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Abstract. Evaporation of groundwater in a region with a shallow water table and small natural 
replenishment causes accumulation of salts near the ground surface. Water in the upper soil layer 
becomes denser than in the depth. This is a potentially unstable situation which may result in con- 
vective currents. When free convection takes place, estimates of the salinity profile, salt precipitation 
rate, etc., obtained within the framework of a 1-D (vertical) model fail. 

Very simplified model of the process is proposed, in which the unsaturated zone is represented 
by a horizontal soil layer at a constant water saturation, and temperature changes are neglected. The 
purpose of the model is to obtain a rough estimate of the role of natural convection in the salinization 
process. 

A linear stability analysis of a uniform vertical flow is given, and the stability limit is determined 
numerically as a function of evaporation rate, salt concentration in groundwater, and porous medium 
dispersivity. The loss of stability corresponds to quite realistic Rayleigh numbers. The stability limit 
depends in nonmonotonic way on the evaporation rate. 

The developed convective regime was simulated numerically for a 2-D vertical domain, using 
finite volume element discretization and FAS multigrid solver. The dependence of the average salt 
concentration in the upper layer on the Rayleigh number was obtained. 

Key words: free convection, through flow, vadoze zone, salinization, dispersion, multigrid 

1. L i s t  o f  M a i n  S y m b o l s  

a horizontal wavenumber 
aL, aT dispersivities (longitudinal and transversal) 
73* diffusion coefficient (in a porous medium) 

g acceleration of gravity 
H thickness of the vadoze zone 
k permeability 
p pressure 
Pe P6clet number 

q mass flux 
Ra Rayleigh number 
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Greek 
OI L ~ O~ T 

# 

p 

r 

dimensionless dispersivities 
coefficient of concentration expansion 
coefficient of viscosity variation 
volumetric fraction of the liquid phase 
viscosity 
density 
stream function 
mass fraction of salt in water 

Vectors and tensors 
D dispersion coefficient 
e unit vector 
I unit tensor 
J nonadvective salt flux 
V liquid phase velocity 
x radius-vector 

2. Introduction 

Evaporation of soil moisture from ground surface is one of the main mechanisms 
that cause soil salinization. It plays a major role when the water table is present at 
a relatively shallow depth, and the natural replenishment is very small, as in arid 
regions. Under such conditions, the average flow of water through the unsaturated 
soil is directed upwards. If groundwater is saline (and to some extent it usually is), 
this flow transports salts towards ground surface. Water evaporates from the upper 
soil layer, while salts remain in the soil and their concentration increases. 

Usually, such processes (i.e., rainfall infiltration, drying, etc.) are analyzed by 
using a 1-D (vertical) model, assuming that the flow is uniform (cf. Bresler et al. [4], 
Hillel [6]). To some extent, the aim of the present work is to check the robustness 
of the 1-D approach in the simplest steady or quasi-steady flow regimes. 

If the boundary conditions at ground surface and at the water table do not change, 
sooner or later, the system will come to a steady state. If the vertical uniform flow 
is assumed, then the liquid mass flux, q, and the salt mass flux, q~, are constant, 
while the salt concentration depends only on the vertical coordinate. The total mass 
flux of salt in the soil is made up of an advective flux and a diffusive-dispersive 
one: 

0 dw q~ = qoJ - p D h  -~z' (1) 

where p is the density of the liquid phase, w is the mass fraction of salt in it, 
Dh = D h ( q ,  O) is the coefficient of hydrodynamic dispersion of salt in the porous 
medium, O(z) is the volumetric fraction of the liquid phase, and z is vertical 
coordinate (positive upwards, with the origin at the water table). We may assume 
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that salt concentration at the water table, z = 0, is equal to the average groundwater 
salinity, a~0: 

z = 0  �9 w = w 0 .  (2) 

There is no salt transport through ground surface, at z = H.  If the salt concen- 
tration is below the maximal solubility of salt in water, then the condition at this 
boundary is that of no-flux: 

z = H  " q S = 0 ,  (w<a~ . ) ,  (3) 

where w. denotes the mass fraction of salt in saturated brine. If the salt concentration 
at ground surface reaches the maximal solubility threshold, we have a Dirichlet 
boundary condition: 

z = H  �9 w = w . .  (4) 

Then the upward salt flux can be positive, the excess salt precipitating just below 
the ground surface. 

From the single first-order ordinary differential equation (1), with the two 
boundary conditions (2) and (3)-(4), the unknown salt flux, qS, and the distribution 
of dissolved salt, w(z), can be determined, if we assume O(z) to be known. In the 
case without salt precipitation, we obtain from (1)-(3): 

fo H dz q H V H In  "J1 = q , (5 )  
wo OpDh O-fiDh Dh 

where wl is the mass fraction of salt in the solution near ground surface, V = q/(Op) 
is the liquid velocity, and a bar over a variable denotes its value at some internal 
point of the layer. The expression on the right-hand side of (5) is the Pdclet number, 
Pe, of the problem. From (5) and (3) we can see that under steady-state precipitation 
takes place as long as the Pdclet number exceeds its critical value, Pe* 

Pe > P e *  - l n  w* 
02 0 

Typical salt concentrations in groundwater are in the range 102mg/1 - 104mg/1 
( i .e . ,  10 - 4  < w < 10-2). Under normal conditions, the maximum solubility of, 
say, NaC1 in water is about 310g/1 (co _~ 0.26). Thus, the critical P6clet number 
is in the range 3 < Pe* < 8. On the other hand, let us estimate the actual Pdclet 
number for a capillary rise caused by evaporation from ground surface. Taking 
V = 10-7m/s  "~ 8ram/day (typical evaporation rate for dry and hot regions), 
Dh = 10-9 -- 10-8m2/s, H = 0.5 -- 3m, we obtain Pe in the range 5 to 300. 

This means that in most cases Pe > Pe*. Therefore, one may conclude that a 
shallow water table without natural or artificial leaching necessarily implies soil 
salinization. For example, this pessimistic conclusion leaves no chance for oases 
in deserts to exist. 
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Actually, there is a danger of overestimating the rate of salt accumulation 
inherent in the assumption of a one-dimensional flow pattern. According to the 
distribution described by (5), water near ground surface is more saline and, hence, 
denser than that at larger depths. This is a potentially unstable situation which may 
result in convective currents. If such currents arise, they provide a much better 
'mixing' mechanism for salt in the unsaturated zone than that due to molecular 
diffusion and mechanical dispersion. Under certain conditions, salinization may be 
prevented. 

It is hardly worth attacking this problem by writing a detailed mathematical 
model which takes into account all the relevant physical phenomena and then solve 
it by a straightforward numerical simulation. As far as free convection is concerned, 
the set of differential equations to be solved will, probably, have more than one 
solution (and even more than one stable solution). An ordinary simulator, at best, 
will give us an approximation of one of these solutions without even informing 
us that it is not unique. As in many other cases of computer experiments, one 
should have a good (at least, qualitative) estimate of the result before turning to 
the detailed numerical simulation runs. For this reason, it is necessary to start from 
some simplified model which can be investigated by analytical or semi-analytical 
methods, yielding guidelines for future numerical simulation. 

