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Abstract-In the present investigation, an incompressible fluid flow across a bank of circular cylinders is 
studied and modeled as a non-Darcy flow through a porous medium. The continuity equation and the 
momentum equation in pore scale are solved on a Cartesian grid system. To circumvent the numerical 
difficulties arising from the flow domain of irregular shape, the weighting function scheme along with the 
APPLE algorithm and the SIS solver is employed. The Darcy-Forchheimer drag is then determined from 
the resulting volumetric flow rate under a prescribed pressure drop. The resuit indicates that the permeability 
approaches zero at the particular porosity of 0.2146 when the fluid flow across the cylinders becomes 
impossible. In addition, the pressure drag (Forchheimer drag) is found to contribute a significant resistance 
at large porosities and/or large granule Reynolds numbers. A correlation of Darcy-Forchheimer drag is 

proposed for 0.2146 < E < 1 and 0 < Re, < 50. 0 1997 Elsevier Science Ltd. 

INTRODUCTION 

Fluid flow across a bank of circular cylinders is en- 
countered in many scientific and engineering activities. 
For practical purpose, the bank of cylinders can be 
modeled as a porous medium under most situations 
[I]. However, few efforts have been devoted to such 
a modeling in the past. Nevertheless, there exists a 
voluminous literature dealing with modeling for par- 
ticle-like or granular media. 

Physically, the flow resistance in non-Darcy flow is 
expressible as the sum of a viscous friction and a 
pressure drag [2-51. For convenience, the viscous fric- 
tion, the pressure drag and their sum (the total drag) 
will be, respectively, referred to as the Darcy drag. the 
Forchheimer drag and the DarcyyForchheimer drag 
in the present study. After examining a number of 
experimental data, Ergun [5] proposed a well-known 
correlation of DarcyyForchheimer drag for beds of 
granular solids. The two coefficients employed in the 
correlation are constant (a = 150 and p = 1.75) in 
spite of orientation, shape and surface of the granular 
solids. However, in a review paper Macdonald et al. 
[6] suggested c( = 180 and b = 1.84.0 depending on 
surface roughness of the particles for Ergun’s cor- 
relation [5]. 

In 1964. Ward [7] proposed a similar correlation 
with a dimensionless constant c (i.e. c = 8~” ‘8~’ ’ 
according to Ergun’s modeling [5]). He claimed that 
c has the same value (c = 0.550) for all porous media. 
The “universal” constant of c = 0.550 was sub- 
sequently verified by Beavers et al. [8] through an 
experiment on a randomly packed beds of spheres. 
However, in an experiment on non-Darcy flow 
through fibrous porous media, Beavers and Sparrow 

[9] obtained a c-value of 0.074 that is far smaller than 
the aforementioned “universal constant” (c = 0.550). 
Even the free fiber ends were found to have a great 
influence on the c-value. This seems to substantiate 
the dependence of the Darcy-Forchheimer drag upon 
the microstructure of the porous medium. Hence, the 
existing models for beds of granular solids are not 
necessarily appropriate for other classes of porous 
media as remarked by Beavers and Sparrow [9]. 

To the authors’ best knowledge, Coulaud et al. [ 101 
might be the only attempt in the literature to model 
the Darcy-Forchheimer drag by using a numerical 
method. They computed the pressure drop for a fluid 
flow across a bank of circular cylinders at given flow 
rates (or granule Reynolds numbers Re,) up to 
Red = 25. The resulting pressure drop was decom- 
posed into three zones, namely, the Darcy zone 
(Re, < l), the transition zone (1 < Red d 13) and the 
Forchheimer zone (Re, > 13). For each of the three 
porosities (E = 0.4345,0.6073,0.8076) investigated by 
them, a permeability K was obtained for the Darcy 
zone, while the aforementioned coefficient c was found 
proportional to K-“’ in the Forchheimer zone rather 
than a constant. In the transition zone, however, no 
correlation was performed. 

