (e.g.,
word sizes, database formats, etc.) but include sociological and political prob-
lems as well (see, e.g., [6]). The at tempt to synthesize a number of disparate
tasks thus leads to a concern with issues such as access control and protection,
and results in viewing cooperation as a form of compromise between potentially
conflicting desires.

In distributed problem solving, on the other hand, there is a single task
envisioned for the system and the resources to be applied have no other
predefined roles to carry out. We are building up a system de novo and can as a
result choose hardware, software, etc. with one aim in mind: the selection that
will lead to the most effective environment for cooperative behavior. This also
means we view cooperation in terms of benevolent problem solving behavior,
i.e., how can systems that are perfectly willing to accommodate one another act

66 R. DAVIS AND R.G. SMITH

so as to be an effective team? Our concerns are thus with developing frame-
works for cooperative behavior between willing entities, rather than frameworks
for enforcing cooperation as a form of compromise between potentially in-
compatible entities.

A second important distinction arises from our focus on traditional issues of
problem solving. We intend, for example, that the system itself should include
as part of its basic task the partitioning and decomposition of a problem. Work
in distributed processing, by comparison, has not taken problem solving as a
primary focus. It has generally been assumed that a well-defined and a priori
partitioned problem exists. The major concerns lie in an optimal static dis-
tribution of tasks, methods for interconnecting processor nodes, resource
allocation, and prevention of deadlock. Complete knowledge of the problem
has also been assumed (i.e., explicit knowledge of timing and precedence
relations between tasks) and the major reason for distribution has been
assumed to be load-balancing (e.g., [1, 2]). Since we do not make these
assumptions, we cannot take advantage of this pre-planning of resources. As
will become clear, this makes for significant differences in the issues which
concern us and in the design of the system.

A final distinction results from the lack of substantial cooperation in most
distributed processing systems. Typically, for instance, most of the processing is
done at a central site and remote processors are limited to basic data collection
(e.g., credit card verification). The word distributed is usually taken to mean
spatial distribution of data--distr ibution of function or control is not generally
considered.

One way to view the various research efforts is in terms of the three levels
indicated in Fig. 1. At the lowest level the focus is the processor architecture.
The main issues here are the design of the individual nodes and the inter-
connection mechanism. The components of an individual node must be selec-
ted (e.g., processors and memory), and appropriate low-level interconnection
methods must be chosen (e.g., a single broadcast channel, complete inter-
connection, a regular lattice, etc.).

The middle level focuses on systems aspects. Among the concerns here are
issues of guaranteeing message delivery, guaranteeing database consistency,
and techniques for database recovery.

PROBLEM SOLVING I

II II
SYSTEMS]

li II
ARCHITECTURE [

FIG. 1. A layered approach to distributed problem solving.

NEGOTIATION AS A METAPHOR 67

The focus at the top level is problem solving, where the concerns are
internode control and knowledge organization; in particular how to achieve
effective problem-solving behavior from a collection of asynchronous nodes.
There is therefore a greater concern with the content of the information to be
communicated between nodes than with the form in which the communication
is effected.

All of these levels are important foci of research and each successive level
depends on the ones below it for support. Our concern in this paper, however,
lies primarily at the level of problem solving.

For the remainder of this paper we will assume that the hardware is a
network of loosely coupled, asynchronous nodes. Each node has a local
memory; no memory is shared by all nodes. Each node typically contains
several distinct KSs. There is no central controller; each node makes its own
choices about tasks to work on. The nodes are interconnected so that every
node can communicate with every" other by sending messages, perhaps over a
broadcast channel. We also assume the existence of a low-level protocol to
effect communication of bit streams between nodes.

3. Distributed Problem Solving: Motivation

A major motivation for this work lies in the potential it offers for making
available more problem solving power, by applying a collection of processors to
the solution of a single problem. It may, for example, prove much easier to
coordinate the actions of twenty medium-sized machines than it is to build a
single machine twenty (or even ten) times as large.

A distributed approach may also be well suited to problems that have either
a spatial distribution or a large degree of functional specialization. Spatial
distribution often occurs in problems involving interpretation of signal data
from multiple sensors (e.g., [20]). Functional specialization may occur in
problems like understanding continuous speech (e.g., [7]): information from
many different knowledge-sources (e.g., signal processors, parsers, etc.) must
be combined to solve the problem.

Distributed problem solving also offers a way to apply to problem solving the
recent advances in both processor fabrication and communication technology.
Low-cost, small-scale VLSI processors are now commonplace, with larger scale
processors expected in the near future [21]. The synthesis of advanced com-
puter and communication technology that has resulted in networks of resource-
sharing computers (e.g., [13, 15]) offers a foundation for work on distributed
architectures. With these two developments as foundations, work can begin
focusing on techniques for effective use of networks of machines.

One reason for interest in distributed architectures in general is their
capacity for reliable computation and graceful degradation. By placing problem
solving in this environment, we have the chance to make it similarly reliable.

68 R. DAVIS AND R.G. SMITH

The use of an approach like the contract net, which distributes both control
and data, also makes possible additional responses to component failure. In
addition to the standard response of continuing to function as before (albeit
more slowly), the option may exist of having the system reconfigure itself to
take into account the hardware available.

Finally, and somewhat more speculatively, there is the issue of 'bounded
rationality'. Some tasks appear difficult because of their size. They are ' too
big' to contemplate all at once and are not easily broken into modular
sub-problems (e.g., the working of the national economy, the operation of a
large corporation). In such cases it may be difficult, both conceptually and
practically, for a single problem solver to deal effectively with more than a
small part of all of the data or knowledge required to solve the problem. Trying
to scale up the hardware of a single problem solver may ease the practical
problem but does not solve the conceptual difficulty. It may instead prove more
effective to use multiple problem solvers, each of which handles some fraction
of the total problem, and to provide techniques for dealing with the interaction
between the sub-problems.

Recent work has explored a number of ideas relevant to accomplishing this
goal. There is, for example, the original HEARSAY-n model of cooperating KSs
([7]), in which each KS had a sharply limited domain of expertise. It demon-
strated the practicality of using a number of independent KSs to encode large
amounts of knowledge about a domain. The work in [17] reports on an
experiment that distributed knowledge and data, and to a limited degree,
control. In Section 7 we describe an approach to distributing problem solving
effort that dynamically distributes knowledge, data and control.

4. The Fundamental Issues

Our study of distributed problem solving to date has identified three issues that
appear to be central to the undertaking: (i) the fundamental difficulty of
ensuring global coordination of behavior when that behavior results from the
aggregation of actions based on local incomplete knowledge, (ii) the necessity
of a protocol dealing with problem solving rather than with communication, and
(iii) the utility of negotiation as a fundamental mechanism for interaction. In
this section we describe each of the issues briefly, Sections 5 and 6 then
demonstrate how these issues arise from basic considerations of the task at
hand)

4.1. Global coherence and limited knowledge

One obvious problem that arises in employing multiple problem solvers is

IOther work on distributed problem solving is based on similar issues. Work described in [18],
for example, also finds (i) and (ii) above to be central issues.

N E G O T I A T I O N AS A M E T A P H O R 6 9

'coherence' . Any time we have more than one active agent in the system there
is the possibility that their actions are in some fashion mutually interfering
rather than mutually supportive. There are numerous ways in which this can
happen. We may have conflict over resources, one agent may unknowingly
undo the results of another, the same actions may be carried out redundantly,
etc. In general terms, the collection of agents may somehow fail to act as a
well-coordinated, purposeful team.

We believe that this problem is due to the fundamental difficulty of obtaining
coordinated behavior when each agent has only a limited, local view. We could,
of course, guarantee coordination if every agent 'knew everything', i.e., it had
complete knowledge. If, for example, every problem solver had complete
knowledge of the actions of all the others, it would be possible to avoid
redundant or conflicting ettortsJ

Yet any reasonable model of distribution appears to require incomplete,
local views of the problem. Complete information is, for example, at least
impractical. As we argue in Section 6, bandwidth limitations make it un-
reasonable to consider having every node constantly informed of all develop-
ments.

A limited local view also simplifies the problem conceptually. The problem
becomes far more difficult to think about (and to program) if every problem
solver has to keep track of everything. It also seems contrary to the basic
notion of distribution: Part of the motivation is to allow a problem solver to
focus on one part of the problem and ignore the rest.

For these reasons at least, then, any distribution of problem solving effort
appears to imply incomplete, local knowledge.

And when we say "incomplete knowledge", we include in "knowledge" the
information indicating "who needs to know what". That is, we do not assume
that we start out with a map of subproblems and their interactions. Without
such a map, there is the chance that necessary interactions are overlooked and
hence we lose a guarantee of coordinated behavior.

As noted earlier, we consider problem decomposi t ion-- the creation of the
map of subproblems-- to be part of the system's task. Once the system creates
its best guess at such a map, we can count on the locality of action and
information to make distributed problem solving practical. By locality of action
and information, we mean that the problems typically attacked in AI are
generally decomposable into a set of subproblems in which the effects of
actions and the relevance of information is local. The actions taken to
solve one subproblem generally affect only a few other subproblems; the

~rhis difficulty is not limited to distributed problem solving, it is only more painfully obvious
there. The s tandard notion of problem dera:mlposition in centralized sys tems results in limited, local
knowledge, and the same difficulty manifests itself as the well-known problem of interacting
subgoals.

70 R. DAVIS AND R.G. SMITH

in fo rmat ion d i scovered in solving one s u b p r o b l e m is genera l ly re levan t to only
a few o the r subprob lems . 3 A s a result , each p r o b l e m solver will have to in teract
with at most a few others , mak ing l imi ted bandwid th a chal lenging but not fatal
const ra int .

To summar ize : the conflict ar ises because d is t r ibu t ion seems by its na tu re to
requ i re supply ing each p r o b l e m solver with only a l imited, local view of the
p rob lem, yet we wish to accompl ish a g lobal e f f e c t - - t h e solut ion of the
p r o b l e m at hand. It is not obv ious how we can gua ran tee overa l l coo rd ina t ion
f rom aggrega t ions of ac t ions based on local views with i nc omple t e in format ion .
Thus, while the local i ty of act ion and in format ion means that d i s t r ibu ted
p r o b l e m solving is feasible , the necess i ty of i ncomple t e knowledge means that
g u a r a n t e e i n g c o o r d i n a t e d act ivi ty is difficult.

O n e genera l answer is to p rov ide someth ing that ex tends across the ne twork
of nodes , someth ing that can be used as a founda t ion for coope ra t i on and
organ iza t ion . A s will b e c o m e clear, th ree e l emen t s of our f r a m e w o r k he lp
p rov ide that founda t ion : (i) the concep t of nego t i a t ion as a mechan i sm for
in te rac t ion (Sect ion 7.1), (ii) the ne twork of tasks that resul ts f rom d e c o m p o s i n g
a p r o b l e m (Section 8.2), and (iii) a c o m m o n language sha red by all nodes
(Section 7.4). T h e a n n o u n c e m e n t - - b i d - - a w a r d sequence of messages (Section
7.3) also offers some suppor t . Even though each p r o b l e m solver has only a
l imi ted view of the p rob l em, these messages offer one way for a node to find
out who else has re levan t in fo rmat ion . Toge the r , all of these mechan i sms
p rov ide an init ial s tep toward a basis for achieving c o o r d i n a t e d behavior .

4.2. The need for a problem solving protocol

In most work on p ro toco l s for d i s t r ibu ted c o m p u t a t i o n the emphas i s has been
on es tabl ishing re l iab le and efficient communica t i on . Some degree of success
has been achieved, at levels ranging f rom indiv idual packe t s to a tomic act ions
(see, e.g., [29]). But these p ro toco l s a re only a p re requ i s i t e for d i s t r ibu ted
p r o b l e m solving. In the same sense that co mmun ic a t i on among a g roup of
en t i t ies needs a careful ly cons t ruc ted commun ic a t i on pro tocol , so p r o b l e m
solving by a g roup of ent i t ies requ i res a p r o b l e m solving pro tocol . C o o p e r a t i o n
canno t be e s t ab l i shed be tween nodes s imply by indica t ing how they are to
c o m m u n i c a t e ; we must also ind ica te what they should say to each other .

