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Abstract--One-dimensional models are presented for simple, separated (stratified, annular) and mixed 
(bubble, droplet) gas-liquid flows. Specific attention is focused on equations for (i) interface and wall 
transfers of heat and momentum; (ii) the difference between phase and interface pressure; (iii) interface 
pressure; and (iv) space-time distribution parameters. Equations appropriate to simple separated and mixed 
flows are investigated to determine their effect on the propagation velocities of acoustic and interracial 
waves. Solutions to two simple numerical problems, obtained by using these equations, are also discussed. 
Finally, recommendations are made for a more general transient model. 

I N T R O D U C T I O N  
Mathematical models for transient gas-liquid flow are usually derived starting from the local 
instantaneous differential conservation laws and interface jump conditions (Standart 1964). 
Because the general three-dimensional problem with moving interfaces is too formidable to 
solve, the universal approach is to introduce time or statistical averaging and space averaging to 
remove the need to treat the interfaces explicitly (Vernier & Delhaye 1968; Ishii 1975; Delhaye 
1977). Models of varying sophistication result from specific choices for the averaging operators 
and assumptions about the local relationships between phase variables (e.g. equality of phase 
velocities and/or temperatures). In this paper, we focus attention on one-dimensional models 
for transient boiling flows that allow for differences between the velocities and temperatures of 
the gas and liquid phases. 

Of particular interest are vapour-liquid flows produced by rapid depressurization, due to 
discharge through a break, of an initially subcooled liquid flowing in a network of pipes. In 
general, the flow structure may be idealized as follows: 

(i) Mixed flows in which either gas or liquid packets (bubbles/drops) are dispersed in a liquid 
or vapour matrix. These flows are characterized by strong coupling between the phases, due to 
rapid interphase transfers of mass, momentum and energy, so that large temperature and 
velocity differences cannot be sustained. 

(ii) Separated flows in which the gas and liquid are separated by a continuous interface. 
These flows are characterized by weak coupling between the phases (i.e. slow interphase 
transfers) so that relatively large differences in temperature and velocity can be sustained 
between the phases. Flow regimes covered by this classification include vertical and horizontal 
annular flow and horizontal stratified flow. 

(iii) Transition flows that represent transient states between (i) and (ii). These flows are 
characterized by geometrically complex interfaces and interphase coupling that is intermediate 
between that for the mixed and separated flows (e.g. the churn flow in which neither phase is 
continuous, or annular flow with liquid droplets entrained in the vapour core). 

During a transient, mixed, separated and transition flows will be present at the same time but 
at different spatial locations. We seek a consistent description of the various flow regimes 
within a single mathematical model. In choosing this approach, it is recognized that the 
description of a particular flow regime may not be as complete as that provided by a specialized 
model for that flow regime. 
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Many models that incorporate the effects of unequal phase velocities and temperatures, 
have been proposed (Hughes et al. 1976; Stuhmiller 1977; Banerjee et aL 1978; Mathers et aL 

1978; Agee et al. 1978: Rousseau & Ferch 1979) but none has received general acceptance. All of 
these models represent attempts to get appropriate physical behaviour for specific flow regimes 
while retaining the hyperbolic character of the flow equations. None of these models is 
sufficiently general to treat transient boiling flows. 

We have adopted as our starting point the instantaneous, area-averaged form of the 
conservation laws and interface jump conditions derived by Delhaye (1977). Depending on flow 
structure, these equations are either ensemble averaged or time averaged to account for random 
fluctuations. This results in a system of three partial differential equations for mass, momentum 
and energy conservation in each phase and three jump conditions relating the average mass, 
momentum and energy transfers across the interfaces. To close the system, additional equa- 
tions (or simplifying assumptions about the flow structure) are required for: 

(i) The thermodynamic state of each phase. 
(ii) Transfers of mass, momentum and energy from each phase to the interface and pipe 

wall. 
(iii) Interface properties as functions of the space-time averaged flow variables. 
(iv) Space-time distribution parameters that represent the difference between the average of 

products and product of averages for various mass, momentum and energy fluxes. 
Although all of the terms required to close the equations are precisely defined in a 

mathematical sense, sufficiently detailed information about the flow structure is not usually 
available to determine their relationship to the space-time averaged flow variables. It is usual to 
neglect arbitrarily some of these terms (e.g. the space-time distribution parameters) and use 
simplified physical arguments, appropriate to the flow regime of interest, to determine the 
functional form of the remaining terms. The internal consistency of the models developed in 
this way is open to question but cannot be checked because suitable experimental data are not 
available. In addition, the functional form of the closure terms is often defined to make the 
resultant flow equations hyperbolic. Whether the equations should be hyperbolic or not remains 
unresolved. 