Generally speaking, significant departures from the 
Darcy’s law would occur at granule Reynolds num- 
bers on the order of one [9]. However, the For- 
chheimer drag obtained by Coulaud et al. [lo] is seen 
to be negligibly small as compared to the Darcy drag 
even at a large granule Reynolds number. For 
instance, the Forchheimer drag predicted by Coulaud 
et al. [lo] makes only 5% of the total drag for a 
granule Reynolds number as large as 20. Their under- 
estimation on the Forchheimer drag is believed to 
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NOMENCLATURE 

a,,,,, coefficients of a bi-polynomial. u, I‘ dimensionless velocities, U/I/,, V! C’, 
equation (15) X. Y coordinates [m] 

:; 
a constant X,,, Y,, location of a unit cell, Fig. I. 
diameter of the cylinders [m] 

F Forchheimer coefficient, equation (11) Greek symbols 
H width of a bank of circular cylinders x, /I coefficients, equation (I 3) 

bl i’ fraction of the Forchheimer drag, 
K permeability of porous media [m’] equation (14) 
L pitch of cylinder bank [m] AP a prescribed pressure drop [N m ‘1 
II?, 12 indicies of a bi-polynomial, equation Ai increment of the streamlines, $,,,,,/I0 

(15) AC. A9 mesh of the Cartesian grid system 
P,p pressure [N m ‘1 and dimensionless i: porosity. equation (IO) 

pressure, p = PjAP E”,,” minimum possible porosity 
P volume-averaged pressure [N m ‘1 V dynamic viscosity [kg mm ’ sm ‘1 
q volumetric flow rate, equation (7) 1 kinematic viscosity [ml s ‘1 
Rr, characteristic Reynolds number. b’,L/v P density of the fluid [kg mm ‘1 
Re, granule Reynolds number. fld!r i stream function, equation (6) 
U, V velocity components [m ss’] <. n dimensionless local coordinates. 
U superficial velocity [m s- ‘I. equation 

(8) Subscript 

U‘ characteristic velocity, ,l’AP:/, max maximum. 

arise from an improper methodology and a coarse 
grid system used by them. 

$+Eco (1) 

The purpose of this paper is to propose a numerical 
procedure for modeling the DarcyyForchheimer drag. ? 

The continuity equation and the momentum equation 
U(u+r.i)u, -9 

(:5 ?rJ (( ;I+&Cri,+$j (2) 

in pore scale are solved numerically for an incom- 
pressible fluid flow across a bank of circular cylinders (‘1’ d[? 
at a prescribed pressure drop. The Darcy--For- 

u,+?&= -*+&($+$I (3) 
C’ < pvl 

chheimer drag is then determined from the cor- 
responding volumetric flowing rate. A correlation for where the dimensionless variables are defined by 
the Darcy-Forchheimer drag is performed for all of 
the possible porosities (0.2146 < c < 1) with a granule 

U = U/c’, L’ = V,;U r =(X-X,)/L 
_~~ 

Reynolds number up to 50. Comparisons with the r/ = (Y- Y,,)/L p = P/AP UC = JAP:‘p 
numerical model from Coulaud et nl. [IO] will be dis- 
cussed. Re, = UcL/v. (4) 

The associated boundary conditions are 

THEORETICAL ANALYSIS u(0.q) =u(l.l-q) l(O,V) =!‘(l.l-t1) 

Consider a fluid flow across a bank of circular cyl- 
inders of diameter d. The cylinders are staggered with 
row (column) spacing L as shown in Fig. 1. The diam- 
eter of the cylinder is very small as compared to the 
width of the bank of the cylinders (u’ << H). Therefore, 
the flow can be assumed incompressible and laminar 
through each “channel” formed by two adjacent rows 
of cylinders as long as the granule Reynolds number 
Re,, is not large. Furthermore, it can be treated as a 
periodic flow with a constant pressure drop AP after 
each period f. in the “fully developed” region. This 
implies that only the flow inside a unit cell (i.e. 
X0 d X d (X,+ L) and Y,, d Y d ( Y,+ L)) is needed 
to solve. After imposing the assumptions. the gov- 
erning equations are expressible as 

A$<, O)/?q = 0 Sp(<. 0)/&j = 0 ?u(<, I)!‘&7 = 0 

(?V((, l):‘?n = 0. (7P(<, I)/&/ = 0. (5) 

Note that the no-slip condition should be imposed on 
the surface of the cylinders. Thus, there is no need to 
solve the governing equations inside the cylinders. 