Free convection in unsaturated porous media is a subject that has hardly been 
investigated. With this observation in mind, in the current work we shall model the 
unsaturated zone as a porous medium layer with a uniform moisture distribution, 
and assume that the latter is not influenced by the flow. Under these assumptions, 
the problem becomes similar to that for a saturated porous medium, except that 
we have to use values of permeability, diffusion coefficient, and dispersivity that 
correspond to the assumed saturation. We may then vary the saturation within the 
framework of a sensitivity analysis. 

A closely related problem of thermally induced natural convection with vertical 
through flow was studied for the first time by Wooding [16]. He investigated 
analytically the stability of a thermal boundary layer arising when hot water in an 
infinitely deep geothermal reservoir flows upwards through a permeable horizontal 
surface where it is cooled. He found that this one-dimensional flow is linearly 
unstable if the modified Darcy-Rayleigh number, Ra p (the modification is needed 
to take into account viscosity dependence on temperature), exceeds some critical 
value, Ra*, which is proportional to the flow velocity. 

Homsy and Sherwood [7] expanded Wooding's analysis to the case of a finite 
layer of saturated porous medium heated from below, through which liquid is 
ejected at a constant rate. When the through flow is zero, this problem is reduced 
to the well investigated porous-medium analog of the Rayleigh-B6nard problem. 
When the thermal P6clet number is large, only the boundary layer is of interest, 
and the problem becomes very similar to that studied by Wooding. Homsy and 
Sherwood obtained (numerically) the dependence of the critical Rayleigh number 
on Pe in the linear (Ra~) and energy (Ra~) limits, i.e., they found sufficient 
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conditions for unconditional stability and for instability to small perturbations. 
Both functions of Pe are monotonic, have a common limit (= 47r 2) at Pe = 0, and 
increase approximately linearly as Pe ~ oo. Contrary to the case of Pe = 0, in 
general, Ra~(Pe) is significantly less than Ra~(Pe), i.e., there exists a certain range 
of parameters for which the basic one-dimensional flow is stable with respect to 
small perturbations, but other flow regimes may also exist. Linear stability limits for 
some other types of boundary conditions were calculated by Jones and Persichetti 
[8]. The qualitative behavior of Ra~(Pe) curves was shown to be similar for various 
boundary conditions, but quantitatively, the ranges of stability were found to differ 
strongly. 

The problem we consider here differs in several ways from those reviewed 
above. The major factor influencing stability is salinity rather than temperature 
variations and the latter will be neglected in our model. The through flow in the 
problem at hand is not just a superposed stabilizing factor; in fact, it is the only 
factor causing instability. This results in a nonmonotone dependence of the stability 
limit on the through flow rate (expressed by the Prclet number). We also take into 
account mechanical dispersion, which may be neglected when studying stability of 
a stagnant state, but is a significant factor when through flow is involved. Finally, 
in our case the concentration drop between the bottom and the top of the layer 
is not small (although their ratio is small) and this does not permit us to neglect 
viscosity variations. 

3. Mathematical  Model 

3.1.  BASIC ASSUMPTIONS 

Let us consider a horizontal infinitely long porous medium layer of thickness H. 
We shall assume that 

A1. The porous matrix is rigid, chemically inert, isotropic and homogeneous. 
A2. The void space contains a uniformly distributed, two-component (water and 

salt) liquid. 
A3. Liquid flow is so slow that inertial effects in the momentum balance equation 

may be neglected and Darcy's law is applicable. 
A4. The system is under isothermal conditions. 
A5. Fick's law describes diffusion and Fickian type law describes dispersion. The 

diffusion coefficient and dispersivity are independent of salt concentration. 
A6. The density and dynamic viscosity of the liquid depend linearly on salt con- 

centration. 
A7. The influence of density variations may be neglected in all terms except for 

the one expressing the gravity force. 

In reality, seasonal temperature variations may influence the process. Heating of 
the upper soil layer during the hot seasons reduces the liquid density and, hence, 
has some stabilizing effect opposite to that of  salt concentration. The relative 
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importance of these two factors (temperature and composition) for the stability of 
the motion can be estimated from the ratio of the corresponding Rayleigh numbers, 
RaT (thermal) and Rac (concentrational): 

RaT _ ( A p ) T / ( A D ~ C  DhOCy(Ap)T 
Rac D T  _ _ , o  - -  "~pm ( A f l ) c '  (6) 

where DT = Apm/(OCf) is the thermal diffusivity of the (unsaturated) porous 
medium, "~pm is its thermal conductivity, C] is the volumetric heat capacity of 
the liquid, and (Ap)T and (Ap)c  are the characteristic density variations due to 
heating and compositional change, respectively. To obtain an estimate, let us assume 
Dh = 10-4cm2/s (it is 3 times greater than molecular diffusion in bulk water 
and corresponds to the dispersivity aL = 10cm and velocity V ___ 10mm/day), 
0 = 0.2, C] = lcal /~  cm 3, Apm = 2.10-3cal/cm �9 s- ~ (wet sand or clay). 
The density variation due to the change of temperature from 4ffC to l f fC is 
(Ap)T = 7.5kg/m 3, while the difference of densities of 10% NaC1 solution and of 
pure water is (Ap)c  = 75kg/m 3. Substituting these values into (6), we arrive at 

RaT _ 10_3. 
Rac 

For this reason, we do not take temperature changes into account in A4. Note, 
however, that a nonuniform temperature distribution has an indirect effect on the 
processes under consideration, due to vapor diffusion from hot to cool regions (see 
Bear and Gilman [2]). 

The statement A7 is usually referred to as the Overberk-Boussinesq assump- 
tion (see Joseph [9]). Long practice has shown that it provides qualitatively correct 
results. On the other hand, the viscosity dependence on concentration is signifi- 
cantly greater than that of  the density (viscosity of a brine is usually 1.5-3 times 
higher than that of pure water, while the density variations do not exceed 15-30%). 
This explains why we do take viscosity changes into account, though it also does 
not influence the results qualitatively. 

Some additional assumptions will be introduced later on. 