The issue can also be v iewed in the te rms sugges ted by Fig. 1. At each level
we need to give careful cons ide ra t ion to the basic a rch i t ec tu re and we need the

3The first half of this observation--the locality of the effects of actions--is typically used to
justify informal solutions to the frame problem. We can, for instance, account for the effects of an
action with a list of consequences, because that list tends to be short and predictable.

Similarly, the impact of information tends to be local. If I, as one member of a team, am working
on one part of a problem, most of what is discovered about the rest of the problem is irrelevant to
me. Keeping me up to date on every detail will only prove to be a distraction.

N E G O T I A T I O N AS A METAPHOR 71

appropriate protocols. In the same sense that we pay attention to hardware and
systems architecture, so we need to consider a 'problem solving architecture ' ;
as we have protocols that organize the communication of bits and files, so we
need protocols to organize the problem solving activity.

As discussed in Section 7, the contract net takes a first step in this direction
by providing a set of message types indicating the kind of information that
nodes should exchange in order to effect one form of cooperation.

4.3. The utility of negotation

The central element in our approach to a problem solving protocol is the
concept of negotiation. By negotiation, we mean a discussion in which the
interested parties exchange information and come to an agreement. For our
purposes negotiation has three important components: (a) there is a two-way
exchange of information, (b) each party to the negotiation evaluates the
information from its own perspective, and (c) final agreement is achieved by
mutual selection.

Negotiation appears to have multiple applications. In Section 7, for example,
we explore its application to the problem of matching idle problem solvers to
outstanding tasks. This matching is carried out by the system itself, since, as
noted, we do not assume that the problem has already been decomposed and
distributed.

In Section 9.2 we explore a second application of negotiation by considering
its utility as a basis for transfer of control and as a way of viewing invocation as
the matching of KSs to tasks. This view leads to a more powerful mechanism
for control transfer, since it permits a more informed choice from among the
alternative KSs which might be invoked. The view also leads to a novel
perspective on the outcome of the interaction. In most previous systems, the
notion of selecting what to do next typically involves taking the best choice
from among those currently available. As will become clear, in the contract net
either party has the option of deciding that none of the currently available
options is good enough, and can decide instead to await further developments.

5. A Cooperating Experts Metaphor

A familiar metaphor for a problem solver operating in a distributed environ-
ment is a group of human experts experienced at working together, trying to
complete a large task. 4 Of primary interest to us in examining the operation of
a group of human experts are: (a) the way in which they interact to solve the
overall problem, (b) the manner in which the workload is distributed among
them, and (c) how results are integrated for communication outside the group.

*'I'his metaphor has been used as a starting point by [l l] , [16] and [18], but has resulted in
systems that differ from ours in several ways. The different systems are compared in Section 9.

72 R. DAVIS AND R.G. SMITH

For reasons discussed above, we assume that no one expert is in total control of
the others, although one expert may be ultimately responsible for com-
municating the solution of the top-level problem to the customer outside the
group.

One possible model for the interaction involves group members cooperating
in the execution of individual tasks, a mode we have called ' task-sharing' [28].
In such a situation we might see each expert spending most of his t ime working
alone on various subtasks, pausing only occasionally to interact with other
members of the group. These interactions generally involve requests for
assistance on subtasks or the exchange of results.

An expert (El) may request assistance because he encounters either a task
too large to handle alone, or a task for which he has no expertise. If the task is
too large, he will first at tempt to partition it into manageable subtasks and then
at tempt to find other experts who have the appropriate skills to handle the new
tasks. If the original task is beyond his expertise, he at tempts right away to find
another, more appropriate expert to handle it.

In either case, E l ' s problem is now to find experts whose skills match the
tasks that he wishes to distribute. If E l knows which other experts have the
necessary expertise, he can notify them directly. If he does not know anyone in
particular who may be able to assist him (or if the tasks require no special
expertise), he can simply describe the tasks to the entire group.

If another, available expert (E2) believes he is capable of carrying out the
task that E1 announced, he informs E1 of his availability and perhaps indicates
as well any especially relevant skills he may have. E1 may wind up with several
such volunteers and can choose from among them. The chosen volunteer might
then request additional details from E1 and the two will engage in further
direct communication for the duration of the task.

In order to distribute the workload in a group of experts, then, those with
tasks to be executed must find others capable of executing those tasks. At the
same time, it is the job of idle experts to find suitable tasks on which to work.
Those with tasks to be executed and those capable of executing the tasks thus
engage in a form of negotiation to distribute the workload. They become linked
together by agreements or informal contracts, forming subgroups of varying
sizes that are created and broken up dynamically during the course of work. ~

6. Observations and Implications

The metaphor of a group of human experts offered several suggestions about

5Subgroups of this type offer two advantages. First, communication among the members does not
needlessly distract the entire group. This is important, because communication itself can be a major
source of distraction and difficulty in a large group (see for example [9]). Thus one of the major
purposes of organization is to reduce the amount of communication that is needed. Second, the
subgroup members may be able to communicate with each other in a language that is more efficient
for their p u ~ than the language in use by the entire group (for more on this see [27]).

NECd:YI'IATION AS A METAPHOR 73

organizing problem solving effort. Here we consider how a group of computers
might cooperate and examine what that can tell us about how to proceed. We
approach this by comparing the use of multiple, distributed processors with the
more traditional model of operation on a uniprocessor. We list several basic
observations characterizing the fundamental differences and consider the im-
plications that follow. While the list is not exhaustive, it deals with the
differences we find most important.

Communication is slower than computation.

That is, bits can be created faster than they can be shipped over substantial
distances. 6 With current technology, communication over such distances is in
fact much slower than computation. Attempting to interconnect large numbers
of high speed processors can easily lead to saturation of available bandwidth.
Present trends indicate [23] that this imbalance in speed will not only continue,
but that the disparity is likely to increase. It appears as well that the relative
costs of communication and computation will follow a similar trend.

Several implications follow from this simple observation (Fig. 2). It means for
example that we want problem decompositions that yield loosely coupled
systems--systems in which processors spend the bulk of their time computing
and only a small fraction of their time communicating with one another. The
desire for loose coupling means in turn that we need to pay attention to the
efficiency of the communication protocol: With a more efficient protocol, fewer
bits need to be transmitted and less time is spent in communicating. It also
means that we need to pay attention to both the modularity and grain size of
the problems chosen. Problems should be decomposed into tasks that are both
independent and large enough to be worth the overhead involved in task
distribution. Non-independent tasks will require communication between pro-
cessors, while for very small tasks (e.g., simple arithmetic) the effort involved in
distributing them and reporting results would likely be greater than the work
involved in solving the task itself.

Communication is slower than computation
---, loose-coupling

--+ efficient protocol
- , modular problems
- , problems with large grain size

FIG. 2. Observations and implications.

6Over short distances, of course, permanent hardwired links can be very effective. Where
distances arc large or varying (e.g., mobile robots), bandwidth again becomes a limiting factor.

Note also that we mean communicating all the bits involved in a computation, not just the final
answer. Otherwise communicating, say, one bit to indicate the primality of a lO0-digit number
would surely be faster than doing the computation to determine the answer.

74 R. DAVIS AND R.G. SMITH

We have argued above for loose coupling and based the argument on
technological considerations. The point can be argued from two additional
perspectives as well. First, the comments earlier concerning the locality of
action and information suggest that, for the class of problems we wish to
consider, tight coupling is unnecessary. The activities and results of any one
problem solver are generally relevant to only a few others. More widespread
dissemination of information will mostly likely only prove to be distracting.

A second argument, described in [18], takes a more emphatic position and
argues for loose coupling even where it is known to produce temporary
inconsistencies. They note that standard approaches to parallelism are typically
designed to ensure that all processors always have mutually consistent views of
the problem. Such complete consistency, and the tight coupling it requires, is,
they claim, unnecessary. They suggest instead that distributed systems can be
designed to be 'functionally accurate ' , i.e., the system will produce the correct
answer eventually even though in an intermediate state some processors may
have inconsistent views of the problem.

Thus we have arguments against tight coupling based on technological
considerations (the communicat ion/computat ion imbalance), pragmatic issues
(the locality of action and information), and empirical results which suggest that
it may be unnecessary.

Any unique node is a potential bottleneck.

Any node with unique characteristics is potentially a bottleneck that can slow
down the system (Fig. 3). If those characteristics make the distinguished
node useful to enough other nodes in the system, eventually those nodes
may be forced to stand idle while they wait for service. This is equally true
for a resource like data (for which the issue has been extensively studied) and a
' resource' like control (for which considerably less work has been done). If one
node were in charge of directing the activities of all other nodes, requests for
decisions about what to do next would eventually accumulate faster than they
could be processed. 7

What steps can we take to reduce the likelihood of bottlenecks due to
centralized control? First, we can distribute it: Each node should have some

Any unique node is a potential bottleneck
-* distribute data
--, distribute control

--, organized behavior is hard to guarantee

FIG. 3. Further observations and implications.

7Such a node would also be an Achilles' heel in the system, since its failure would result in total
failure of the system.

NEGOTIATION AS A METAPHOR 75

degree of au tonomy in generating new tasks and in deciding which task to do
next. By so dividing up and distributing the responsibility for control, we
reduce the likely load on any one node. Second, we might distribute it
redundantly: If more than one node is capable of making decisions about
control, we further reduce the likelihood that any one node becomes saturated,
and can ensure that no one node is unique. Finally, we can distribute control
dynamically: We might provide a mechanism that allows dynamic redistribu-
tion in response to demands of the problem.

Organized behavior is difficult to guarantee if control is decentralized.

In a system with completely centralized control, one processor is responsible
for directing the activities of all the others. It knows what all the other
processors are doing at any given time, and, armed with this global view of the
problem, can assign processors to tasks in a manner that assures organized
behavior of the system as a whole. By 'organized' , we mean that (among other
things) all tasks will eventually be at tended to, they will be dealt with in an
order that reduces or eliminates the need for one processor to wait for results
f rom another, processor power will be well matched to the tasks generated, etc.
In more general terms, the set of processors will behave like a well-coor-
dinated, purposeful team.

In the absence of a global overview, coordination and organization becomes
much more difficult. When control is decentralized, no one node has a global
view of all activities in the system; each node has a local view that includes
information about only a subset of the tasks. The appropriate organization of a
number of such subsets does not necessarily result in appropriate organization
and behavior of the system as a whole.

In Section 4 we described the general problem of ensuring well-coordinated
behavior; this is a specific instantiation of that problem with respect to control.
We are trying to achieve a global effect (coherent behavior) from a collection
of local decisions (nodes organizing subsets of tasks). We cannot centralize
control for reasons noted above, yet it is not clear how to ensure coherent
behavior when control is distributed.

7. A Framework for Distributed Problem Solving

7.1. A view of distributed problem solving

We view distributed problem solving as involving four central activities:
problem decomposit ion, sub-problem distribution, solution of sub-problems,
and synthesis of the overall solution. By decomposit ion we mean the standard
notion of breaking a large problem into smaller, more manageable pieces;
distribution involves the matching of sub-problems with problem solvers
capable of handling them; the sub-problems are then solved; and finally those
individual solutions may need to be synthesized into a single, overall solution.

76 R. DAVIS AND R.G. SMITH

Each of these can happen several times as a problem is decomposed into
several levels of subproblems.

These four activities may occur individually and in the sequence noted, or
may be combined or carried out in parallel. The point is simply that all of them
can make important contributions to the problem solving process, so we need
some mechanism for dealing with each. a

7.2. Task-sharing, negotiation and the connection problem

We have emphasized above the importance of having a protocol for organizing
problem solving activity and proposed negotiation as a plausible basis for that
protocol. But what shall we negotiate? Our work to date has followed the lead
suggested by the cooperating experts metaphor and explored the distribution of
tasks as an appropriate subject. Thus, in this paper we focus on application of
the contract net to the distribution phase of distributed problem solving and
show how negotiation appears to be an effective tool for accomplishing the
matching of problem solvers and tasks.

To illustrate this, recall that the group of experts distributed a problem by
decomposing it into ever smaller subtasks and distributing the subtasks among
the group. We term this mode of operation ' task-sharing' , because cooperation
is based on the dynamic decomposition and distribution of subproblems. 9 But
to enable distribution of the subproblems, there must be a way for experts with
tasks to be executed to find idle experts capable of executing those tasks. We
call this the 'connection problem' .

The contract net protocol supplies a mechanism to solve the connection
problem: As we will see, nodes with tasks to be executed negotiate with idle
nodes over the appropriate matching of tasks and nodes.