In the following sections, the fundamental equations for one-dimensional gas-liquid flow in 
a duct are presented and discussed. Specific attention is focused on the equations required to 
close the system. Equations are proposed for the interface and wall transfer terms which 
contain local instantaneous values of the primary flow variables, but not their derivatives. A 
single interfacial pressure is defined, consistent with the assumption that surface tension effects 
are negligible. This focuses attention on the definition of functions for the difference between 
phase and interface pressure, and space-time distribution parameters. Various functions are 
investigated to determine their effect on the propagation velocities. Solutions to simple standard 
problems, obtained using these functions are also presented. Finally recommendations are made 
for a general flow-boiling model. 

FUNDAMENTAL EQUATIONS FOR-DIMENSIONAL GAS-LIQUID FLOW 

Using the methodology of Delhaye (1977), the area- and time/ensemble-averaged mass, 
momentum and energy conservation laws for phase k ( k  = l for gas; k = 2 for liquid) flowing in 
a constant area duct are respectively:t 

a a c~AIk 3A2k [1] 
akpk + -'~ OtkPkUk = mki Ot OX 

tWe have assumed that the terms (a/at) ak<nx • (nk • ~)) and (dlOx) ctk(n_k • (qk --rk • ~_k))  in the momentum and energy 
equations respectively are negligible. A no-slip condition--at the wall (Ukw = 0) hffs also been assumed throughout. 
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3 + ~¢3 olkPkUk2 0~pk - - .  ~ x Oak 

= eki -- mk~Uki -- P'k~ + ekw + akPkbx 3A2k 0 at ax (A3k + A4k) [2] 

2 aPk Oak 
at akp~(hk + U~I2) + ~X aWkUdhk + Uk /2) -- ak ~ -  (Pk -- P~) --~- 

= mki(hi + Uki/2)'2 _ qki + 1"'kiUki -- P[i -- qk~ + aWkUkb~ + 0 (A4k -- ASk) 0A6k [3] 
OX (71 

where ak, Pk, Uk, Pk and Ilk denote respectively area fraction, density, x-component of velocity, 
pressure and enthalpy of phase k, p~ is an averaged interface pressure, and b~ is the 
x-component of an externally applied body force. Terms appearing on the r.h.s's are defined 
below. All of the dependent variables, with the exception of ak which is only time averaged, are 
area and time (or ensemble) averaged as follows: 

fT{fAkfk  d A / A k  } d t / T  

[4] 

where Ak is the instantaneous cross-section area of phase k, T is a time interval which is large 
in comparison to the high frequency "turbulent" fluctuations but small in comparison to gross 
flow fluctuations, and N is the number of samples. 

The rate of transfer of phase-k mass per unit volume from the interface is defined as: 

m 
mki = (( P n . (Vk -- v_i)))']A = ((mk))]A 

k-k 

where _nk is the outwardly directed unit normal vector at the interface, A is the duct flow area, 
_/)k and _vi are respectively phase-k and interface velocity vectors, the operator ( ( ) ) i  denotes 
the line integral taken about the interface fc dc/x/[1 -(_n~ • n k)2]i where _n~ is the unit vector in 
the x-direction, and the overbar denote's either time average f T d t / T  or ensemble average 

1 / N  X. T h e  other interface variables are defined as: 
N 

7k,---((nx. (nk. r~)))]A; 

Uki =-- ( ( mkUk ) ) i / A mki ; 

r'kl =- ((_nk ' ( Vk " ¢k)))t AUki = 

,~ki - ((n~. gk))dA; 

hki ~ ( ( mkhk ) ) J A mkl 

Tkw --= ((nx" (_nk" rk)))wlA 
= 

t 2 - -  uk~ = ((m~vkb)JAmk~ 

qkw -- ((nk " gk)>wlA 

where ~k is the viscous stress tensor, _qk is the heat flux vector and (())w denotes the line 
integral taken around that portion of the wall in contact with phase-k. The interface pressure 
terms in the momentum and energy equations are split into two components as follows: 

((nx " n kPk))'JA = P'ki + p,((nx • n_k))i]A 

((nk " V kpk))~A =-- p'~, + p,((n_k " V k))i/A. [5] 
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Equations [5] define the terms p~ and p~. The particular form is chosen for convenience, 
because the second terms on the r.h.s's can be transformed using the special forms of the 
Gauss and Leibniz theorems derived by Delhaye (1977) to obtain: 

~Ol k 
((nx " n_kPk))'~ A = P'k, -- Pi -~X 

c~ot k 
((n_k " v_~k))JA =-- P'~i + P, - ~ .  [6] 

It is appropriate to note that the interface terms c o n t a i n i n g  mk and Zk could be transformed in a 
similar manner. However, this would tend to obscure their physical significance. Our choice is 
motivated by the desire to define an interface pressure which will prove convenient in the 

description of separated flows. 
The space-time distribution parameters Aik (./= l, 2 . . . .  6) are defined as follows: 