3.2. MODEL EQUATIONS AND BOUNDARY CONDITIONS 

Under the above assumptions, the motion in the considered porous medium domain 
is described by a set of two mass balance equations (for the liquid as a whole and 
for salt component), a momentum balance equation for the liquid, that takes the 
form of Darcy's law, and constitutive relations for nonadvective salt flux, density 
and viscosity of the liquid. These equations are 

V . V  = 0, (7) 

O~w = - V .  ( V ~  + J ) ,  (8) 

OV = __k (Vp + pgVz)  , (9) 
/z 
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J = - D h V W ,  (10) 

p --- p0(1 + rico), # = #0(1 + 7co). (11) 

Here, k = k(O) is the liquid phase permeability, g is the volumetric nonadvective 
salt flux, # is the liquid viscosity,/3 is the coefficient of concentration expansion, 
and 7 is the coefficient of viscosity variation. The nonadvective salt flux is due 
to molecular diffusion and mechanical dispersion. Taking assumption A1 into 
account, and following common practice (see Bear and Bachmat [1]), we assume 
that the coefficient of mechanical dispersion, D, is expressed by symmetric second 
rank tensor, proportional to V, for which V is the maximal eigenvector: 

Dh = ? * I  + D, 

D = a T V I  + (aL - aT) -V- ei| 

%3 

(i,je{~,y,z}). (12) 

Here 7)* = 7)* (0) is the diffusion coefficient of salt in liquid in a porous medium, 
aL and aT are, respectively, longitudinal and transversal dispersivities, e~, ey, ez 
are unit vectors of the Cartesian coordinate system (x, y, z), I is the unit tensor, V~ 
are the components of the velocity vector V, and V is its magnitude. 

For each of the two mass balance equations, we need boundary conditions at 
the top and the bottom of the layer. As far as the water table constitutes the bottom 
boundary, the pressure on this boundary is constant (and we may choose it to be 
zero). We shall also assume, that good mixing takes place within the aquifer, such 
that the concentration of salt there is constant and equal to coo. Thus, we have the 
condition: 

z = 0  " p = 0 ,  w = c o 0 = c o n s t .  (13) 

The boundary condition for salt at ground surface should express the fact that 
salt cannot leave the layer through it. However, there is an additional constraint: 
co _< co. where co, is the maximum solubility of salt in water. If, in some part 
of the boundary, the concentration reaches w., and the net salt flux is directed 
towards the boundary, the excess salt will precipitate there. We shall assume that 
the precipitation takes place just at the boundary, and that the precipitate does not 
change either the evaporation rate or the porosity and permeability of the porous 
medium. In the general case, two kinds of boundary condition for salt may occur 
at ground surface: along part of the boundary (let us denote it/31) the salt flux is 
zero, while on the other (/32) the concentration of salt is equal to co.: 

on/31 : Vzco + Jz = O, co < co., (14) 
Z : H " o n / 3 2  : CO = co., Vzco + Jz >_ O. 

This condition is nonlinear, because the decomposition of the boundary is not 
known a-priori and should be determined as part of the solution. 
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The problem of proper boundary conditions for liquid flow at ground surface, 
taking evaporation into account, has been widely discussed in the literature (e.g., 
Monteith [11]). For the sake of simplicity, we shall assume that evaporation rate 
at the top of our domain is a given constant, E.  Let V0 denote the liquid velocity 
as if it were pure water, V0 = E/poO. Though the total mass flux of liquid phase 
on 132 is greater than that of water component, the difference, i.e., the salt flux, is 
relatively small (its contribution is of the order of wo/W.). Thus, we shall assume 
that the boundary condition 

z = / /  : V~=Vo (15) 

holds on the entire ground surface. 
Let us introduce dimensionless quantities 

7)* 
~ = H - l x ,  [ = - ~ t ,  V =  Ii v ,  

D* 

__Hj k 
) = v* ' ~ - ~00v----; (p + pogz). 

The dimensionless forms of (7)-(11) are 

, ~ . 9 = 0 ,  

0~  = - r  (r + )),  

(1 + 7o2)V = -~7/5 - Raco~7~, 

(16) 

(17) 

(18) 

V~Vj ei| �9 ~'w, (19) = _  (1+ ~ % i +  ( ~ - , ~ ) ~ 2 -  F - .  
%3 

where a~ = aL/fI and (~T = aT/H are dimensionless dispersivities, and 

R a -  kpoflgIt (20) 
#00D* 

is the concentrational Darcy-Rayleigh number for the problem under consideration. 
Note that Rayleigh number is usually defined to include the drop in concentration, 
~ 1  - ~v0, between the top and the bottom of the domain. In our case, this concen- 
tration difference is not prescribed and can only be determined from the solution. 
Even in a steady state, the concentration at the top, wl _< ~. ,  may vary along 
ground surface. 
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Boundary conditions (13)-(15) transform to the following dimensionless form: 

~ = 0 "  / 5 = 0 ,  w = w o ,  

on B1 : 
= 1 �9 V ~ = P e ,  onB2 �9 

Pew + Jz : 0  (w_< w.) 
w = w. (Pew + Jz > 0). 

(21) 

(22) 

Here, the P6clet number is defined according to the vertical component of the liquid 
velocity at ground surface, Pe = VoH/D*. In what follows we shall work only in 
dimensionless variables, omitting the hat accents. 

3.3. ONE-DIMENSIONAL SOLUTIONS 

The one-dimensional steady state solution may be obtained from (16)-(22), by 
substituting 

Otw=O, V z = V y = 0 ,  V z = e e ,  w = w ( z ) .  

From (19), it can easily be found that 

dw 
Jz = - ( 1  + aLPe)~zz, 

and, hence, w(z) satisfies 

dw 
Pew - (1 + aLPe)~z- z = const, w(0) = co0. (23) 

While Wl < w., the constant is equal to zero, and 

W(Z) = W0 epe'z, (24) 

where 

Pe 
Pe I - (25) 

1 + aLPe 

is the modified P6clet number which uses the longitudinal coefficient of hydrody- 
namic dispersion as a reference, instead of the molecular diffusion. Note that while 
Pe may take any positive value, Pe I is always less than a~ -1 . The critical value of 
Pe t , corresponding to the onset of precipitation, is 

W. 
Pe* = I n - - .  

w0 

When Pe* > Pe*, the constant in (23) is unknown, but w(1) = w.. The solution 
has the form 

e P e l z  - -  1 
w ( z ) = w o + ( w . - c o ) ~ _ - - f ,  (Pe'_>Pe*). (26) 
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For the rest of the study, we shall assume that ca0 << ca.. Then (26), up to O(wo/w.), 
is equivalent to 

ca(Z) = ca,e pe'(z-1). (27) 

For Pe ~ > Pe* the distribution ca(z, t.), corresponding to the moment, t . ,  of 
the onset of precipitation, is also of interest, as it proves to be the 'most unstable' 
transient state (see the next section). Although for special initial conditions (e.g., 
for co(z, 0) - w0), the solution of the unsteady 1-D problem can be found in a 
closed analytical form, for our purpose a simple rough approximation of w(z, t.) 
will suffice. Let us only assume that for t >_ t. Otca >_ 0 for all z (i.e., that the 
system has already 'forgotten' its initial conditions). Then, with 

u = w ( z , t . ) - w . e P e ' ( z  - 1) 

we have 

d2u td2u  
dz 2 Pe ~ z  2 _> 0, 

z = l "  u = O ,  

O < z < l ,  

d2u 
- -  - ~ / u  = 0.  
dz  2 

(28) 

From this differential inequality it follows that u _> 0 for 0 < z < 1, and, hence, 

co(Z, t , )  _> w . e  Pe'(z-1). 