This approach is appropriate for a distributed problem solver because it
requires neither global data storage nor global control. It also permits some
degree of dynamic configuration and reconfiguration. A simple example of
dynamic configuration is given in Section 8.3; reconfiguration is useful in the
event of node failure or overloading. We have explored a number of simple
mechanisms for detecting node failure and reconfiguring in response [26, 22],
but the problem is not yet well studied.

A few words of terminology will be useful. The collection of nodes is
referred to as a con t rac t net. Each node in the net may take on the role of a
m a n a g e r or a contractor . A manager is responsible for monitoring the execu-

SFor some problems the first or last activity may be trivial or unnecessary. Where a problem is
geographically distributed, for example, the decomposition may be obvious (but see the discussion
of the sensor net in Section 8). In problems of distributed control (e.g., traffic light control), there
may be no need to synthesize an "overall" answer.

'~l'ask-sharing in its simplest form can be viewed as the distributed version of the traditional
notion of problem decomposition. For a different approach to distribution, see [18].

NEGOTIATION AS A METAPHOR 77

t ion of a task and process ing the resul ts of its execut ion . A c on t r a c to r is
r e spons ib le for the ac tual execu t ion of the task. ~°

Ind iv idua l nodes are not de s igna t ed a priori as m a n a g e r s o r con t rac to r s ;
these are only roles , and any node can t ake on e i the r role dynamica l ly dur ing
the course of p r o b l e m solving. Typica l ly a node will t ake on bo th roles , of ten
s imul t aneous ly for di f ferent cont rac ts . This has the a d v a n t a g e that indiv idual
nodes are not s ta t ical ly t ied to a con t ro l h ie rarchy .

F o r the sake of expos i t ion , we desc r ibe the p ro toco l in successive layers of
deta i l , descr ib ing first the content of the messages exchanged (Section 7.3), then
the i r format (Sect ion 7.4), and finally the de ta i l s of the language in which they
are wr i t ten (Sect ion 7.5).

7.3. Contract net p r o t o c o l - - m e s s a g e content

Message con ten t is the hear t of the issue, s ince it indica tes what k inds of things
nodes should say to one a n o t h e r and p rov ides the basis for c oope ra t i on .

Nego t i a t ion is in i t i a ted by the gene ra t ion of a new task. A s sugges ted in the
exper t s m e t a p h o r , this may occur when one p r o b l e m so lver d e c o m p o s e s a task
into sub- tasks , or when it dec ides that it does not have the k n o w l e d g e o r da t a
r equ i r ed to ca r ry out the task. W h e n this occurs , the node that gene ra t e s the
task adver t i ses ex i s tence of the task with a task announcement message (Fig. 4).
It then acts as the m a n a g e r of tha t task for its dura t ion . Many such announce -
men t s a re m a d e ove r the course of t ime as new tasks are gene ra t ed .

Meanwhi l e , nodes in the net a re l is tening to the task a n n o u n c e m e n t s (Fig. 5).
They eva lua t e the i r own level of in teres t in each task with respec t to the i r
spec ia l ized resources (ha rdware and sof tware) , using task evaluation pro-
cedures specific to the p r o b l e m at hand. 11

When a task is found to be of sufficient in teres t , a node submi ts a bid (Fig.
6). A b id message indica tes the capabi l i t i es of the b i d d e r that a re r e l evan t to
execu t ion of the a n n o u n c e d task.

A m a n a g e r may rece ive severa l bids in r e sponse to a single task announce -
men t (Fig. 7). Based on the in fo rma t ion in the bids, it selects one o r m o r e
nodes for execu t ion of the task, using a task-specif ic bid evaluation procedure.

The se lec t ion is c o m m u n i c a t e d to the successful b idde r s th rough an award
message (Fig. 8). T h e se lec ted nodes assume respons ib i l i ty for execut ion of the
task, and each is ca l led a c o n t r a c t o r for that task.

A con t r ac to r will typica l ly par t i t ion a task and e n t e r in to (sub)cont rac ts with

l(~3ae basic idea of contracting is not new. For example, a rudimentary bidding scheme was used
for resource allocation in the Distributed Computing System (DCS) [8]. The contract net takes a
wider perspective and allows a broader range of descriptions to be used during negotiation. For a
detailed discussion see [27].

lilt is in general up to the user to supply this and other task-specific procedures, but useful
defaults are available (see [26l).

78

MANAGER

TASK ANNOUNCEMENT

R. DAVIS AND R.G. SMITH

FIG. 4. Node issuing a task announcement.

MANAGER

/

MANAGER

TASK ANNOUNCEMENTS

POTENTIAL
CONTRACTOR

MANAGER

FIO. 5. Idle node listening to task announcements.

Y

v

N E G O T I A T I O N AS A M E T A P H O R 79

MANAGER

BID

POTENTIAL
CONTRACTOR

FIG. 6. Node submit t ing a bid.

MANAGER

BIDS

POTENTIAL
CONTRACTOR

FIG. 7. Manager listening to bids coming in.

POTENTIAL
CONTRACTOR

80 R. DAVIS AND R.G. SMITH

MANAGER

AWARD

POTENTIAL
CONTRACTOR

FIG. 8. Manager making an award.

other nodes. It is then the manager for those contracts. This leads to the
hierarchical control structure that is typical of task-sharing.

A report is used by a contractor to inform its manager that a task has been
partially executed (an interim report) or completed (a final report). The report
contains a result description that specifies the results of the execution. 12

The manager may terminate contracts with a termination message. The
contractor receiving such a message terminates execution of the contract and
all related outstanding subcontracts.

A contract is thus an explicit agreement between a node that generates a
task (the manager) and a node that executes the task (the contractor, Fig. 9).
Note that establishing a contract is a process of mutual selection. Available
contractors evaluate task announcements until they find one of interest; the
managers then evaluate the bids received from potential contractors and select
the ones they determine to be most appropriate. Both parties to the agreement
have evaluated the information supplied by the other and a mutual selection
has been made.

We have dealt here with a simple example in order to focus on the issue of

12Interim reports are useful when generator-style control is desired. A node can be set to work
on a task and instructed to issue interim reports whenever the next result is ready. It then pauses,
awaiting a message that instructs it to continue and produce another result.

N E G O T I A T I O N AS A M E T A P H O R 81

MANAGER

cONTRACTOR'~.~

FIG. 9. A contract established.

cooperation. Additional complications which arise in implementing the proto-
col are discussed in detail in [26]; we note them briefly here for reference.
Focused addressing is a more direct communication scheme used where the
generality of broadcast is not required. Directed contracts are used when a
manager knows which node is appropriate for a task. A request-response
mechanism allows simple transfers of information without the overhead of
contracting. And finally, a node-available message allows reversal of the
normal negotiation process: When the computat ion load on the net is high,
most task announcements will not be answered with bids because all nodes will
already be busy. The node-available message allows an idle node to indicate
that it is searching for a task to execute. The protocol is thus load-sensitive in
response to changing demands of the task: When the load is low, the spawning
of a task is the important event; when the load is high, the availability of a
node is important.

7.4. Contract net protocolmmessage format

Each message is composed of a number of slots that specify the kind of
information needed in that type of message. A task announcement message,
for example, has four mairk slots (Fig. 10). x3 The eligibility specification is a list

13There are also slots that contain bookkeeping information.

82 R. DAVIS AND R.G. SMITH

FIG. 10. Task announcement format.

Main Task Announcement Slots

Eligibility specification
Task abstraction
Bid specification
Expiration time

of criteria that a node must meet to be eligible to submit a bid. The task
abstraction is a brief description of the task to be executed. It enables a node
to rank the announced task relative to o ther announced tasks. The bid
specification is a description of the expected form of a bid. It gives a manager
a chance to say, in effect, " H e r e ' s what I consider impor tant about a node that
wants to bid on this task." This provides a c o m m o n basis for compar ison of
bids, and enables a node to include in a bid only the information about its
capabilities that are relevant to the announced task. Finally, the expiration time
is a deadline for receiving bids.

For any given application, the information that makes up the eligibility
specification, etc., must be supplied by the user. Hence while the contract net
protocol offers a f ramework specifying the types of information that are
necessary, it remains the task of the user to supply the actual information
appropr ia te to the domain at hand.

7.5. Contract net protocol--the common internode language

Finally, we need a language in which to specify the information in the slots of a
message. For a number of reasons, it is useful to specify a single, relatively high
level language in which all such information is expressed. We call this the
common internode language. This language forms a c o m m o n basis for com-
municat ion among all the nodes.

As an example, consider a task announcemen t message that might be used in
a system working on a signal processing task. Assume that one node at tempting
to analyze a signal determines that it would be useful to have a Fourier
t ransform of that signal. Unwilling or unable to do the task itself (perhaps
because of hardware limitations), it decides to announce the task in order to
solicit assistance. It might issue a task announcemen t of the sort shown in Fig.
11.

The announcement is broadcast to all nodes within range ("To: *"), and
indicates that there is a TASK of TYPE FOURIER-TRANSFORM to be done. In order to
consider bidding on it a node must have an F~rBOX and a bid should specify
est imated time to complet ion of the task.

The c o m m o n internode language is currently built a round a very simple
attribute, object, value representation. There are a number of predefined

N E G O T I A T I O N AS A M E T A P H O R 83

TO: *

From: 25
Type: TASK ANNOUNCEMENT
Contract: 43-6

Eligibility Specification
MUST-HAVE FFTBOX

Task Abatraction
TASK TYPE FOURIER-TRANSFORM
NUMBER-POINTS 1024
NODE NAME 25
POSITION I_AT 64N LONG 10W

Bid Specification
COMPLETION-TIME

Expiration Time
29 1645Z NOV 1980

FIG. 11. Task announcement example.

(domain-independent) terms (like TYPE of TASK); these are supplemented with
domain-specific terms (like FelBox). The domain-independent terms are part of
the language offered to the user and help him organize and specify the
information he has to supply. The domain-specific terms have to be added by
the user as needed for the application at hand.

All of this information is stated in terms of something we here called a
common internode language. The two important points here are that the
information in messages is viewed as statements in a language, and that the
language is common to all the nodes.

It is useful to view the messages as statements in a language because this sets
the appropriate perspective on the character of the interaction we are trying to
achieve. Vie~,ing the message exchange as, say, pattern matching would lead to
a much more restricted form of communication: A pattern either matches or
fails; if it succeeds the only information available comes from the bindings of
pattern variables. Viewing the messages as statements in a language offers the
chance for a more interesting exchange of information, since the nodes are
examining and responding to the messages, not simply matching patterns. In
particular, we find the two-way exchange of information an important capability
(see Section 9).

It is useful to identify a common 'core ' language shared by all the nodes.
This makes it much easier to add new nodes to the net. Any new node,
preloaded with only the common internode language, can use that language to
isolate the information it needs to begin to participate in solving the problem at
hand. It can listen to and understand task announcements and express a

84 R. DAVIS AND R.G. SMITH

reques t for the t ransfer of any requ i red in format ion . If the re were a n u m b e r of
dist inct i n t e rnode languages, then a new node en te r ing the net cou ld in teract
with only a l imi ted subset of the nodes, those which spoke its l anguageJ 4 This
would m a k e add i t ion of new nodes to the net less effective.

A c o m m o n language also makes poss ib le invoca t ion schemes that are more
flexible than s t anda rd p r o c e d u r e invocat ion , and this also faci l i ta tes add i t ion of
a new node to the net. Fo r example , a c o m m o n language makes it poss ib le to
use invocat ion based on descr ib ing tasks to be done , ~5 ra the r than naming
specific KSs (p rocedures) to invoke next. W h e n this t echn ique is used, new
nodes can s imply be a d d e d to the exist ing col lec t ion; they will find thei r own
place in the scheme of things by l istening to task announcemen t s , issuing bids,
etc. Wi th more t rad i t iona l invocat ion schemes (e.g., s t anda rd p rocedu re cal-
ling), a new node would have to be l inked expl ic i t ly to o the r s in the ne twork .