Aik --  a~(ak) - a~ok 

A2k ~ Otk(pkUk) -- OtkpkUk 

A3k -- ak (pkUk 2) -- a~kUk 2 

A4k - a~(pk) - akPk 

ASk =- ak(p~(h~ + Vk2/2)) -- akPk(hk + Uk2/2) 

A6k = ak(pkUk(hk + V2/2)) -- akPkUk(hk + U~/2). [7] 

These distribution parameters are usually assumed to be constant, so that the terms 
involving their derivatives are zero. The assumption is made for mathematical convenience 
rather than for physical reasons. The parameters represent the macroscopic effects of the flow 
microstructure that has been removed by the averaging process. It will be seen later that, 
because the Ajk appear as derivatives, they will affect the propagation velocities of small 
interface and pressure disturbances. 

The area and time/ensemble-averaged jump conditions for mass, momentum and energy 
transfer across the interface are: 

mki = 0 [8] 
k 

~ {~'la -- mkiUki -- Pki} = 0 [9] 

~., {mu(h~  + U'k~/2) + qki -- ¢'kiUii + P[,i} = O. [10] 

These equations follow from the local instantaneous conservation equations, integrated over 
a volume containing only the immediate neighbourhood of the interface (Vernier & Delhaye 
1968). The contribution of surface tension has been assumed negligible. Also, it is at this point 
that the form chosen for [5] becomes useful; by assuming the same proportionality constant Pi 
for both phases, we have cancelled the derivatives of ak that would otherwise appear in [9] and 
[10]. 

The conservation equations [I]-[3] and jump conditions [8]-[10] contain 45 unknowns. 
Additional equations are provided by noting that 2ak = 1, assuming that the space-time- 
averaged phase properties Ok, hk and Pk are related through the thermodynamic state equations 
such as ~ = ~(hk, Pk) and making the simplifying assumptions that Ukl = U~ and ~'k~ = ~'~- To 
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close the system, we need equations for each of the following variables as functions of the 
primary flow variables ak, Uk, hk and p,: 

(i) Interface variables Uki, hki, P'ki and Pgi. 
(ii) Phase-to-interface transfers ¢,i, q,i and q2i. The remaining transfer terms z2i, m~ and m2; 

are then defined by the jump conditions [8]-[10]. 
(iii) Phase-to-wall transfers Zkw and qkw. 

(iv) Phase-to-interface pressure differences (Pk -P i ) .  
(v) Space-time distribution parameters Aik, j = l, 2 . . . .  6. 
The choice of specific equations for terms (i)-(v) depends on the flow structure and some 

examples are discussed in the following sections. 
Before proceeding, it is convenient to note that the conservation equations [1]-[3] can be 

algebraically manipulated into the following matrix form: 

~U + B dU 

where A__ and B__ are square matrices of coefficients which are functions of the dependent flow 
variables, _U is a vector of dependent flow variables, and _C is a vector containing allowances 
for interracial and wall transfers of mass, momentum and energy. The nature of this system of 
equations may be determined from the eigenvalues of the characteristic determinant lIB-AA]I. 
The eigenvalues A represent the velocities of propagation of small-amplitude, short-wavelength 
perturbations (Whitham 1974). For long-wavelength disturbances, dispersive effects and the 
source terms contained in _C become important, while at large amplitudes non-linear wave 
interactions dominate. However, for small disturbances such as weak acoustic and interracial 
waves, the characteristic analysis is adequate. If all of the eigenvalues A are real, the flow 
equations are hyperbolic and stable against such small disturbances. The propagation velocities 
obtained in this way will prove useful in assessing the physical viability of the flow models 
discussed below. 

S E P A R A T E D  FLOWS 

For stratified and annular gas-liquid flows with small amplitude interfacial waves, it seems 
reasonable to assume that: 

(i) The interface pressure is constant at any cross-section and thus P~a and p~ are zero. 
(ii) The space-time distribution parameters Aik are constant so that 

~AJkot and ~ are zero. 

(iii) The interface velocity is approximately equal to the average liquid velocity, i.e. u~ = Uz. 
Note that this imposes the additional restriction that m~ must be small. 

In addition, we assume that the gas and liquid adjacent to the interface are at the local 
saturation condition corresponding to p~. It follows that h~ = hk(p~); see the analysis of Ardron 
& Duffey (1978) for a justification of this assumption. 

The required interface heat and momentum transfer terms are defined as follows: 

qk~ = Ak~ci{T(pi) - Tk}/A 

• ,i = 112t~c~1ul- u2l (u l -  u2)IA [11] 

where A~ is an appropriate heat transfer coefficient, fi is the interface friction factor, ci is the 
length of the interface in the cross-section plane, and T(pi) and Tk denote respectively the 
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interface and phase-k temperature. Similarly the wall transfer terms are: 

qkw = AkwCkw(T~ -- Tk)/A 

rk~ = l/2fk~CkwpkUk2/ A [121 

where the subscript k w  denotes that portion of the wall in contact with phase k (note that 
ct ~ = 0 and c2~ = ~rd for annular flow in a duct of diameter d). 