The governing equations (l)-(3) and the associated 
boundary conditions (5) constitute a system of partial 
differential equations on a physical domain of irregu- 
lar shape. Such a problem can be efficiently solved by 
using the weighting function scheme [l l-121 along 
with the APPLE algorithm 1131 and the SIS solver 
[14] on a Cartesian grid system as shown in Fig. 2. In 
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Fig. 1. Fluid flow across a bank of circular cylinders. 
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the present study, the primary variables (u,v,p) are 
obtained for each prescribed value of (Re,, d/L). The 
numerical procedure is iterated until the solution 
(u,n,p) converges within a tolerance of lo-‘, while 
the dilation (du/ds+ &/a_r) of the velocity has a 
magnitude of less than 10e4. The grid mesh 
At = Aq = 0.02 was found adequate for all of the 
parameters under study. Further reduction in the grid 
size does not show significant influence on the solu- 
tion. 

Once the velocity is known, the dimensionless 
stream function $ can be evaluated from 

ti = 
s 

‘tidq. (6) 
0 

It appears that the stream function reaches a 
maximum known as the dimensionless volumetric 
flow rate 

q=$max = 
s 

‘udq (7) 
0 

at q = 1. Note also that the volumetric flow rate of q 

Fig. 2. The Cartesian grid system employed in the present 
study for a unit cell. 

should be independent of the position 5. The variation 
of q upon 5 in the present numerical results is found 
less than 0.01%. This is a proof of the effectiveness and 
the correctness of the present computations. Based 
on this, the superficial velocity fl and the granule 
Reynolds number Re, are evaluated from 

UdY = I/,q (8) 

d 
Re, = ud = Re, L q. 

1’ 0 

Figure 3 reveals the results of streamlines and iso- 
bars for d/L = 0.8 at the prescribed Reynolds numbers 
of Re, = 1, 10 and 30. To achieve an existence and a 
uniqueness for the pressure solution, a pressure level 
has been defined by p( 1,l) = 0 through the use of the 
APPLE algorithm [ 131. For convenience, the results 
are presented on two adjacent unit cells, while the 
increment of the streamlines is assigned by 
Ati = $m.JlO. 

From Fig. 3(a), it is seen that both streamlines and 
isobars at Re, = 1 (corresponding to Red = 0.02176) 
are essentially symmetric about the vertical line i; = 1. 
This means that the viscous friction dominates the 
drag force under such a low Reynolds number. When 
the Reynolds number increases to Re, = 10 or 
Re, = 2.176, the streamlines and isobars show a slight 
deviation from symmetry as revealed by Fig. 3(b). 
Finally, an asymmetric flow can be found from Fig. 
3(c) when the granule Reynolds number Re, is as large 
as 15.72 (Re, = 30). It is important to note from Fig. 
3(c) that as the Reynolds number is sufficiently large, 
a pressure drag could arise from the asymmetric pres- 
sure distribution on the cylinder surface. 

MODELING OF THE DARCV-FORCHHEIMER 
DRAG 

In most applications, there is no need to solve the 
fluid flow in pore scale for a problem like that in the 
previous section. Modeling the cylinders as a porous 
medium and solving only the volume-averaged flow 
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(a) ReC = 1 

L-_-Y?&-_-33L 
Re, = 0.02176 

(b) Ret = 10 Red = 2.176 

$ max = 0.6541 
“Y 

(c) Ret = 30 or Red = 15.73 

Fig. 3. Streamlines (increment A$ = $,,,,,,‘lO) and isobars for the cases of d!L = 0.8 and (a) Re, = 1 : (b) 
Rc, = 10 ; and (c) Rc, = 30. 

quantities wouid be practically enough. As suggested 
by Reynolds [2], Forchheimer [3], Blake [4] and Ergun 
[5], the porosity t: and the average pressure gradient 
( - dp/dX) for the fluid flow across a bank of circular 
cylinders as shown in Fig. 1 are assumed the form 

(10) 

where K is known as the permeability of the porous 
medium and F is the Forchheimer coefficient. The 
dimensionless quantities (d’/K), (FRc,) and 
(d'/K+FRe,) are respectrvely the Darcy drag, the 
Forchheimer drag and the Darcy-Forchheimer drag. 