8. Example: Distributed Sensing

The p ro toco l desc r ibed above has been i m p l e m e n t e d in INTERLISP and used to
solve severa l p r o b l e m s in a s imula ted mul t i -p rocesso r env i ronment . T h e prob-
lems inc luded search (e.g., the 8-queens p r o b l e m) and signal i n t e rp re t a t ion (for
deta i l s see [26]). In this sect ion we descr ibe use of the cont rac t net on one such
p r o b l e m in signal in t e rp re ta t ion : a rea surve i l lance of the sort e n c o u n t e r e d in air
o r ship traffic control . W e exp lore the ope ra t i on of a ne twork of nodes , each
having e i ther sensing or process ing capabi l i t i es and all sp read th roughou t a
re la t ive ly large geograph ic area. W e refer to such a ne twork as a d i s t r ibu ted
sensing system (DSS).

A l though an ope ra t iona l DSS may have severa l functions, ranging f rom
passive analysis to act ive cont ro l over vehicle courses and speeds , we focus
here on the analysis funct ion. The task involves de tec t ion , classif ication, and
t rack ing of vehicles; the solut ion to the p rob l e m is a dynamic m a p of traffic in
the area . Cons t ruc t ion and ma in t enance of the map requ i res i n t e rp re t a t ion of
the large quan t i ty of sensory in format ion rece ived by the col lec t ion of sensor
e lements .

Since we want to p roduce a single map of the en t i re area , we may choose to
have one p rocessor n o d e - - w h i c h we will call the m o n i t o r n o d e - - c a r r y out the
final in tegra t ion of in format ion and t ransmi t it to the a p p r o p r i a t e des t ina t ion .
It is also useful to assign that node the respons ib i l i ty for beg inn ing the
ini t ia l izat ion of the DSS. Its total set of respons ib i l i t i es t he re fo re includes
s tar t ing the ini t ia l izat ion as the first s tep in net ope ra t i on , in tegra t ing the overal l

14Note that the extreme case (in which every pair of nodes communicates in its own private
language) is precisely standard procedure invocation. To decode a procedure call, one must know
the expected order, type, and number of arguments. This is information which is shared only by the
caller and procedure involved, in effect a private language used for communication between them.

~SAs is also done in PLANNER and the other pattern-directed languages.

NEGOTIATION AS A METAPHOR 85

map as the last step in analysis, and then communicating the result to the
appropriate agent. We will see that this monitor node does not, by the way,
correspond to a central controller.

Since the emphasis in this work has been on organizing the problem solving
activities of multiple problem solvers, work on the signal interpretation aspects
did not include construction of low-level signal processing facilities. Instead it
assumed the existence of appropriate signal processing modules and focused on
the subsequent symbolic interpretation of that information.

8.1. Hardware

All communication in the DSS is assumed to take place over a broadcast
channel (using for example packet radio techniques [14[). The nodes are
assumed to be in fixed positions known to themselves but not known a priori to
other nodes in the net. Each node has one of two capabilities: sensing or
processing. The sensing capability includes low-level signal analysis and feature
extraction. We assume that a variety of sensor types exists in the DSS, that the
sensors are widely spaced, and that there is some overlap in sensor area
coverage. Nodes with processing capability supply the computat ion power
necessary to effect the high-level analysis and control in the net. They are not
necessarily near the sensors whose data they process.

Fig. 12 is a schematic representation of a DSS.
In the example that follows, some assumptions about such things as node

locations, what one node knows about another, etc., may seem to be carefully
chosen rather than typically what one would expect to find. This is entirely
true. We have combined a number of plausible but carefully chosen (and
occasionally atypical) assumptions about hardware and software available in
order to display a number of the capabilities of the contract net in a single,
brief example.

÷ ÷
s s 4 -

4- s
P

4,
4, s -t- +
S + M P

P

+ + + p +
s s s

+
s

-t-
P

FIG. 12. A distributed sensing system. M: monitor node; P: processor node; G: sensor node.

86 R. DAVIS AND R.G. SMITH

8.2. Data and task hierarchy

The DSS must integrate a large quantity of data, reducing it and transforming
it into a form meaningful to a human decision maker. We view this process as
occurring in several stages, which together form a data hierarchy (Fig. 13).

As we have chosen to solve the problem for this illustration, at any given
moment a particular node handles data at only one level of the data hierarchy,
but may communicate with nodes at other levels. In addition, the only form of
signal processing we consider is narrow band spectral analysis. 16

At the bot tom of the hierarchy we have audio signals, which are described in
terms of several features: frequency, time of detection, strength, changes in
strength, name and position of the detecting node, and name, type, and
orientation of the detecting sensor.

Signals are formed into signal groups, collections of related signals. One
common signal group is the harmonic set, a collection of signals in which the
frequency of each signal is an integral multiple of the lowest frequency. In the
current example, a signal group is described in terms of its fundamental
frequency, time of formation, identity of the detecting node, and features of
the detecting sensor.

OVERALL AREA MAP

AREA MAP

VEHICLE

SIGNAL GROUP

SIGNAL

FIG. 13. Data hierarchy.

~6Noise radiated by a vehicle typically contains narrow band signal components caused by
rotating machinery. The frequencies of such signals are correlated with the type of rotating
machine and its speed of rotation; hence they are indicators of the classification of the vehicle.
Narrow band signals also undergo shifts in frequency due to Doppler effect or change in the speed
of rotation of the associated machine; hence they also provide speed and directional information.
(Unfortunately, alterations in signal strength occur both as a result of propagation conditions and
variations in the distance between the vehicle and the sensor.)

N E G O T I A T I O N AS A METAPHOR 87

OVERALL AREA

I
AREA

I]
GROUP VEHICLE

SIGNAL

CLASSIFICATION LOCALIZATION

FIG. 14. Task hierarchy.

1
TRACKIN,G

The next level of the hierarchy is the description of the vehicle. It has one or
more signal groups associated with it and is further specified by position, speed,
course, and classification. Position can be established by triangulation, using
matching groups detected by several sensors with different positions and
orientations. Speed and course must generally be established over time by
tracking.

The area map forms the next level of the data hierarchy. It contains
information about the vehicle traffic in a given area. There will be several such
maps for the DSS-- together they span the total area of coverage of the system.

The final level is the complete or overall area map, produced in this example
by the monitor, which integrates information in the individual area maps.

The hierarchy of tasks, Fig. 14, follows directly from the data hierarchy. The
monitor node manages several area contractors. These contractors are respon-
sible for the formation of traffic maps in their immediate areas. Each area
contractor, in turn, manages several group contractors that provide it with
signal groups for its area. Each group contractor integrates raw signal data
from signal contractors that have sensing capabilities.

The area contractors also manage several vehicle contractors that are res-
ponsible for integrating information about individual vehicles. Each of these
contractors manages a classification contractor that determines vehicle type, a
localization contractor that determines vehicle position, and a tracking con-
tractor that tracks the vehicle.

8.3. Contract net implementation

There are two phases to this problem: initialization of the net and operation.
Although there are interesting aspects to both of these phases, our concern
here is primarily with initialization, since this phase most easily illustrates the

88 R. D A V I S A N D R.G. SIVlITH

transfer of control issues that form one focus of this paper. The operation
phase is dealt with only briefly; for further discussion see [25].

The terminology in the discussion that follows highlights the fact that the
nodes in the contract net play a dual role: They are simultaneously contractors
obligated to carry out a task that they were awarded, and managers for any
tasks which they in turn announce. For example, node number 2 in Fig. 15
is simultaneously (i) a contractor for the area task (and hence is charged with
the duty of producing area maps from vehicle data), (ii) a m a n a g e r for group
formation tasks which it announces and contracts out, and (iii) a manager for
any vehicle tasks which it contracts out. Nodes are thus simultaneously both
workers and supervisors. (Compare Fig. 14 and Fig. 15.)

8.3.1. Init ial izat ion

The monitor node is responsible for initialization of the DSS and for formation
of the overall map. It must first select nodes to be area contractors and

bl()N I '1 OR H(UJE
1

integrate area maps

into ow~rall map

AREA TASK MANACI'IR
i l v e r a t r a c t

I
AREA CON'FRAC'I'¢)R

i n t e a r a t e v e h i c l e
t r a f f i c i n t o a r e a map

C, ROITp TASK MANACER

oversee £roup contractors

I
CROUP CONTRACT() R

a s s e m b l e s i a n a l
f e a t u r e s i n t o g r o u p s

SIGNAl, TASK ~b%NA(ZEP
o v e r s e e s i g n a l c o n t r a c t o r s

S I C, NAL CONTRACTOR
p r o v i d e s i g n a l f e a t u r e s

VEItlCT. E '['A~;K 5tANAI;I]R
o v c ' r s o t , v e h i c l e c - { , t l t r a c t o r s

I
!i

VEtt I CLE CON'I'RACTOR
i n t e g r a t e v e h i t l e i n f o r m a t i o n

(:LASS 1 F I CAT I (IN "1 ASK MANACF.R
o v e r s e e v e h i c l e c l a s s i f i c a t i ~ } n

I,OCAI~I ZATItIN TASK MANACER
o v e r s e e v e h i c l e l o c a l i z a t i o n

TRACK 1 N(; TASK HANAGER
o v e r s e c ~ v e h i c l e t r a c k i n g

I
f I

i

CI ASS I FI CA'I'ION 6] [ORAI.I ZATI~N 7

C(~NTRACTOR I (7ONTRAC FOR
c l a s s i f y v e h i c l e [~ (' a t e v e h i c l e

I
TRACK [NC 8

[C:I)NTRACTOR

I t r a c ' k v e h i c e

FIG. 15. Nodes and their roles.

N E G O T I A T I O N A S A M E T A P H O R 89

partition the system's span of coverage into areas based on the positions of the
nodes selected. For purposes of illustration we assume that the monitor node
knows the names of the nodes that are potential area contractors, but must
establish their positions in order to do the partitioning.

It begins by announcing the task of area map formation. Because it knows
the names of potential contractors, it can avoid using a general broadcast and
instead uses focused addressing. The components of the announcement of
interest here are the task abstraction, the eligibility specification, and the bid
specification. The task abstraction is simply the task type. The eligibility
specification is blank, since in this case the monitor node knows which nodes
are potential contractors and can address them directly. The bid specification
informs a prospective area contractor to respond with its position.

Recall that the purpose of a bid specification is to inform a node of how to
bid so that a manager can select from all of the bidders the most appropriate
one(s) to execute the task. In this case, node position is the relevant in-
formation. Potential area contractors respond with their positions, and, given
that information, the monitor node can partition the overall span of coverage
into approximately equal-sized areas. It then selects a subset of the bidders to
be area contractors, informing each of its area of responsibility in an award
message. The negotiation sequence thus makes available to the monitor node
the positions of all of the potential area contractors, making possible a
partitioning of the overall area of the DSS based on these positions. This in
turn enables the DSS to adjust to a change in the number or position of
potential area contractors.

Area contractors integrate vehicle data into area maps. They must first
establish the existence of vehicles on the basis of group data. To do this, each
area contractor solicits other nodes to provide that data. In the absence of any
information about which nodes are suitable, each area contractor announces
the task using a general broadcast. The task abstraction in this message is the
type of task. The eligibility specification is the area for which the area
contractor is responsible. ~7 The bid specification is again node position. Poten-
tial group contractors respond with their respective positions, and based on this
information the area contractors award contracts to nodes in their areas of
responsibility.

The group contractors integrate signal features into groups, and start by
finding a set of contractors to provide the signal features. Recall that we view
node interaction as an agreement between a node with a task to be done and a
node capable of performing that task. Sometimes the perspective on the ideal
character of that agreement differs depending on the point of view of the

17This ensures that a node is eligible to bid on this task only if it is in the s a m e a rea as the

announc ing a rea con t r ac to r and helps to p reven t a case in which a g r o u p con t r ac to r is so far away

f rom its m a n a g e r that rel iable c o m m u n i c a t i o n is difficult to achieve.

90 R. DAVIS AND R.G. SMITH

participant. For example, from the perspective of the signal task managers, the
best set of contractors would have an adequate spatial distribution about the
surrounding area and an adequate distribution of sensor types. From the point
of view of the signal task contractors, on the other hand, the ideal match
involves finding managers that are closest to them (in order to minimize
potential communication problems).

The ability to express and deal with such disparate viewpoints is one
advantage of the contract net framework. To see how the appropriate resolu-
tion is accomplished, consider the messages exchanged between the signal
managers and potential signal contractors. Each signal manager announces its
own signal task, using a message of the sort shown in Fig. 16. The task
abstraction is the type of task, the position of the manager making the
announcement, and a specification of its area of responsibility. This enables a
potential contractor to determine the manager to which it should respond. The
eligibility specification indicates that the only nodes that should bid on the task
are those which (a) have sensing capabilities, and (b) are located in the same
area as the manager that announced the task. The bid specification indicates
that a bid should contain the position of the bidder and the number of each of
its sensor types, information that a manager needs to select a suitable set of
sensor nodes.