On the other hand, as long as Otw >_ O, w(z, t.) at any point is less than the 
final (t --+ oc) concentration at that point. Comparing with (27), we conclude that 
the latter gives also the approximation of w(z, t.) up to O(wo/w.). Note that the 
concentration profile given by (27) is independent of the boundary condition at the 
bottom of the region, i.e., the solution has the nature of a boundary layer. 

4.  L i n e a r  S t a b i l i t y  A n a l y s i s  o f  the  U p w a r d  F l o w  

Let ib(z), V(z )  = Peez, and &(z) be a one-dimensional steady-state solution of 
(16)-(22), which we shall refer to as basic solution. We wish to find sufficient 
conditions for the onset of free convection, i.e., for the instability of the basic 
solution. These sufficient conditions may be found by studying the fate of small 
perturbations of the basic solution. In the same way, we may analyze stability of a 
transient quasi steady state (see Nield [12]). 

In this section we shall refer to the three basic solutions: 

C1. Steady-state solution for small P6clet numbers (Pe' < Pe*) given by (24). 
C2. Steady-state solution for large Pdclet numbers (Pe' > Pe*). 
C3. Transient state just before the onset of precipitation (Pe' > Pe*). 
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In the cases C2 and C3, we shall use the same approximate formula (27) for 
the concentration profile. However, after the onset of precipitation (case C2), the 
concentration satisfies Dirichlet boundary condition at the top boundary (i.e., the 
entire boundary is of 132 type), while prior to the onset of precipitation it satisfies 
a no-flow condition (cf. (14)). We shall see that this difference has an effect on the 
class of the small perturbations allowed and, hence, on the stability conditions. 

4.1. EIGENPROBLEM FORMULATION 

Let us introduce 

p=/3+ih, V=Peez+V, c o = ~ + ~ 5 ,  (29) 

where /3, t)" = ~ ~e i ,  and ~ are small perturbations. The magnitude of the 
perturbed velocity vector is 

17- + V = Pe + 17z + O(172). 

The perturbation of the tensor 

v~vj 
T ( V ) -  ~ --V-- ei | ey 

i,j 

in Cartesian coordinates takes the form 

j~ - T ( I )  + Q ) -  T ( V ) =  0 ~u + O(1)2) �9 (30) 

L V~17~, v~ j 

The disturbance of the diffusive-dispersive salt flux (19), evaluated up to second- 
order terms, is: 

) ~_ - ( 1  + ~ e e ) V &  - ~ G w  - ( ~  - ~ ) ( t w  + T ( 9 ) V ~ )  

= - ( 1  + ~rPe)Va5 - (~L - ~ r ) ~ -  z 

From (16), it follows that V . V  = 0. Hence, 

2 o - V . )  (1 + c~TPe)V2a3 + (~L -- c~T)Pe0zzw 

d~ o d2~ 1~. 
+C~T~zOzVz + C~L dz ~ z. 

(31) 
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Upon substituting (29), (31) into (16)-(19), we obtain the following set of equations 
for the disturbance quantities/3, V and ~b: 

2 7 - 1 ) = 0 ,  (32) 

Otd; = (1 + c~TPe )V2do + (aL -- e~T)PeO2~& -- PeOSo + 

~ 

+aT-~zOzVz - -~z - aL dz 2 ] Vz, (33) 

(1 + 7c))1) = -V/3 - (Ra + 7Pe)~Sez. (34) 

The boundary conditions for the disturbances at the bottom of the domain, take 
the form 

z = 0  : i b = 0 ,  ~b=0 .  (35) 

The boundary conditions at the top of the domain are more intricate. In the cases 
C1, C3, the entire top boundary is of B 1-type, i.e., &lz=l < w. and, hence, a slightly 
perturbed solution, w = 03 + a3, should also satisfy w < a2. at this boundary. The 
condition at the top of the layer is then 

z = l  : V z = 0 ,  P e & + J ~ = 0  (~3<w. ) .  (36) 

In the case C2, the top boundary is of B2-type, i.e., a3lz=l = w., and the salt flux, 
Pe 05 + Jz, is positive. If the perturbation of the salt flux, Pe & + ]~, is small, then the 
disturbed salt flux is also positive, i.e., the disturbed solution also satisfies Dirichlet 
boundary condition at the top. For this case, we have 

z =  1 : I ~ = 0 ,  a S = 0 ,  ( P e c ) + o ~ > 0 ) .  (37) 

The set of Equations (32)-(34) may be reduced, by a standard procedure, to a 
single fourth-order equation with respect to 1~. However, in the future we intend 
to study a more realistic model of unsaturated flow (with saturation influenced by 
the flow), for which a reduction of this kind cannot be performed. For this reason, 
we shall just eliminate 1) from (32)-(34), arriving at a set of two second-order 
equations for/~ and ~b. We shall also make use of the fact that the transversal disper- 
sivity is usually an order of magnitude less than the longitudinal one, and neglect 
the terms involving the factor c~r. Introducing the modified Rayleigh number, Ra', 
and the reduced concentration gradient, F(z ) ,  

1 d~ 
R a ' =  Ra + 7Pe ,  F(z )  = Pe'(1 + 7~) d z '  

and taking into account the exponential character of ~5(z), we obtain: 

V2/~ - 7Pe'F(z)Ozfo = Ra ' (TPe 'F(z  )& - O~Co), (38) 
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Gqt ~ = ~72~ + OlLPe 02z ~ -- Pe Oz d) q- 

+(1 - a~Pe')F(z)(Oz~ + Ra'&). (39) 

Since these equations are linear, the variables can be separated. We shall seek 
solutions in the form 

: e 

where the wavenumbers in the horizontal plane, 1 and m, are real, in order to keep 
the solution bounded as x, y -+ q-co. Substituting this into Equations (38)-(39), 
we obtain 

(D 2 - 7 P e ' F D  - a2)p = Ra ' (TPe 'F  - D)f~, (40) 

s f t  : [(1 + aLPe )D 2 - Pe D - a2]~ q- 

' +Pe ' (1  - aLPe')F(DP + Ra'f t) ,  (41) 

where 

d 
D = a = V ~ +  ra 2 . 

dz ' 

The boundary conditions are 

z = 0  : P = 0 ,  ~ 2 = 0 ,  (42) 

{ Pelf~ - Df~ = 0 (case C2) 
z = 1 �9 D P  + Ra~ft = 0, f~ = 0, (cases C1, C3). (43) 

In these equations, the overall horizontal wavenumber, a, must be real (and, hence, 
a 2 must be nonnegative). The time exponent, 8, may be complex, s = ~r + iu. If  the 
set (40)-(43) has a nonzero solution with cr > 0, the corresponding perturbation 
grows with time, i.e., we have instability. We are interested in the conditions of  
marginal stability, cr = 0. In general, at a marginal stability threshold, the frequency, 
u, may differ from zero, i.e., the loss of stability may be by the oscillatory mode. 
For some close problems, however, it has been proven that u = 0 at the stability 
threshold - -  the so called principle of exchange of stabilities (see Nield [12], 
Homsy and Sherwood [7]). For this reason, we shall substitute s = 0 in (41). 
Note that although we cannot prove the exchange-of-stabilities principle for our 
problem, what we shall find is still sufficient condition for instability. 