For the problem studied in the previous section. the 

volumetric flow rate q can be determined for each 
assigned value of (Rc,, d/L). Thus, the Darcy-- 
Forchheimer drag can be evaluated from 

d’ 
F+FRr, = (12) 

once y is known. Figure 4 shows the results of the 
Darcy-Forchheimer drag vs the granule Reynolds 
number Rc, (up to 50) at various porosity 8. Note that 
for Red < 150 the Ruid flow across a single cylinder is 
laminar [15]. Hence, the fluid flow across a bank of 
circular cylinders is believed to be laminar also for 
Re, d 50. 

As observable from the ordinate of Fig. 4, the 
Darcy-Forchheimer drag reduces to L/'/K when the 
viscous friction dominates the drag force (Re, 2 0). 
In contrast, the pressure drag (i.e. the Forchheimer 
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Fig. 4. Present results of Darcy-Forchheimer drag at various 
porosities E and granule Reynolds numbers Re,. 

drag) could overtake the viscous friction and become 
the leading drag force as the granule Reynolds number 
Re, is sufficiently large. This is especially true when 
the porosity E is large. For instance, at E = 0.9372 (i.e. 
d/L = 0.4) the Forchheimer drag (FRe,) increases 
from zero to 2.621 as Re, increases from zero to 50, 
while the Darcy drag is maintained at d’/K = 1.427. 
Under this situation, using the Darcy law would lead 
to a significant error. In case of small porosity, say 
E = 0.4345 (d/L = 1.2), the Darcy drag would essen- 
tially dominate the drag for a wide range of granule 
Reynolds numbers. These findings are consistent with 
the physicai reasoning. 

In his well-known investigation, Ergun [5] proposed 
a simple correlation for the Darcy-Forchheimer drag 

d2 (1 -&)i 
pFRe,=cc- ~ 

E3 
+B(‘-‘)Re 

E3 d 
(13) 

based on a number of experiments of fluid flow 
through beds of granular solids. If the same form of 
correlation (13) is adopted for the present result deal- 
ing with a flow across a bank of circular cylinders, 
however, c( would be a function of E rather than a 
constant. To clarify this point, the function a(s) con- 
verted from the result shown in Fig. 4 is revealed in 
Fig. 5. The r-value (CL = 150) from Ergun [5] and that 
from Coulaud et al. [lo] are also presented in Fig. 5 
for comparison. 

It is interesting to note from Fig. 5 that the present 
result of X(E) agrees excellently with that from Ergun 
[5] in a range of E (0.6 < E < 0.7). Otherwise, a direct 
application of Ergun’s correlation on a fluid flow 
across a bank of cylinders would always under- 
estimate the Darcy drag (d’/K). Note also that the 
minimum possible E for cylinder bundle is 
E,,, = 0.2146 (d/L = \h) when the cylinders contact 
with each other. Under such a situation, flow across 
the cylinders becomes theoretically impossible and 
thus possesses an cc-value of infinity. The present 

__ Present 
~ - Ergun [5] 

o Coulaud [lo] 

0.5 

& 

Fig. 5. Comparison of m(s) among the present result and that 
from Coulaud et al. [IO] and Ergun [5]. 

result seems to successfully reflect this particular 
physical phenomenon. The numerical result from 
Coulaud et al. [lo], however, does not predict such an 
infinite a-value. 

A comparison between the Darcy-Forchheimer 
drag from Coulaud et al. [IO] and that from the pre- 
sent study is depicted in Fig. 6. Ergun’s correlation 
for beds of granular particles is also plotted in Fig. 6 
as a reference. For convenience, the available results 
of (d2/K, FRed) and the corresponding fraction of the 
Forchheimer drag 

y = FReJ(d2/K+ FRe,) (14) 

are listed in Table 1 for the three porosities E = 0.4345, 
0.6073, 0.8076 at Re, = 20. From Fig. 6 and Table 1, 
Coulaud et al. [lo] are seen to greatly underestimate 
the Forchheimer drag. For instance, at 
(Re,, E) = (20,0.6073) their result predicts that the 