The potential signal contractors listen to the task announcements made by
signal managers. They respond to the nearest manager with a bid (Fig. 17) that
supplies their position and a description of their sensors. The managers use this

To: •

From: 25
Type: TASK ANNOUNCEMENT
Contract: 22-3-1

Eligibility Specification
MUST-HAVE SENSOR
MUST-HAVE POSITION AREA A

Task Abstraction:
TASK TYPE SIGNAL
POSITION I_AT 47N LONG 17E
AREA NAME A SPECIFICATION (. . .)

Bid Specification
POSITION I_AT LONG
EVERY SENSOR NAME TYPE

Expiration Time
28 1730Z FEB 1979

FIG. 16. Signal task announcement.

NEGOTIATION AS A METAPHOR 91

To: 25
From: 42
Type: BID
Contract: 22-3-1

Node Abstraction
LAT 62N LONG 9W
SENSOR NAME S1 TYPE S
SENSOR NAME S2 TYPE S
SENSOR NAME TI TYPE T

FIG. 17. Signal bid.

informat ion to select a set of bidders that covers their area of responsibility
with a suitable variety of sensors, and then award signal contracts on this basis
(Fig. 18).

The signal contract is a good example of the negotiat ion process. It involves
a mutual decision based on local processing by both the managers and the
potential contractors . T he potential contrac tors base their decision on a dis-
tance metric and respond to the closest manager . The managers use the
n u m b e r of sensors and distribution of sensor types observed in the bids to
select a set of contrac tors that covers each area with a variety of sensors. Thus
each par ty to the contract evaluates the proposals made by the o ther using its
own distinct evaluat ion procedure .

To review the initialization process: we have a single moni to r node that
manages several area contractors . Each area cont rac tor manages several g roup
contractors , and each g roup cont rac tor manages several signal contractors . The
data initially flows f rom the bo t t om to the top of this hierarchy. The signal
contrac tors supply signal features; each g roup cont rac tor integrates the features
f rom several signal contrac tors to form a signal group, and these groups are
passed along to the area contractors , which eventually form area maps by
integrating informat ion based on the data f rom several g roup contractors . All

FIG. 18. Signal award.

To: 42
From: 25
Type: AWARD
Contract: 22-3-1

Task Specification
SENSOR NAME $1
SENSOR NAME $2

92 R. DAVIS AND R.G. SMITH

the a rea maps are then passed to the m o n i t o r which forms the final traffic
map. 18

The ini t ia l izat ion process r ev iewed a b o v e may a p p e a r at first g lance to be
somewha t more e l a b o r a t e than is str ictly necessary . W e have purpose ly taken a
fairly genera l app roach to the p r o b l e m to emphas i ze two aspects of cont rac t
net pe r fo rmance . First , as i l lus t ra ted by the signal contrac t , con t rac t nego-
t ia t ion is an in te rac t ive process involving (i) a two-way transfor of information
(task a n n o u n c e m e n t s f rom manage r s to con t rac tors , b ids f rom con t rac to r s to
managers) , (ii) local evaluation (each pa r ty to the nego t ia t ion has its own local
eva lua t ion p rocedure) , and (iii) mutual selection (b idders select f rom a m o n g
task announcemen t s , manage r s select f rom among bids).

Second, the con t rac t nego t ia t ion process offers a useful deg ree of flexibili ty,
mak ing it well su i ted to A I p r o b l e m s whose de c ompos i t i on is not known a
pr ior i and well su i ted to p r o b l e m s whose conf igura t ion is l ikely to change ove r
t ime. To i l lus t ra te this, cons ide r that exact ly the same ini t ia l izat ion process will
work across a large var ia t ion in the n u m b e r of and pos i t ion of nodes ava i lab le
(indeed the descr ip t ion given never men t ions how many nodes the re are, whe re
they are located, o r how wide the to ta l a r ea of cove rage is). T h e r e are c lear ly
l imits to this f lexibil i ty: If the a rea of cove rage were large enough to requ i re
severa l t housand a r ea cont rac tors , it might p rove useful to in t roduce a no the r
level of d i s t r ibu t ion in the h ie ra rchy (Fig. 14) be tween the m o n i t o r node and
the a rea con t rac tor . But the cur ren t a p p r o a c h works with a wide range of
ava i lab le resources and needs no modif ica t ion within that range. This can be
useful when avai lab le h a r d w a r e resources cannot be ident i f ied a pr ior i with
cer ta in ty , or when ope ra t ing e n v i r o n m e n t s a re host i le enough to m a k e h a r d w a r e
fa i lure a significant occur rence .

8.3.2. Operation

W e now cons ide r the activi t ies of the sys tem as it begins ope ra t ion . F o r the
sake of brevi ty the ac t ions are desc r ibed at the level of task announcemen t s ,
bids, and contracts . Fo r add i t iona l de ta i l s and examples of messages sent, see

[251.
W h e n a signal is d e t e c t e d or when a change occurs in the fea tu res of a

known signal, the de tec t ing signal con t r ac to r repor t s this fact to its manage r .
This node , in turn, a t t emp t s e i the r to in tegra te the in fo rmat ion into an exist ing
signal g roup o r to form a new signal g roup (recall that the m a n a g e r for the
signal task is also a con t r ac to r for the task of g roup fo rmat ion , Fig. 15).

~SAs noted, in this example one area contractor manages several group contractors and each
group contractor in turn manages several signal contractors. It is possible, however, that a single
group contractor could supply information to several area contractors, and a single signal
contractor could supply information to several group contractors. It may be useful, for instance, to
have a particular group contractor near an area boundary report to the area contractors on both
sides of the boundary. This is easily accommodated within our framework.

N E G O T I A T I O N A S A M E T A P H O R 93

Wheneve r a new g roup is detected, the con t rac tor reports existence of the
g roup to its manager (an area contractor) . The area con t rac tor a t tempts to find
a node to execute a vehicle contract , which involves classifying, localizing, and
tracking the vehicle. The area cont rac tor must first de te rmine whether the
newly detec ted g roup is at t r ibutable to a known vehicle. To do this, it uses a
request - response in terchange to get f rom all current vehicle contractors an
indication of their belief that the new group can in fact be at t r ibuted to one of
the known vehicles. 19 Based on the responses, the area cont rac tor ei ther starts
up a new vehicle cont rac tor (if the g roup does not seem to fit an existing
vehicle) or augments the current contract of the appropr ia te vehicle contractor ,
adding to it the task of making certain that the new group corresponds to a
known vehicle. This may entail such things as gather ing new data via the
adjus tment of sensors or the creation of contracts with new sensor nodes.

The vehicle cont rac tor then makes two task announcements : vehicle
classification and vehicle localization. A classification cont rac tor may be able to
classify directly, given the signal g roup informat ion or it may require more
data, in which case it can communica te directly with the appropr ia te sensor
nodes. 2° The localization task is a simple tr iangulation which is awarded to the
first bidder.

Once the vehicle has been localized, it must be tracked. This is handled by
the vehicle contractor , which issues additional localization contracts f rom time
to t ime and uses the results to update its vehicle description. Alternatively, the
area con t rac tor could award separate tracking contracts . The decision as to
which me thod to use depends on loading and communica t ion . If, for example,
the area con t rac tor is very busy with integrat ion of data f rom many group
contractors , it seems more appropr ia te to isolate it f rom the additional load of
tracking contracts. If, on the o ther hand, the area cont rac tor is not overly busy,
we can let it handle upda ted vehicle contracts, taking advantage of the fact that
it is in the best position to integrate the results and coordina te the efforts of
multiple tracking contractors . In this example, we assume that the managemen t
load would be too large for the area contractor .

A variety of o ther issues have to be considered in the design and opera t ion
of a real distributed sensing system. Most of them, however , are quite specific
to the DSS application and hence outside the main focus of this paper.

Jgln r e sponse to the reques t , the vehic le con t r ac to r has two opt ions . It can c o m p u t e the answer
itself, or, if it dec ides tha t tha t would requ i re more process ing power than it can spare , it can issue

a cont rac t and have a n o t h e r node c o m p u t e the answer .

2°As this e x a m p l e i l lus t ra tes , it is poss ib le in the con t rac t net for two con t rac to r s to c o m m u n i c a t e
d i rect ly (i.e., hor izon ta l c o m m u n i c a t i o n across the h ie ra rchy) as well as via the m o r e t r ad i t iona l
(ver t ical) c o m m u n i c a t i o n be tween m a n a g e r s and cont rac tors . Th is is accompl i shed wi th reques t -
r e sponse exchanges . If the ident i ty of the rec ip ien t of the reques t is not k n o w n by name , then the
reques t can be sent out using the focused address ing s cheme m e n t i o n e d in Sect ion 7.3.

94 R. DAVIS AND R.G. SMITH

9. A Progression in Mechanisms for Transfer of Control

9.1. The basic questions and fundamental differences

The contract net appears to offer a novel perspective on the traditional
concepts of invocation and transfer of control. To illustrate this, we examine
a range of invocation mechanisms that have been created since the earliest
techniques were developed, and compare the perspective implicit in each
to the perspective used in the contract net.

In doing this comparison, we consider the process of transfer of control from
the perspective of both the caller and the respondent. We focus in particular on
the issue of selection and consider what opportunities a calling process has for
selecting an appropriate respondent and what opportunities a potential res-
pondent has for selecting the task on which to work. In each case we consider
two basic questions that either the caller or the respondent might ask:

What is the character of the choice available? (i.e., at runtime,
does the caller know about all potential respondents and can it
choose from among them; similarly does each respondent know
all the potential callers for whom it might work and can it choose
from among them?)

On what kind of information is that choice based? (e.g., are
potential respondents given, say, a pattern to match, or some
more complex form of information? What information is the
caller given about the potential respondents?)

The answers to these questions will demonstrate how our view of control
transfer differs from that of the earlier formalisms with respect to:

Information transfer: The announcement-bid-award sequence
means that there is the potential for more information, and more
complex information, transferred in both directions (between
caller and respondent) during the invocation process.

Local evaluation: The computation devoted to the selection
process, based on the information transfer noted above, is more
extensive and more complex that that used in traditional ap-
proaches. It is local in the sense that information is evaluated in a
context associated with, and specific to, an individual KS (rather
than embodied in a global evaluation function).

Mutual selection: The local selection process is symmetric, in the
sense that the caller evaluates potential respondents from its
perspective (via the bid evaluation procedure) and the respon-
dents evaluate the available tasks from their perspective (via the
task evaluation procedures).

NEGOTIATION AS A METAPHOR 95

To put it another way, in the contract net the issue of transfer of control is
more broadly viewed as a problem of connecting managers (and their tasks)
with contractors (and their KSs). This view is inherently symmetric in that both
the caller (manager) and respondents (bidders) have a selection to make. This
symmetry in turn leads to the concept of establishing connection via negotiation
between the interested parties. Then, if we are to have a fruitful discussion, the
participants need to be able to 'say' interesting things to one another (i.e., they
need the ability to transfer complex information). As the discussion below
should made clear, previous models of invocation do not share these qualities.
They view transfer of control as an essentially unidirectional process (from
caller to respondent), offer minimal opportunity for selection at runtime, and
provide restricted channels of communication between caller and respondent.

9.2. The comparison

In discussing the various approaches to invocation we often refer to ' s tandard '
or ' traditional ' forms of these approaches. Each of them could conceivably be
modified in ways that would render our comments less relevant, but our point
here is to examine the techniques as conceived and as typically used.

Standard subroutine (procedure) invocation represents, by our standard, a
degenerate case. All the selection of routines to be invoked is done beforehand
by the programmer and is hardwired into the code. The possible respondents
are thus named explicitly in the source code, leaving no opportunity for choice
or nondeterminism at runtime.

In traditional production rule systems, a degree of choice for the caller (in
this case the interpreter) is available, since a number of rules may be retrieved
at once. A range of selection criteria have been used (called conflict resolution
schemes- - see [5]), but these have typically been implemented with a single
syntactic criterion hardwired into the interpreter. One standard scheme, for
instance, is to assign a fixed priority to each rule and then from among those
retrieved for possible invocation, simply select the rule with the highest
priority. Selection is thus determined by a single procedure applied uniformly
to every set of rules.