The homogeneous equations (40)-(43) form an eigenproblem in which any two 
of  the three parameters, Ra I, Pe I, a 2, may be set arbitrary and the third regarded as 
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eigenvalue (there is also implicit dependence on Pe' through the basic concentration 
gradient, F(z)). Homsy and Sherwood [7], in an analogous problem, fixed Pe' and 
a 2, and solved for the lowest eigenvalue, Ra'(Pe', a2). Then, the linear stability 
limit is defined, in terms of nonmodified Rayleigh number, as 

Ra*(Pe') = m~nRa'(ee',  a 2) - 7Pe.  

For simplicity of calculations, it seems advantageous to invert the point of view 
and to regard a 2 as an eigenvalue, and Pe' and Ra' (or Ra ) as parameters. This may 
be emphasized by transforming (40) and (41) (with s = 0) to the form 

(D - 7Pe 'F )D  Ra'(D - 7Pe 'F)]  

`4 = Pe'(1 - aLPe')FD (D2-pe'D)/(1 - ozLPe')] " " (44) 
+Ra/Pe'(1 - ~Lpe/)FJ 

The differential operator .4 is defined on the space of pairs of sufficiently smooth 
functions (P, f~), satisfying the boundary conditions (42) and (43). If, for given Pe' 
and Ra,  the operator.,4 (Pe', Ra ) has apositive eigenvalue a 2, then the basic solution 
is marginally stable. For a given Pe', therefore, we are looking for the lowest Ra 
for which `4(Pe', Ra ) has real positive eigenvalues. This lowest Rayleigh number 
is the linear stability limit, Ra*(Pe'), corresponding to a given Pe'. 

4.2. METHOD OF SOLUTION AND RESULTS 

Following Jones and Persichetti [8], we solve the eigenproblem (44) numerically, 
using a second-order finite-difference scheme. However, the eigenfunctions of (44) 
corresponding to the positive aZ-eigenvalues prove to have an exponential character 
near z = 1. For this reason, the straightforward finite-difference approximation of 
(44) results in a very slowly converging procedure, especially for large P6clet 
numbers. To overcome this obstacle, we perform an exponential change of the 
independent variable, z --+ if, and normalize P and f~ to get rid of the large 
coefficients Ra' and Pc' in the boundary conditions 

C = eee'(z-1), P = P/Ra', ~ = Q/Pe'.  (45) 

Upon substituting (45) into (44) and dividing the first equation by Ra'(Pe') 2 and 
the second by (Pe') 3, we obtain 

[~2D2-~(1-TF)  D ( ~ D - T F ) ]  [~-] a 2 [ ~  -~] 
),(FD (1 + aLPe)(2D 2 - )~FJ = ' (46) 
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Figure 1. Linear stability limits Ra*(Pe) (Pe' = Pe) of a 1-D vertical flow of saline water in 
porous layer with evaporation at the top. Mechanical dispersion is absent (c~L = 0). The plots 
correspond to different initial concentrations, w0, given pro mille. 

where D denotes now a derivative with respect to if, A = Ra ' /Pe ,  and a 2 is divided 
by (Pe') 2. The boundary conditions transform into 

r = e -Pc' �9 P = 0, f~ = 0, (47) 

{ ~ - D ~ = 0  (&<CO,) 
r  �9 D P + f ~ = 0 ,  U 0, ( P e & + J z > 0 ) .  (48) 

For the basic solutions C1-C3, the function F(ff) has a form 

~ I CO0 eee', Pe' < Pe* 
F(~') - 1 + 7~C'  ~ = ,~ - (49) CO., Pe' >_ Pe*. 

From (46)-(49), it is readily seen that for Pe* > Pe' the problem does not depend on 
concentration COo at the bottom of the domain. For Pe ~ oo, the only dependence 
on Pe preserved in the problem is through the factor (1 + ~LPe ) in the second 
equation (46). 

In order to solve the eigenproblem, the differential operator on the left-hand 
side of (46) was replaced by its second-order finite-difference approximation, ~4h, 
taking the boundary conditions into account. The eigenvalues of Ah were calculated 
by using the standard function e i g  ( ) of the MATLAB package. For a given Pe,  
the smallest value of A for which the largest real eigenvalue of .Ah is positive, was 
found by a binary search. 

Grids of 20 to 120 nodes were tested to ensure the convergence of the method. 
The qualitative behavior ofRa* (Pe') was similar for all grids, including the coarsest. 
The scattering of the Ra* values was generally less than 2% for grids with 50 nodes 
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and more; for a relatively small Pe (Pe t far from 1/aL), this scattering was less 
than 0.5%. The results are presented in Figures 1 and 2. 

We examined two basic solutions for Pe I > Pc* : C2, which corresponds to a 
steady state, and C3, which corresponds to a transient state, just before the onset 
of precipitation. It was found that C2 is always more stable with respect to small 
perturbations than C3. For this reason the results presented correspond to C1 for 
Pe ~ < Pe* and to C3 for Pe t > Pe*. 

In the first series of calculations, mechanical dispersion was neglected (aL = 0, 
and, hence, Pe t = Pe ). The dependencies Ra*(Pe ) obtained for various values of 
groundwater salinity, ~0, are presented in Figure 1. For the maximal solubility and 
for the viscosity variation coefficient the values w. = 0.27 and 7 = 2.3 were used, 
which correspond to the properties of NaC1 solution. 

Every curve in the Figure 1 divides the entire domain of possible Pe and Ra I 
values in two parts. The upper subdomain corresponds to instability of 1-D flow 
regime. In principle, because of the number of simplifications employed, nothing 
definite may be said about the lower subdomain. In addition to stable solutions, 
the latter may contain also solutions which are stable for small perturbations, but 
unstable for finite ones, as well as those which lose stability by nonmonotonic 
mode (so-called 'overstability'). 

As expected, the region of instability is convex, and Ra* depends on Pe in a 
nonmonotonic way. This means that for large enough Ra t, the 1-D solution is stable 
either when evaporation is extremely slow (when the salinity gradient is small) or 
when it is very intensive. In the intermediate Pe range instability is expected. As 
Pe increases, Ra* decreases rapidly at first, reaching a minimal value at about 
Pe = Pe* (u~0) ---- ln(w./w0). This is due to the simple physical reason that the 
increase in Pe causes an increase in the salinity gradient, F(ff), which is the source 
of instability. As is readily seen from (49), for a fixed Pc,  this gradient increases 
with w0. This fact explains the shift between the curves that correspond to different 
~0: the more saline is groundwater the more unstable is the 1-D steady flow. 