2r----7i 1 r _i 

1 
51 Present 

t ~~~~-- Ergun [5] 

21 ~ ~~~ Coulaud [lo] -I _I 

I 

10°od mLmm-mp 
I / I 1 _I 

10 20 30 40 50 

R=* 

Fig. 6. Comparison of the Darcy-Forchheimer drag among 
the present result and that from Coulaud et al. [IO] and 

Ergun [5] for E = 0.4345, 0.6073 and 0.8076. 
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Table I. Comparison of (d2/K. F Re,, yv) among the available models for 
Re, = 20 

E Model d’!‘K FRe, 7 

0.4345 

0.6073 

0.8076 

Present“ 
Coulaud [lo]” 
Ergun [5]” 

Present” 
Coulaud [IO]” 
Ergun [51h 

Present” 
Coulaud [IO]” 
Ergun [51h 

787.95 55.60 6.59% 
505.58 18.96 3.61% 
584.77 241.29 29.21% 

102.20 12.83 11.15% 
89.09 5.17 5.48% 

103.28 68.32 39.81”/0 

11.85 5.86 33.09% 
15.85 2.22 12.29% 
IO. 54 12.78 54.80% 

(a) Flow across cylinder bundle. 
(b) Flow through granular beds 

Forchheimer drag makes only 5.48% of the total drag. ders. In this methodology of numerical modeling, the 
Such a fraction of Forchheimer drag is incredibly low continuity equation and the momentum equations in 
as compared to 11.15% from the present result. It is pore scale are solved on a Cartesian grid system under 
noted that Ergun’s correlation [5] gives a fraction of a prescribed pressure drop. This gives rise to a numeri- 
Forchheimer drag as large as 39.81% for granular cal difficulty associated with a flow domain of irregu- 
beds under the same parameters. lar shape. Fortunately, the weighting function scheme 

In their work, Coulaud et al. [lo] studied the along with the APPLE algorithm and the SIS solver 
fluid flow across a bank of circular cylinders in pore is found quite efficient in solving such a problem. Once 
scale for the three aforementioned porosities the velocities and the pressure distribution are known, 
(E = 0.4345,0.6073,0.8076) with Re, up to 25. A the Darcy-Forchheimer drag is determined from the 
mixed finite element method was used to discretize the result of volumetric flow rate. The solutions verify 
partial differential equations. Instead of seeking the that the viscous friction (Darcy drag) dominates the 
solution, a least square method along with a con- flow resistance when the granule Reynolds number is 
jugated gradient algorithm was employed to approach below the order of one. However, the pressure drag 
the solution to a minimization problem. Furthermore, (the Forchheimer drag) could overtake the Darcy 
in their study only 49 grid points were employed for drag and become the dominant flow resistance at large 
the pressure in each unit cell (i.e. 2601 points in the granular Reynolds numbers. As expected, the porosity 
present computation, see Fig. 2). The use of such a shows a great influence on the Darcy-Forchheimer 
methodology and coarse grid system might have led drag. At its minimum possible value (E,,, = 
to the great understatement to the Forchheimer drag 1 -x/4 = 0.2146), the flow across the cylinders even 
as observable from Table 1. Additional experiments becomes theoretically impossible. Under such a situ- 
are needed to resolve this dispute. ation, the Darcy-Forchheimer drag should be infinite. 

Finally, the present results of the Darcy drag (d’/K) The present results successfully reflect this interesting 
and the Forchheimer coefficient Fare correlated by phenomenon. 

d2 31(1--E)’ 3 -= 
K r-:‘(e-0.2146) 

(15a) 

‘Re;-’ (15b) 

A&K~N&+wxw~~ The authors wish to express their 
appreciatton to the National Science Council of Taiwan for 
the financial support of this work through the project 
NSC86-2212-E007-066. 

[ 4.825 -0.1660 0.00 1777 

[a,,] = - 17.754 

I 

0.5893 -0.006160 

15.911 -0.4736 0.004836 1 
(I5c) 

They give a correlation with a maximum error of less 
than 5% for the Darcy-Forchheimer drag in the range 
of 0.2146 d E < 1 and 0 < Red d 50. 
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