In this approach to invocation there is some choice available in selecting a
KS to be invoked (since more than one rule may be retrieved), but the
mechanism provided for making that choice allows for only a single, preselec-
ted procedure that is to be applied in all cases. In addition, all of the selection
is done by the 'caller ' ; there is no mechanism that offers the rules any ability to
select how they are to be invoked (e.g., if a rule can match the database in
several ways, which of the possible matches will actually be used.'?). Finally,
only minimal information is transferred from potential respondents back to the
caller (at most a specification of what items in the database have been matched,
and how).

96 R. DAVIS AND R.G. SMITH

PLANNER'S [11] pattern-directed invocation provides a facility at the pro-
gramming language level for nondeterministic KS retrieval, by matching goal
specifications (patterns) against theorem patterns. In the simplest case,
theorems are retrieved one by one and matched against the goal specification
until a match is found. The order in which the theorems are tried is not defined
by the language and is dependent on implementat ion decisions.

PLANNER does offer, in the recommendation list, a mechanism designed to allow
the user to encode selection information. The use construct provides a way of
specifying (by name) which theorems to try in which order. The theorem base
filter construct offers a way of invoking a predicate function which takes one
argument (the name of the next theorem whose pattern has matched the goal)
and which can veto the use of that theorem.

Note that there is a degree of selection possible here, since the theorem base
filter offers a way of choosing among the theorems that might possibly be used.
The selection may involve a considerable amount of computation by the
theorem base filter, and is local, in the sense that filters may be specific to a
particular goal pattern. However, the selection is also limited in several ways.
First, in the standard PLANNER invocation mechanism, the information available
to the caller is at best the name of the next potential respondent. The caller
does not receive any additional information (such as, for instance, exactly how
the theorem matched the pattern), nor is there any easy way to provide for
information transfer in that direction. Second, the choice is, as noted, a simple
veto based on just that single KS. That is, since final judgment is passed on
each potential KS in turn, it is not possible to make comparisons between
potential KSs or to pass judgment on the whole group and choose the one that
looks by some measure the best. Both of these shortcomings could be over-
come if we were willing to create a superstructure on top of the existing
invocation mechanism, but this would be functionally identical to the
announcement-bid-award mechanism described above. The point is simply that
the standard PLANNER invocation mechanism has no such facility, and the
built-in depth-first search with backtracking makes it expensive to implement.

CONNIVER [19] represents a useful advance in nondeterministic invocation,
since the result of a pattern-directed call is a 'possibilities list' containing all
the KSs that match the pattern. While there is no explicit mechanism parallel
to PLANNER'S recommendat ion list, the possibilities list is accessible as a data
structure and can be modified to reflect any judgments the caller might make
concerning the relative utility of the KSs retrieved. Also, paired with each KS
on the possibilities list is an association-list of pattern variables and bindings,
which makes possible a determination of how the calling pattern was matched
by each KS. This mechanism offers the caller some information about each
respondent that can be useful in making the judgments noted above. CONNIVER
does not, however, offer the respondent any opportunity to perform local
processing to select from among callers.

NEGOTIATION AS A METAPHOR 97

T h e HEARSAY-|I [7] sys tem i l lus t ra tes a n u m b e r of s imi lar facil i t ies in a
d a t a - d i r e c t e d sys tem. In par t icu la r , the focus of a t t en t ion mechan i sm has a
po in t e r to all the KSs that a re r eady to be i nvoked (i.e., those whose stimulus
frames have been matched) , as well as in fo rmat ion (in the response frame) for
e s t ima t ing the po ten t i a l con t r ibu t ion of each of the KSs. T h e sys tem can effect
some deg ree of se lec t ion regard ing the KSs ready for invoca t ion and has
ava i lab le to it a body of k n o w l e d g e abou t each KS on which to base its
se lect ion. T h e response f r ame thus p rov ides in fo rmat ion t ransfe r f rom respon-
den t to ca l ler that , whi le fixed in fo rmat , is more ex tens ive than p rev ious
mechan isms . C o n s i d e r a b l e c o m p u t a t i o n is also d e v o t e d to the se lect ion
process . Note , however , that the se lect ion is not local, s ince the re is a single,
g lobal s t ra tegy used for every se lect ion.

The concep t of me ta - ru l e s [3] offers a fu r the r advance in mechan i sms to
suppor t more e l a b o r a t e con t ro l schemes . It suggests that KS select ion can be
v iewed as p r o b l e m solving and can be effected using the same mechan i sm
e m p l o y e d to solve p r o b l e m s in the task doma in . It views select ion as a process
of p run ing and r e o r d e r i n g the app l i cab le KSs and p rov ides local se lect ion by
a l lowing me ta - ru l e s to be assoc ia ted with specific goals. 2~

T h e r e are severa l things to no te abou t the sys tems r ev iewed thus far. First ,
we see an increase in the a m o u n t and var ie ty of in fo rmat ion that is t r ans fe r red
f rom ca l le r to r e s p o n d e n t (e.g., f rom explici t naming in subrout ines , to pa t t e rns
in PLANNER) and f rom r e s p o n d e n t to ca l le r (e.g., f rom no response in subrou-
t ines to the r e sponse f rames of HEARSAY-H). Note , however , that in no case do
we have ava i lab le a gene ra l in fo rmat ion t ransmiss ion mechan i sm. In all cases,
the mechan i sms have been des igned to car ry one pa r t i cu la r sort of in fo rmat ion
and are not easi ly modif ied .

Second , we see a p rogress ion f rom the re t r ieva l of a single KS to the
re t r ieva l of the en t i re set of po ten t i a l ly useful KSs, p rov id ing the o p p o r t u n i t y
for more complex var ie t i es of se lect ion.

Final ly , no te that all the se lect ion so far is f rom one pe rspec t ive ; the
se lect ion of r e s p o n d e n t s by the cal ler . In none of these sys tems do the
r e s p o n d e n t s have any choice in the mat te r .

T o i l lus t ra te this last point , cons ide r tu rn ing HEARSAY-II a r o u n d and c rea t ing a
sys tem w h e r e r e s p o n d e n t s p e r f o r m e d the se lec t ion: a ' task b l a c k b o a r d ' system.
The s imples t fo rm of such a sys tem would have a cent ra l task b l a c k b o a r d that
conta ins an u n o r d e r e d list of tasks that need to be p e r f o r m e d . A s a KS works
on its cu r ren t task, it may d i scover new (sub) tasks that r equ i re execu t ion and
add t hem to the b l a c k b o a r d . W h e n a KS finishes its cur ren t task, it looks at the
b l a c k b o a r d , eva lua t e s the lists of tasks there , and dec ides which one it wants to
execute .

2LThe concept of negotiation in the contract net grew, in part, from generalizing this perspective
to make it "bi-directionaF: Both managers and potential contractors can devote computational
effort to selecting from the alternatives available to them.

98 R. DAVIS A N D R.G. SMITH

Note that in this system the respondents would have all the selection
capability. Rather than having a caller announce a task and evaluate the set of
KSs that respond, we have the KSs examining the list of tasks and selecting the
one they wish to work on. It is thus plausible to invert the standard situation,
but we still have unidirectional selection--in this case, on the part of the
respondent rather than the caller.

PUP6 [16], on the other hand, was the first system to suggest that transfer of
control could be viewed as a discussion between the caller and potential
respondents. In that system, if a KS receives more than one offer to execute a
task, a special 'chooser ' KS momentari ly takes control and asks 'questions' of
the respondents to determine which of them ought to be used. This is
accomplished by querying the parts of the KS. Each KS is composed of a
standard set of parts, each part designed to deal with a particular question
about that KS. For example, the procedures in the W H E N and COM-
PLEXITY parts of a KS answer the questions "When should you take
control?" and " H o w costly are you?" This interchange is highly stylized and
not very flexible, but does represent an at tempt to implement explicit two-way
communication.

The contract net differs from these approaches in several ways. First, from
the point of view of the caller (the manager), the standard task broadcast and
response interchange has been improved by making possible a more in-
formative response. That is, instead of the traditional tools that allow the caller
to receive only a list of potential respondents, the contract net has available a
mechanism that makes it possible for the caller to receive a description of
potential utility from each respondent (the bidders). The caller also has
available (as in other approaches) a list of respondents rather than a sequence
of names presented one at a time. 22 Both of these make it possible to be more
selective in making decisions about invocation.

Second, the contract net emphasizes local evaluation. An explicit place in the
f ramework has been provided for mechanisms in which the caller can invest
computational effort in selecting KSs for invocation (using its bid evaluation
procedure) and the respondents can similarly invest effort in selecting tasks to
work on (using their task evaluation procedures). These selection procedures
are also local in the sense that they are associated with and written from the
perspective of the individual KS (as opposed to, say, HEARSAY-n's global focus
of attention procedure).

Third, while we have labeled this process selection, it might more ap-
propriately be labeled deliberation. This would emphasize that its purpose for
the caller is to decide in general what to do with the bids received and not
merely which of them to accept. Note that one possible decision is that none of
the bids is adequate and thus none of the potential respondents would be

22More precisely, the caller has available a list of all those that have responded by the expiration
time of the contract.

NEGOTIATION AS A METAPHOR 99

invoked (instead, the task may be r e - a n n o u n c e d later). 23 This choice is not

typically avai lable in other p rob lem solving systems and emphasizes the wider
perspect ive taken by the contract net on the t ransfer of control issue.

Finally, there appears to be a novel symmetry in the t ransfer of control
process. Recall that PLANNER. CONNIVER, and HEARSAY-II all offer the caller some
ability to select f rom among the respondents , while a task b lackboard system

allows the r e sponden t s to select from among the tasks. The contract net (and
PUP6), however , use an interactive, mutual selection process where task dis-
t r ibut ion is the result of a discussion be tween processors. As a result of the
in format ion exchanged in this discussion, the caller can select from among
potent ia l r e sponden t s while the KSs can select from among potent ia l tasks.

I0. Suitable Applications

In this section we consider the sorts of problems for which the contract net is

well suited.
The f ramework has, for instance, been designed to provide a more powerful

mechan i sm for t ransfer of control than is available in current problem-solving
systems. This mechan i sm will be useful when we do not know in advance which
KS should be invoked or do not know which node should be given the task in
quest ion. In the first of these s i t u a t i o n s - - n o t knowing in advance which KS to
i n v o k e - - w e requi re some machinery for making the decision. The contract
ne t ' s negot ia t ion and de l ibera t ion process is one such mechanism. It will prove
most useful for p rob lems in which especially careful selection of KSs is
impor tan t (i.e., p rob lems for which we prefer the 'knowledge ' end of the
knowledge vs. search tradeoff).

The second s i t u a t i o n - - m a t c h i n g nodes and tasks - - i s inheren t in a dis t r ibuted
archi tecture, since no one node has comple te knowledge of ei ther the capabili-
ties of or the busy/ idle state of every node in the network. We have labeled this
the connec t ion p rob lem and have explored the negot ia t ion and del ibera t ion
process as a way of solving it as well.

The f ramework is wel l -matched to p rob lems that can be viewed in terms of a
hierarchy of tasks (e.g., heurist ic search), or levels of data abstract ion (e.g.,

23Similarly the potential bidders deliberate over task announcements received and may decide
that none is worth submitting a bid. Note also that receiving bids but deciding that none is good
enough is distinctly different from receiving no bids at all. In a system using pattern-directed
inference, receiving no bids is analogous to finding no KSs with matching patterns; receiving bids
but turning down all of them after due consideration has no precise analogy in existing languages.

Agenda-based systems come close, in that KSs put on the agenda may have such a low ranking
that they are effectively ignored. But this is not the same, for two reasons. First, if the queue ever
does get sufficiently depleted, those KSs will in fact be run. Second, and more important, there is
no explicit decision to ignore those KSs, simply an accident of the ordering, or perhaps the KS's
own estimation of its individual utility. The contract net offers a mechanism for making the
decision explicitly and based on an evaluation of all the candidates.

I00 R. DAVIS AND R.G. SMITH

applications that deal with audio or video signals). Such problems lend them-
selves to decomposition into a set of relatively independent tasks with little
need for global information or synchronization. Individual tasks can be assig-
ned to separate processor nodes; these nodes can then execute the tasks with
little need for communication with other nodes.