When Pe exceeds Pe*, the problem does not depend on ~0, and, hence, all 
graphs have a common right branch. For large Pe,  the boundary condition (47) 
may be moved to the point ff = 0. The problem (46)-(48) will depend then only 
on the ratio A = Rat /Pe.  The minimal value of ~ for which (46) has positive 
eigenvalues a 2 was found to be A* = 10.3 (for 7 = 2.3). Thus, for large Pe,  the 
instability threshold Ra* has a linear asymptote, Ra* = ()~* - 7)Pe.  

Even more important than the particular form of Ra (Pc)  dependencies is the 
order of magnitude of the critical Rayleigh numbers. It can be seen that a Ra 
number of several hundreds is usually large enough to cause instability. On the 
other hand, we may estimate realistic Ra numbers for moisture movement in the 
unsaturated zone. Taking for the estimate k = 2 • 10-14m 2,/3 = 0.6, g = 10m/s, 
H = 2m, #o/po = 10-6m2/s, 0~D* = 0.3 • 10-1~ we obtain 

Ra - k/3gH - 800. 
( o/po)OV* 
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Figure 2. Influence of longitudinal dispersivity on the stability limits, Ra*(Pe'). The plots 
correspond to different values of the dimensionless dispersivity, c~L. Solid lines: 7 = 2.3, 
dashed lines: 7 = 0. 

Thus, instability is very likely in real situations. 
In Figure 2, the graphs corresponding to different values of  dimensionless 

diffusivity, o~L, are shown in the (Ra ' ,Pe ' ) -  plane. Each curve (except for that 
corresponding to c~L = 0) has a vertical asymptote at Pc* = 1/c~L. 

Solid lines correspond to the viscosity variation coefficient 3/ = 2.3, while 
dashed lines correspond to the case when viscosity is independent on concentration 
(7 = 0). The influence of  viscosity variations is twofold. On one hand, the intrusion 
of  fresher, less viscous water in the overlaying layer filled with saline, more viscous 
water may cause Saffman-Taylor  instability. This effect is represented by the term 
7Pc  on the r.h.s, of  (34). On the other hand, the greater is 7 the larger is the viscous 
resistance to the velocity perturbations. The latter effect, which is represented by 
the factor of  (1 + 7~5) on the 1.h.s. of  (34), is neglected in most  studies, because 
the variation of  the basic concentration itself is, usually, small. However,  this is not 
the case here. It can be seen from Figure 2 that the two mentioned effects almost 
neutralize each other, with the second being even stronger (larger 7 correspond to 
slightly more stable solutions). 

The fact that the basic concentration gradient is not small has one addition- 
al interesting consequence. The coefficient of  hydrodynamic dispersion for the 
uniform basic flow, if the transversal diffusivity is neglected, is expressed as 

[i ~ 1 7 6  ] Dh = 1 0 D*, 
0 1 + c~LPe 

(5o) 

where D* is the diffusion coefficient. We may consider the tensor (50) as some 
anisotropic 'enhanced' diffusion coefficient. At first glance, as long as only small 
velocity perturbations are studied, we might expect that the influence of  mechan- 
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ical dispersion on stability is confined to such 'enhancement' of the diffusion 
coefficient. However, this is not the case, and the replacement of dispersion by 
the 'enhanced' diffusion results in a different asymptotics for the critical Rayleigh 
number at large Pe. Actually, the case of 'enhanced' diffusion may be reduced to 
the same eigenproblem (46), but with A denoting Ra~/Pe ~ instead of Ra~/Pe as 
before. Thus, 

Ra~F = (1 + ~LPe )- iRa*,  

where Ra~F corresponds to the 'enhanced' diffusion. 

5. Simulation of Convective Flows 

We have shown that the one-dimensional vertical flow is usually unstable and, 
therefore, the real flow has a two- or three-dimensional structure (and may even be 
unsteady). This fact makes it necessary to use a numerical simulation to study the 
flow pattern at high Rayleigh numbers and the influence of free convection on the 
distribution of salt in the unsaturated zone. 

We shall seek, numerically, two-dimensional steady solutions of (16)-(22). We 
shall use the multigrid approach which was successfully applied to the simulation 
of thermally induced convection in a pure liquid (e.g., Thompson et al. [14], 
Wesseling [15]) as well as in a porous medium (Dawood and Bums [5]). For this 
purpose, we shall discretize the steady-state equations using the Finite Volume 
Element Method due to McCormick [10], arriving at a set of nonlinear algebraic 
equations, and then solve them by the Full Approximation Storage Algorithm [ 13]. 

5.1.  PROBLEM FORMULATION FOR THE NUMERICAL SOLUTION 

We seek steady state solutions of (16)-(22) in the xz-plane. Because the field of 
flow rate is solenoidal, the stream function, ~b(x, z), can be defined: 

y = vz = L-a r (51) 

It is convenient to choose the stream function and the concentration as the primary 
variables. Then (16) is automatically satisfied, and from (18) we obtain 

V-(1 + 7w)V~b - Ra0xw = 0. (52) 

The steady-state salt balance equation takes the form 

V . ( V w  - Dhco) = 0, (53) 

where the coefficient of hydrodynamic dispersion is a symmetrical second rank 
tensor, which is expressed in the (x, z) coordinates as 

Oh ---- (1 + o~LV)I + o~L - e~T [ V• VxVz ] (54) 
LV Vz v ) ,  
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We shall seek a solution to (51)-(53) in the rectangular domain 

O < x < L ,  O < z < l .  

293 

(55) 

Along the lateral sides of this rectangle we shall use a no-flux boundary condition. 
Thus, the full set of boundary conditions takes the form: 

x = 0 : ~b = 0, (DhVw) �9 ex = 0, (56) 

x = L : ~b = - P e L ,  (DhVw) .ex = 0, (57) 

z = O  : O z r  w = w 0 ,  (58) 

{ P e w  - (DhVw) .ez  = 0, (w < w.),  
z = 1 �9 ~b = - P e x ,  (59) 

: ( p e w -  ( D h W ) . e z  > 0). 

As explained earlier, with respect to w, it is a Dirichlet condition along some 
(unknown!) part of the boundary (/32) and a Cauchy one along the remaining part 
(/31). In the current work we shall address only the case when the Cauchy condition 
prevails along the entire boundary. This assumption may be verified a-posteriori. 

5.2. DISCRETIZATION 

We have chosen the Finite Volume Elements Method (FVEM) for discretization of 
the problem. This is a combination of the method of finite volumes, which is wide- 
ly used for constructing conservative and physically reasonable finite difference 
schemes in a variety of transport problems, with the ideology of the finite-element 
approach. 