The manager-contractor structure provides a natural way to effect hierar-
chical control (in the distributed case, it's actually concurrent hierarchical
control), and the managers at each level in the hierarchy are an appropriate
place for data integration and abstraction.

Note, by the way, that these control hierarchies are not simple vertical
hierarchies but are more complex generalized hierarchies. This is illustrated by
the existence of communication links other than those between managers and
contractors. Nodes are able to communicate horizontally with related contrac-
tors or with any other nodes in the net, as we saw in the DSS example, where
classification contractors communicated directly with signal contractors using
the request-response style of interaction.

The framework is also primarily applicable to domains where the subtasks
are large and where it is worthwhile to expend a potentially nontrivial amount
of computation and communication to invoke the best KSs for each subtask. It
would, for instance, make little sense to go through an extended mutual
selection process to get some simple arithmetic done or to do a simple database
access. While our approach can be abbreviated to an appropriately terse degree
of interchange for simple problems (e.g., directed contacts and the request-
response mechanism), other systems are already capable of supporting this
variety of behavior. The primary contribution of our framework lies in ap-
plications to problems where the more complex interchange provides an
efficient and effective basis for problem solving.

Finally, the contract net is also useful in problems where the primary
concerns are in distributing control, achieving reliability, and avoiding bot-
tlenecks, even if, in these problems, the more complex variety of information
exchange described above is unnecessary. The contract net's negotiation
mechanism offers a means for distributing control: sharing responsibility for
tasks between managers and contractors offers a degree of reliability; and the
careful design of the message types in the protocol helps aw~id saturating the
communication channel and causing bottlenecks.

11. Limitations, Extensions, Open Problems

11.1. The other stages '

Earlier we noted that this paper focuses on application of the contract net to.
the distribution stage of distributed problem solving. The other stages--
decomposition, sub-problem solution, and answer synthesis--are important foci
for additional work. Problem decomposition, for example, is not a well-

NEGOTIATION AS A METAPHOR 101

understood process. It is easy to recognize when it is done well or badly, but
there are relatively few principles that can be used prospectively to produce
good decompositions. We address below the issue of sub-problem solution,
noting that a more cooperative app roach - -on e in which individual nodes share
partial solutions as they work- -can be useful in a variety of problems. Finally,
as we have explored elsewhere [4], there are a number of approaches to
synthesizing individual sub-problem results, each addressing a different anti-
cipated level of problem interaction. In future work we intend to explore
applications of the contract net and the negotiation metaphor to each of these
topics.

11.2. Instantiating the framework

The f ramework we have p roposed- - the task announcement , bid, award
sequence, the common internode language, e tc . --offers some ideas about what
kinds of information are useful for distributed problem solving and how that
information can be organized. There is still a considerable problem involved in
instantiating the f ramework in the context of a specific task domain. Our
protocol provides a site for embedding particular types of information (e.g. an
eligibility specification), but does not specify exactly what that information is
for any specific problem.

In this sense the contract net protocol is similar to AI languages like
PLANNER, CONNIVER, QLISP [24], etc., which supply a f ramework for problem
solving (e.g., the notions of goal specifications, theorem patterns, etc.), but
leave to the user the task of specifying the content of that f ramework for any
given problem. We expect that further experience with our f ramework will lead
to additional structure to help guide its use.

11.3. Alternate models of cooperation

We have emphasized task-sharing as a means of internode cooperat ion and
have a t tempted to provide some mechanisms for the communicat ion required
to effect this mode of cooperation. We have not as yet, however, adequately
studied result-sharing [28] as a means of cooperation. In what approach, nodes
assist each other through sharing of partial results. This type of cooperation
appears to be of use in dealing with several sorts of problems. For problems
where erroneous data or knowledge lead to conflicting views at individual
nodes, sharing results can help to resolve those inconsistencies (as for example
in [17]). For some tasks, any individual subproblem is inherently ambiguous
even when data and knowledge are complete and exact (e.g., the blocks world
scene identification in [31]); here the sharing of intermediate results can be an
effective means of reducing or removing ambiguity. It is our intention to
examine the structure of communication for this mode of cooperation wi th~-
view to extending the contract net f ramework to incorporate it.

102 R. DAVIS AND R.G. SMITH

It would also be useful to develop a more advanced form of task-sharing. In
our current formulation, task distribution results in the traditional form of
"hand out a subtask and get back a result" interaction. We are currently
exploring the possibility of expanding this to a more cooperative form of
interaction in which "what is to be done" is negotiated as well as "who is to do
it".

We are also exploring further development of the dynamic configuration
capability which the contract net makes possible. As noted in Section 8.3,
initialization of the DSS can take into account the resources available (number
of sensors, etc.). We intend to extend this to dynamic reconfiguration: the
negotiation technique should provide a mechanism that allows nodes which
have become overloaded to shed some of their workload by distributing tasks
to other available nodes.

11.4. Optimality of the negotiation process

As noted, a major goal of the contract net framework is to provide a
mechanism for solving the connection problem--achieving an appropriate
matching of tasks to processor nodes. Yet it is easily seen that the negotiation
process described above does not guarantee an optimal matching of tasks and
nodes.

There are two reasons why this may occur. First, there is the problem of
timing. A node that becomes idle chooses a task to bid on from among the task
announcements it has heard up to that time. Similarly, a manager chooses what
to do on the basis of the bids it has received by the expiration time for its task
announcement. But since the net operates asynchronously, new task
announcements and new bids are made at unpredictable times. A better
matching of nodes to tasks might be achieved if there were some way to know
that it was appropriate for a node to wait just a little longer before bidding, or
for a manager to wait a little longer before awarding a task.

Second, at any given instant in time, the complete matching of nodes and
tasks results from a number of local decisions. Each idle node chooses the most
interesting task to bid on, without reference to what other idle nodes may be
choosing; each manager chooses the best bid(s) it has received without
reference to what any other manager may be doing. The best global assignment
does not necessarily result from the simple concatenation of all of the best local
assignments. 24

Consider for example a situation in which two managers (A and B) have
both announced tasks, and two potential contractors (X and Y) have each
responded by bidding on both tasks. Imagine further that from A's perspective,
X's bid is rated 0.9 (on a 0 to 1 scale), while Y's is rated 0.8 (Fig. 19).
Conversely, from B's perspective, X is rated 0.8 and Y is rated 0.2.

24This appears to be a variety of the 'prisoner's dilemma' problem (see e.g., [10, ~]).

N E G O T I A T I O N AS A M E T A P H O R 103

A B
X 0.9 X 0.8
Y 0.8 Y 0.2

FIG. 19. Managers rating bids from prospective contractors.

From a purely local perspective, both of the managers want X as their
contractor; f rom a more global perspective it may make more sense to have A
'settle ' for Y, and give X to B. Yet we cannot in general create the more global
perspective without exchanging what may turn out to be extensive amounts of
information.

The first of the two problems (timing) appears unavoidable given that we
have chosen to deal with the kinds of problems typically attacked in AI,
problems whose total decomposition is not known a priori. In a speech
understanding problem, for instance, we cannot set up a fixed sequence of KS
invocations beforehand because the utility of any given KS is not predictable in
advance. Similarly, in a DSS, we have the same inability to predict KS utility,
plus the added difficulty of new signals arriving at unpredictable moments.

If we do not know in advance which subtasks will arise and when, or exactly
which KSs will be useful at each point, then we clearly cannot plan the optimal
assignment of nodes to tasks for the entire duration of the problem. Some
planning may be possible, however, even if we lack complete knowledge of a
problem's eventual decomposition. We are currently studying ways to make
use of partial information about tasks yet to be encountered or nodes that are
soon going to be idle.

The second problem (local decisions) appears inherent in any decen-
tralization of control and decision making. As noted earlier, we want to
distribute control (for reasons of speed, problem-solving power, reliability, etc.).
Given distributed control, however, globally optimal control decisions are
possible only at the cost of transmitting extensive amounts of information
between managers every time an award is about to be made. With that
approach, inefficiencies due to suboptimal control decisions are traded for
inefficiencies arising from transmission delays and channel saturation. We are
currently studying this tradeott and exploring ways of minimizing the difficulties
that arise from this problem.

It appears then, that as a result of the unpredictability of the timing of
subtasks and the necessity of making local decisions, precisely optimal match-
ing of nodes to tasks is not possible. Note, however, that our stated goal is an
appropriate assignment of nodes to tasks. Operat ion of the contract net is not
predicated on optimal matching. In addition, the small set of experiments we
have done so far (see [27]) indicate that overall performance is not seriously
degraded by suboptimal matching.

104 R. DAVIS AND R.G. SMITH

11.5. Coherent behavior

We do not yet fully understand the more general problem of achieving globally
coherent behavior in a system with distributed control. The fundamental
difficulty was described earlier: We require distributed control in order to effect
loose coupling, yet coherent behavior usually requires a global perspective.

Some aspects of the contract net protocol were motivated by attempts to
overcome this problem. First, the task abstraction supplies information which
enables a node to compare announcements and select the most appropriate. In
a similar fashion, information in bids (the node abstraction) enables managers
to compare bids from different nodes and select the most appropriate. Second,
each node in a contract net maintains a list of the best recent task announce-
ments it has s e en - - a kind of window on the tasks at hand for the net as a
whole. This window enables the nodes to compare announcements over time,
helping to avoid mistakes associated with too brief a view of the problem at
hand.

We still have the problem that good local decisions do not necessarily add up
to good global behavior, as the example in the previous section showed.
However, the steps noted at least contribute to local decisions that are made on
the basis of an extended (not snapshot) view of system performance and
decisions that are based on extensive information about tasks and bids.

In the most general terms we see our efforts aimed at developing a problem
solving protocol. The protocol should contain primitives appropriate for talking
about and doing problem solving, and should structure the interaction between
problem solvers in ways that contribute to coordinated behavior of the group.
We have thus far taken an initial step in this direction with the development of
the task announcement, bid, and award sequence.

12. Sununary

The preceding discussion considered the contract net in a number of different
contexts. In the most specific view, it was considered a mechanism for building
a distributed sensing system. More generally, it offered an approach to dis-
tributed problem solving and a view of distributed processing. In the most
general view, it was considered in the context of AI problem solving tech-
niques. In the sections that follow we consider the advantages offered by the
contract net in each of these contexts, reviewing in the process the central
themes of the paper.

12.1. Contributions to distributed processing

A distributed processing approach to computat ion offers the potential for a
number of benefits, including speed and the ability to handle applications that
have a natural spatial distributon. The design of the contract net framework
attempts to ensure that these potential benefits are indeed realized.

NEGOTIATION AS A METAPHOR 105

In order to realize speed in distributed systems, we need to avoid bot-
tlenecks. They can arise in two primary ways: by concentrating disproportionate
amounts of computat ion or communication at central resources, and by
saturating available communicat ion channels so that nodes must remain idle
while messages are transmitted.

To avoid bottlenecks we distribute control and data. In the DSS example,
data is distributed dynamically as a result of the division of the net into areas
during the initialization phase. Control is distributed dynamically through the
use of a negotiation process to effect the connection of tasks with idle
processors.

The contract net design also tries to avoid communication channel saturation
by reducing the number and length of messages. The information in task
announcements (like eligibility specifications), for instance, helps eliminate
extra message traffic, thereby helping to minimize the amount of channel
capacity consumed by communicat ion overhead. Similarly, bid messages can be
kept short and ' to the point ' through the use of the bid specification
mechanism.

Finally, the ability to handle applications with a natural spatial or functional
distribution is facilitated by viewing task distribution as a connection problem
and by having the processors themselves negotiate to solve the problem. This
makes it possible for the collection of available processors to 'spread them-
selves' over the set of tasks to be done, distributing the workload dynamically.

12.2. Contributions to distributed problem solving

As we noted earlier (Section 6), a central issue in distributed problem solving is
organization: How can we distribute control and yet maintain coherent
behavior?

One way to accomplish this is by what we have called task-sharing, the
distribution around the net of tasks relevant to solving the overall problem. As
we have seen, the contract net views task-sharing in terms of connecting idle
nodes with tasks yet to be done. It effects this matching by structuring
interaction around negotiation as an organizing principle.

Negotiation in turn is implemented by focusing on what it is that processors
should say to one another. The motivation for our protocol is thus to supply
one idea on what to say rather than how to communicate.