Let a set of partial differential balance equations be defined in some region fL 
The methodology of FVEM (see [10]) involves the following steps: 

(1) A grid G = {x,~, ra = 1 , . . . ,  N}  in f~ is defined and some control volume, 
U,~, is associated with every grid node, Xm. The control volumes are chosen 
in such a way as to provide a partitioning of YL 

(2) Balance equations are written for each b/m in an integral form (i.e., the increase 
of certain extensive quantity in b/m equals to its internal production minus the 
net outflux through the boundary of L/m). 

(3) The unknowns are replaced by their finite-element approximations, e.g., by 
the linear combination of their nodal values multiplied by appropriate 'hat 
functions'. The fluxes, production terms, etc., are then expressed, using these 
approximations, in terms of the nodal values of the unknowns, resulting in a 
set of algebraic equations. 



294 ARKADY GILMAN AND JACOB BEAR 

j = 1  i 1- r 1- -r 

i = i  2 3 . . .  

Figure 3. Finite element triangulation (solid lines) and control volumes (dashed lines). 

The FVEM may be considered as a particular case of  the Petrov-Galerkin 
method, in which indicator functions of control volumes are used as weight func- 
tions. The FVEM seems a very attractive choice, because it preserves the close 
connection with the physical sense of  the problem, which is a strong feature of  the 
method of  finite volumes, with the universal and systematic character of the finite 
elements approach, which has a strong theoretical basis. 

For simplicity, we use linear finite elements with the triangulation shown in 
Figure 3. In every individual triangle, aJ and ~b are approximated by linear functions*. 
The control volume partitioning of the region is shown in the same figure in dashed 
lines. All control volumes, except for those attached to the boundary, are Ax • Az-  
rectangles centered at nodal points. An individual node and the control volume 
associated with it are specified by the pair (i, j )  as shown. 

For each control volume, L//j, integral analogues of  (52) and (53) (i.e., vorticity 
balance and salt mass balance in the control volume) may be written. Replacing 
2-D integrals by contour ones, using the divergence theorem, we obtain: 

s [ ( l + T w ) V ~ - R a w e ~ ] . n d s = 0 ,  
i j  

( 6 0 )  

where Si j  is the boundary of  blij. Within every triangle, ~b and w are replaced 
by their linear approximations. The integrals are then calculated in a straightfor- 

J and r which serve as ward manner, and expressed through the nodal values, w i 
unknowns in the discretized equations. 

* More intricate approximation making use of exponential shape functions may be necessary in 
the case of large advective fluxes (i.e., large Pe and/or Ra numbers) to prevent numerical instability 
when the problem is solved on a coarse grid. Such approximation is the FVEM analog of upwind 
approximation (see McCormick [ 10]). 
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Az -- / u 

Az 

Figure 4. Local numbering associated with a control volume (dashed rectangle)�9 Local node 
numbers are in the circles, local numbers of elements are in bold. Small numbers near the 
nodes denote their intraelement numbers. 

The obtained system inherits the quasilinear character of (60)-(61), i.e., the 
discrete analogue of (60) is linear with respect to ~b~, while the discrete analogue 
of (61) is linear with respect to ~ .  Since we are going to solve the system by using 
multigrid iterative method, we do not need to hold the entire matrix of the system 
except for the coarsest grid. For this reason, it is convenient to introduce the local 
numbering of nodes and elements associated with each control volume, as shown 
in the Figure 4. Any control volume (except for those adjacent to the borders) 
intersects with six triangle elements which, in total, have seven different nodes. 
The discrete analogues of (60)-(61) may be written, using the local numbering, as 
follows: 

6 6 

Q(r - ~ alr + f = O, Q(~) -- ~ blwl + g = O, (62) 
/=0 /=0 

where l is the local node number, the coefficients al and f depend on wk, k = 
0 , . . .  6, while bl depends on ~bk, k = 0 , . . .  6. 

Following the finite element methodology, we 'assemble' the vectors of coeffi- 
cients, {a0, �9 �9 �9 a6, f}  and {b0, . . . ,  b6, 9}, by summing up the contributions of the 
individual elements into the total vorticity (Q(r and salt (Q(~O)) fluxes through 
the boundary of the control volume. Each element can be mapped linearly into the 
standard one presented in Figure 4. Thus, all flux calculations should be performed 
only for the standard element. 

Introducing the intraeIement numbering of nodes (m = 1 , . . .  3), and using lin- 
ear approximations of r and w in the element, we obtain the following expressions 

for the vorticity fluxes, Q~) ,  towards the node m: 

QI r = _~Q(r ~ +Q~r 

Q~r = 0 . 5 a ( 1  + "y~2)(~b2 - ~bl) 4- 0 . 5 A z R a ~ 2 ,  

= O-5a- (1 + - 
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where 032, co3 are the mean concentrations along the corresponding midlines, 

031 "~ 2~2  q- ~3 031 q- 2033 q- 032 
~32 ~ ~ 033 ~--- 

4 4 

a n d  a = A z / A x  is the aspect ratio of the element. The sign in the expression for 

Q(f) depends on whether the mapping of the element into the standard one is a 
central symmetry (+), or just a translation ( - ) .  Similarly, mass fluxes of salt are 
expressed as follows: 

Q ~ )  = - ( Q ~ )  + Q~) ) ,  

7 (032-03 ) 

G�89 
--(O~ L --  O@)--~-- (033 -- 031), 

�89189 
- s T ) - W - ( 0 3 2  - 031 ), 

where 

@3 -- //31 @2 -- @1 
G - - - ,  G -  

Az Ax 

5.3. FAS ALGORITHM 

We have to solve the set of quasilinear algebraic equations (62) defined on the grid 
G. The basic multigrid technique used for this purpose is the Full Approximation 
Storage (FAS) method (see [13], [3]). 

The FAS algorithm can be briefly described as follows. Let a sequence of 
increasingly finer grids, G k, k = 1 ,2 . . .  K,  be given. (In practice, we choose the 
spacing [Axk, Azk] of G k to be half of [ A X k _ l ,  m Z k _ l ] .  ) Let U k be the set of grid 
vector-functions G k --+ R m on G ~, where m is the number of scalar differential 
equations being solved. Let there be given two transfer operators: p r o l o n g a t i o n ,  

7 9k : U k-1 -+ U k, and r e s t r i c t i o n * ,  7"4 k : U k --+ U k - I  . 

* Two different restriction operators may be used: one for the transfer of the residues and the other 
for the solution. 
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The problem to be solved is then represented by the form: 

s  ) = f k ,  u k , f k E U  k, (63) 

where the (nonlinear) operator s : U k __+ U k is the discretization of the differen- 
tial operator of interest on the grid G k. Although f~ = 0 on the finest grid, nonzero 
right-hand side arises on the other grids in the course of 'coarsening'. 

On every grid, a smoothing operator should be defined, S k : U k • U k x N --+ U k. 
The smoothing procedure is assumed to suppress high-frequency components of 
the error. We denote the result of u smoothing iterations applied to the initial guess 
u k by Sk(u  k, f k ,  u). 

The FAS multigrid correction operator, Uk(u k, fa, #, u), returns an improved 
approximation of the solution of (63), given an initial approximation u k. The para- 
meters # and u denote the number of post- and pre-smoothing iterations respec- 
tively. The multigrid correction operator irk : U k • U k • N 2 __.+ U k, can be defined 
recursively. On the coarsest grid (k = 1), 5 cI should solve (63) by any direct or 
iterative method. On any finer grid 5 ca is defined through Uk-1 by the following 
steps. 

1 ~ Pre-smoothing: u~l ) = Sk(uk, fk ,  u), r k = f k  _/2~(u~1)); 

2 ~ Coarsening: u k-t = 7~ku(t) , k  fk-1 = s  ) + 7~krk. 

3 ~ Coarse-grid solution* : gk-1 = f k - 1  (uk-1, fk-1);  

4 ~ Coarse-gridcorrection: u~2 ) = u~,)+ ~ k ( ~ k - l _  uk-1); 

5 ~ Post-smoothing: u)3 ) = Sk(u~2),fk,~).  

By definition, 

.T'k(uk, f k , # , u ) =  u~3 ). 

The above algorithm was implemented in the program CONVEX written in C 
language. The r a g f a s  ( ) function from the NumericalRecipes C library [13] was 
used as a prototype. We used bilinear interpolation for the prolongation and full 
weighting for the restriction operator. The smoothing was performed by nonlinear 
red-black Gauss-Seidel relaxation. 

On the coarsest grid, Picard iterations were used to get rid of the nonlinearity. At 
every step, the discrete analogue of (53) was solved by direct method with respect 
to c~, taking r as found in the previous iteration. Then the discrete analogue of (52) 
was solved with respect to r using the distribution of w just found. 

* By this definition of coarse grid solution, we choose the so called 'V-cycles'. Two iterations of 
.T-k- 1 would lead to 'W-cycles', etc. 



2 9 8  ARKADY GILMAN AND JACOB BEAR 

1 

0.8 

0.6 

N 

0.4 

0,2 

Ra  = 100 

i . . . .  

(a) 

i i 

0.5 1 

X 

0 I 

0 1.5 

)// 
2 

Yl 
2.5 

(b) Ra  = 340 

1 ~ . -  " 
' ~ - ~  ' _.._ . ~  , 

0.8 /~  

0 2.5 

0 P 
0 0.5 1.5 2 2.5 

X 

Figure 5. Evolut ion  o f  the  flow structure with R a .  St reamlines  o f  net convec t ive  currents ,  

= ~b + P e z ,  are s h o w n  for Pe  --- 6, 7 = 2.3, L = 2.5, w0 = 1 % o .  At  Ra  ~-- 340 s ingle  
convec t ive  cell d iv ides  into two. 
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Figure 6. Steady-state distribution of  concentration (values o fw are given pro mille). P e  = 6 ,  

R a  = 3 4 0 , 3 '  = 2 . 3 ,  L = 2 . 5 ,  wo = 1% o. 
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Figure 7. Dependence of  the average salt concentration near ground surface on the Ra number. 
L = 2 . 5 ,  wo = 1~ 

5.4. R E S U L T S  O F  2-D S I M U L A T I O N  

Grids up to 1000 • 250 were used in the simulation runs. The algorithm demon- 
strated a very fast convergence for relatively low Rayleigh numbers, but failed 
to converge for large Ra (the threshold depends primarily on Pe and a~0). This 
is, apparently, because of  the failure of  Picard iterations on the coarsest grid. All 
simulation results address the case without mechanical dispersion (c~L = aT = 0). 

In Figure 5 the typical evolution of  the flow structure with the increase of  Ra is 
presented. In this figure the streamlines of  net  convective current are shown, i.e., 
the levels of  the net  stream function, ~ = ~ - ~}, where ~} = - P e  z is the stream 
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function of 1-D vertical flow. Note, that the ground surface is impermeable for the 
net convective currents. 

The convective cells width is influenced, of course, by the width of the entire 
region, L. Trying very wide regions, we have determined an approximate width of 
the convective cells for some conditions (Pe = 6, Ra = 100, ~0 = 1%o) and then 
set L to this width for successive runs with larger Ra numbers. It should be noted 
that the flow in a cell is not symmetric: upward stream is slow, but wide, while the 
downward stream is fast and narrow. The increase of Rayleigh number causes a 
reduction in the width of the convective cells. The development of a new cell in 
the stagnation zone is shown in Figure 5(b). 

The 2-D steady-state distribution of salt in the vertical plane, corresponding to 
the flow pattern of Figure 5(b), is shown in Figure 6. It can be seen that the local 
salt concentration is reduced significantly (two to ten times) compared with the 
1-D distribution (24). 

In Figure 7, the averaged concentration of salt near ground surface (the upper 
10% of the soil layer were taken) is plotted versus the Rayleigh number. The 
results are presented for a~0 = 1%o and two P6clet numbers: Pe = 6 (the upper 
curve) and Pe = 5 (the lower curve). It should be noted, that though for 1-D 
solutions the concentrations near the ground surface differ sharply (almost twice), 
after the onset of convection the difference between the two cases is minor. The 
surface concentration decreases, approximately, as Ra -1. The nonmonotonicity of 
the curves is related to the change in the flow regime: splitting of a convection 
cell in two narrower ones. Probably, this nonmonotonicity can be addressed to 
influence of the finite width of the simulated region. 

6. Conclusions 

We have studied steady (or quasi-steady) flow of saline water in the vadoze zone, 
caused by evaporation from ground surface. We used a simplified mathematical 
model which takes into account hydrodynamic dispersion and the influence of salt 
concentration on viscosity. 

By means of a linear perturbation analysis, we have studied the conditions 
under which the uniform vertical flow becomes unstable. The arising eigenvalue 
problem was solved numerically by the method of finite differences. The stability 
limit (critical Rayleigh number separating linearly stable and unstable regimes) 
was determined as a function of the P6clet number for various concentrations of 
salt in groundwater and for various porous medium dispersivities. It was shown that 
the loss of stability corresponds to quite realistic Rayleigh numbers. The stability 
limit depends in a nonmonotonic way on the evaporation rate. Viscosity variations 
with changing salt concentration, though much larger than those of density, were 
shown to have a minor influence on the stability. 

A 2-D numerical model was used to study the flow pattern and salinity profile in 
the developed convective regime. Finite Volume Element discretization was used in 
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con junc t ion  with FAS mul t igr id  a lgor i thm result ing in a h igh ly  effect ive procedure .  

It was  found  that  mean  salt concent ra t ion  in the upper  soil layer  decreases  with 

Ray le igh  n u m b e r  (approximately ,  as Ra  -1 )  and that this concent ra t ion  is m u c h  less 

sensi t ive to the evapora t ion  rate than in the case when  free convec t ion  is excluded.  
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