As the example in Section 8 showed, use of the contract net makes it
possible for the system to be configured dynamically, taking into account (in
that example) such factors as the number of sensor and processor nodes
available, their location, and the ease with which communication can be
extablished. Such a configuration offers a number of improvements over a
static, a priori configuration. It provides, for instance, a degree of simplicity:
The same software is capable of initializing and running networks with a wide
variation of available hardware. If the configuration were static, each new

106 R. DAVIS AND R.G. SMITH

configuration would presumably require human intervention for its basic design
(e.g., assigning nodes to tasks) and might require modifications to software as
well.

Dynamic configuration also means that most nodes that must cooperate are
able to communicate with one another directly. This reduces the amount of
communication needed, since it reduces the need for either indirect routing of
messages or the use of powerful transmitters.

The contract net also offers advantages in terms of increased reliability. By
distributing both control and data, for instance, we ensure that there is no one
node or even a subset of nodes whose loss would totally cripple the system. In
addition, recovery from failure of a node is aided by the presence of explicit links
between managers and their contractors. The failure of any contractor can be
detected by its manager; the contract for which it was responsible can then be
re-announced and awarded to another node. There is, in addition, the possibility
of reliability arising from "load-sensitive redundancy". When load on the net is
low, we might take advantage of idle processors by making redundant awards of
the same contract. The system thus offers the opportunity to make resource
allocation decisions opportunistically, taking advantage of idle resources to
provide additional reliability.

The framework also makes it reasonably easy to add new nodes to the net at any
time. This is useful for replacing nodes that have failed or adding new nodes in
response to increased computational load on the net. Two elements of the
framework provide the foundation for this capability. First, the contract
negotiation process uses a form of "anonymous invocation": the KSs to be
invoked are described rather than named. Second, there is a single language
"spoken" by all the nodes.

The 'concept of describing rather than naming KSs has its roots in the goal-
directed invocation of various AI languages and the notion of pattern-directed
invocation generally (see, e.g. [32]), where it was motivated by the desire for more
sophisticated forms of KS retrieval. It also however, turns out to offer an
interesting and useful form of "substitutability", simply because where names are
unique, descriptions are not, and a wide range of KSs may satisfy a single
description. As a result, in a system with invocation by name, the addition of a new
KS requires modification of the existing code to ensure that the new KS is indeed
invoked. When invocation is by description, adding a new KS involves simply
making it available to the existing collection of KSs; it will be invoked whenever its
description is matched (in our case, whenever it chooses to bid on a task
announcement). The contract net thus shares with other systems using anonymous
invocation the ability to add new KSs by simply "throwing them into the pot".

Second, the use of a single language ' spoken ' by all the nodes simplifie s
communication. If we are to add a new node, it must have some way of
communicating with other nodes in the net. The contract net simplifies this
issue by providing a very compact language: The basic protocol (task

NEGOTIATION AS A METAPHOR 107

announcement , bid, award) provides the e lementary 'syntax' for com-
munication, while the common internode language provides the vocabulary
used to express message content.

Thus, anonymous invocation means that it is possible for a new node to
begin participating in the operat ion of the net by listening to the messages
being exchanged. (If invocation were by name, listening to message traffic
would do no good.) The use of a single language means that the node will
understand the messages, and the use of a very simple language means that the
task of initializing a node is easier.

12.3. Contributions to artificial intelligence

The contract net offers a novel view on the nature of the invocation process. As
we have seen, it views task distribution as a problem of connecting tasks to KSs
capable of executing those tasks, and it effects this connection via negotiation.

In Section 9 we used this perspective to examine existing models of in-
vocation and evaluate them along several dimensions. This discussion showed,
first, that in previous models connection is typically effected with a transfer of
information that is unidirectional; hence the connection process is asymmetric.
Control resides either with the tasks (goal-driven invocation) or with the KSs

(data-dr iven invocation). In the contract net view, by contrast, the transfer is
two-way, as each participant in the negotiation offers information about itself.
This in turn means that control can be shared by both; the problem becomes
one of mutual selection.

We then showed that the information transferred is typically limited in
content. In the contract net, on the other hand, the information is not limited
to a name or pattern, but is instead expanded to include statements expressible
in the common internode language.

Third, the discussion showed that information about a more complete
collection of candidate KSs is available before final selection is made. This
makes possible a wider range of KS and task selection strategies than are
possible if KSs and tasks must be selected or rejected as they are encountered.

Finally, we noted that this expanded view of invocation effects a true
deliberation process, since one possible outcome of the negotiation is that none
of the bids received is judged good enough, and hence none of the potential
contractors will be selected. This appears to be a useful advance that has no
precise analogy in previous programming languages and applications.

12.4. Conclusion: the major themes revisited

Two of the major themes of this paper are the notion of protocols aimed at
problem solving rather than communication and the concept of negotiation as a
basic mechanism for interaction. The first was illustrated by the use of message
types like task announcement , bid, and award. This focused the contract net

108 R. DAVIS AND R.G. SMITH

p r o t o c o l at t he leve l of p r o b l e m so lv ing and p r o v i d e d a s t ep t o w a r d i nd i ca t i ng

wha t k inds of i n f o r m a t i o n s h o u l d be t r a n s f e r r e d b e t w e e n nodes .

T h e ut i l i ty of n e g o t i a t i o n as an i n t e r a c t i o n m e c h a n i s m was d e m o n s t r a t e d in

t w o se t t ings . Firs t , o u r bas ic a p p r o a c h to c o o p e r a t i o n re l ies on t a sk - sha r ing ,

a n d n e g o t i a t i o n is u sed to d i s t r i bu t e tasks a m o n g t h e n o d e s of t he net . T h i s

m a k e s poss ib le d i s t r i bu t ion ba sed on m u t u a l s e l ec t i on , y i e ld ing a g o o d m a t c h

of n o d e s and tasks. S e c o n d , n e g o t i a t i o n was used to ef fec t t r ans f e r of con t ro l .

In tha t se t t ing it o f f e r ed a f r a m e w o r k in wh ich the m a t c h i n g of KSs to tasks was

ba sed on m o r e i n f o r m a t i o n t h a n is usua l ly a v a i l a b l e (due to t he t r ans f e r of

i n f o r m a t i o n in b o t h d i r ec t ions , and t h e t r a n s f e r of m o r e c o m p l e x i n f o r m a t i o n) .

A s a resul t , n e g o t i a t i o n m a k e s it poss ib le to ef fec t a f iner d e g r e e of con t ro l a n d

to be m o r e s e l e c t i v e in m a k i n g dec i s ions a b o u t i n v o c a t i o n than is t he case wi th

p r e v i o u s m e c h a n i s m s .

ACKNOWLEDGMENT

This work describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology and at the Defence Research Establishment Atlantic of the Department of
National Defence, Research and Development Branch, Canada. Support for the Artificial In-
telligence Lab is provided in part the Advanced Research Projects Agency of the Department of
Defense under Office of Naval Research Contract N00014-80-C-505.

The assistance of Bruce Buchanan and Ed Feigenbaum in the original development of these
ideas is greatefully acknowledged. Carmen Bright, Joe Maksym, Lee Erman, Carl Hewin, Patrick
Winston, and Judy Zinnikas provided useful comments on earlier drafts of this paper.

REFERENCES

1. Baer, J.-L., A survey of some theoretical aspects of multiprocessing, Comput. Surveys 5 (1)
(1973) 31-80.

2. Bowdon, E.K., Sr. and Barr, W.J., Cost effective priority assignment in network computers, in:
FJCC Proceedings 41 (AFIPS, Montvale, N J, 1972) 755-763.

3. Davis, R., Meta-rules: reasoning about control, Artificial Intelligence 15 (1980) 179-222.
4. Davis, R., Models of problem solving: Why cooperate?, S I G A R T Newsletter 70 (1980) 50-51.
5. Davis, R. and King, J., An overview of production systems, in: E.W. Elcock and D. Michie

(Eds.), Machine Intelligence 8 (Wiley, New York, 1977) 300-332.
6. D'Olivera, C.R., An analysis of computer decentralization, Rept. LCS, TM90, MIT, Cam-

bridge, MA, 1977.
7. Erman, L.D., Hayes-Roth, F., Lesser, V.R. and Reddy, D.R., The Hearsay-ll speech-understanding

system: Integrating knowledge to resolve uncertainty, Comput. Surveys 12 (1980) 213-253.
8. Farber, D.J. and Larson, K.C., The structure of the distributed computing system--Software,

in: J. Fox (Ed.), Proceedings of the Symposium on Computer-Communications Networks And
Teletraffic (Polytechnic Press, Brooklyn, NY, 1972) 539-545.

9. Galbraith, J.R., Organizational design--an information processing view, in: Kolb (Ed.),
Organizational Psychology (Prentice Hall, Englewood Cliffs, N J, 2nd. ed., 1974) 313-322.

10. Hamburger, H., N-person prisoner's dilemma, J. Math. Sociology 3 (1973) 27-48.
11. Hewitt, C., Description and theoretical analysis (using schemata) of PLANNER: A language for

proving theorems and manipulating models in a robot, MIT AI TR 258, MIT, Cambridge, MA,
1972.

NEGOTIATION AS A METAPHOR 109

12. Hewitt, C., Viewing control structures as patterns of passing messages, Artificial Intelligence 8
(1977) 323-364.

13. Kahn, R.E., Resource-sharing computer communications networks, Proc. IEEE 60 (11) (1972)
1397-1407.

14. Kahn, R.E, The organization of computer resources into a packet radio network, in: NCC
Proceedings 44 (AFIPS, Montvale, N J, 1975) 177-186.

15. Kimbleton, S.R. and Schneider, G.M., Computer communications networks: approaches,
objectives, and performance considerations, Comput. Surveys 7 (3) (1975) 129-173.

16. Lenat, D.B., Beings: knowledge as interacting experts, IJCA 4 (1975) 126-133.
17. Lesser, V.R. and Erman, L.D., Distributed interpretation: a model and experiment, IEEE

Trans. Comput. 29 (1980) 1144-1163.
18. Lesser, VR. and Corkill, D.D., Functionally accurate cooperative distributed systems, IEEE

Trans. Systems Man Cybernet. 11 (1) (1981) 81-96.
19. McDermott, D.V. and Sussman, G.J., The CONNIVZR Reference Manual, AI Memo 259a, MIT,

Cambridge, MA, 1974.
20. Nil, H.P. and Feigenbaum, E.A., Rule-based understanding of signals, in: D.A. Waterman and

F. Hayes-Roth (Eds.), Pattern-Directed Inference Systems (Academic Press, New York, 1978)
483-501.

21. Noyce, RN., From relays to MPU's, Comput. 9 (12) (1976) 26-29.
22. Prince, P.S., Recovery from failure in a contract net, B.S. Thesis, EECS Department, MIT,

Cambridge, MA, 1980.
23. Roberts, L.G., Data by the packet, IEEE Spectrum 11 (2) (1974) 46-51.
24. Sacerdoti et al., QLISP--A language for the interactive development of complex systems, Proc.

NCC 45 (1976) 349-356.
25. Smith, R.G. and Davis, R., Applications of the contract net framework: distributed sensing,

Proc. A R P A Distributed Sensor Net Syrup., Pittsburgh, PA (1978) 12-20.
26. Smith, R.G., A framework for distributed problem solving (VMI Research Press, 1981); also:

Stanford Memo STAN-CS-78-700, Stanford University Stanford, CA, 1978.
27. Smith, R.G., The contract net protocol: high level communication and control in a distributed

problem solver, IEEE Trans. Comput. 29 (1980) 1104-1113.
28. Smith, R.G. and Davis, R., Frameworks for cooperation in a distributed problem solver, IEEE

Trans Systems Man Cybernet. 11 (1981) 61-70.
29. Svodobova, L., Liskov, B. and Clark, D., Distributed computer systems: structure and

semantics, MIT-LCS-TR-215, MIT, Cambridge, MA, 1979.
30. Tucker, A.W., A two-person dilemma, Mimeo, Stanford University, Stanford, CA, 1950.
31. Waltz, D., Understanding line drawings of scenes with shadows, in: Winston (Ed.), The

Psychology of Computer Vision (McGraw-Hill, New York, 1975).
32. Waterman, D.A. and Hayes-Roth, F. (Eds.), Pattern-Directed Inference Systems (Academic

Press, New York, 1978).

R e c e i v e d A p r i l 1981