To complete the set of closure equations, we need only define (Pk --Pi) and an equation of 

the following form is proposed: 

( Pk  - - P i )  = OtkPk~k(Ul,  //2) k = 1, 2 [13] 

where ~k must be defined consistently with the physical situation of interest. Before examining 
specific functions for ~:k, it is convenient to remove the need to consider the energy equations 
by assuming a constant enthalpy flow such that Pk = Pk(Pk). The corresponding phase-k mass 

and momentum equations are respectively: 

aUk mki Dkak + ak Dkpk + ak = - -  [14] 
Dt pkak s Dt  ax Pk 

Dkuk + 1 dpk Pk -- Pi Oak 
Dt  Pk - ~  + akPk aX = {rki + rkw -- mki(Uki + Uk)}/akpk [15] 

where ak ------ X/(apk/a~) is the speed of sound in phase k and Dk/Dt = a/at + Uk a/at. From [13] it 

follows that 

and hence 

P2 = Pl  + Ot2P2~:2 - otlPl~l 

ap._.22 = ~.P_01 aO/I ~ 1  0//2 [161 
on /3' +/3°-ff,7 +/3~' +/3~ on 

substitution of [16] (with 7/= t , x )  into [14] and [15] allows the characteristic determinant 

liB - hAll to be written as 

(u, - ;t) p~- 2(u~ja, - '~) a, 0 

as s ] (u s -X)  a2_~ ,u ;~ as#,~. _ ~  a2#~(u2_~)+a2 [~2~a22 - 1 p2a2 2 ' 2 -  ' p2a22~ '"2  ^ !  p2a2  

1 
~ - -  ( u ~ - A )  0 

pl 

~°- ~:2 ~ ~ ~+(u2-a) 
P2 P2 P2 P2 

=0 [17] 

where /3. = (1 - a,~,la12)/(1 - aff2/a22); /3~ = (PI~:J + p2~:2)/(1 - 0~2~:2/a22); /3n, = 

(o/2p2a~:2]au I - a]plO(l/auj)/(1 - ct2~2/a22); and/3.2 = (°[2p2a~2/au2 - °~lpl a~l/a//2)/( l  - °t2~:2/a22). 
As will be seen below, the eigenvalues of [17] are the propagation velocities of acoustic and 

interfacial waves. 
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Consider, as a special case, a stratified gas-liquid flow in a horizontal rectangular duct of 
height H. As a simple model for (Pk -- Pi), we assume that the phase pressures vary linearly over 
the cross-section. A transverse momentum balance, neglecting all effects except the gravita- 
tional force, yields the following relationships: 

Pk -- Pi = (-- 1)kakPkgH[2 [18] 

so that ~ = - gill2 = - ~2. Making use of the fact that gH ~ a2k We can write 

3p = 1;/3= = - (p2 -  O r ) g i l l 2 ;  3=, = O;/3. 2 = O. 

As shown by Rousseau & Ferch (1979), the above choice of closure equation for (Pk -Pi)  gives 
the approximate eigenvalues 

A = us + v,, u *  -- a *  [19] 

where us = (a2plUl + am02U2)/p*; u* = (a2piu2 + ai02u,)/p*; v~ = ala2{(02- p l ) g H  

- p102(Ul - u2 )2 /p * } / p * ;  a .2 = p * / ( a 2 p J a 2  2 + a102/a=2; p*  = a2pl + at02. 
The pair of eigenvalues u*  -+ a* correspond to the propagation velocities of acoustic waves, 

The mixture speed of sound a* is commonly referred to as the "stratified flow" speed of sound 
(Wallis 1969). It can be seen that aj < a* < a2 and, except at very small gas volume fractions, 
a* is approximately equal to aj. This appears to be in good agreement with experimental data 
for stratified and annular flows (Henry 1971). It is also in agreement with the speed of sound 
derived by Morioka & Matsui (1975) for a two-dimensional stratified flow including transverse 
velocity components. The translation velocity associated with these acoustic waves, u*, is 
approximately equal to u]. Hence the propagation of sound waves is dominated by the gas 
phase. It is of interest to compare a*, in the limit as (Ul - u2) approaches zero, with the speed of 
sound corresponding to the equal-velocity-unequal-temperature (EVUT) flow model (Hancox et 
al. 1978; Ferch 1979). As can be seen from figure 1, a* differs markedly from the EVUT sound 
speed. We attribute this difference to the fact that both (u~ - u2) and its derivatives are set equal 
to zero in the derivation of the EVUT model, while only ( u t -  u2) is zero when the limiting 
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Figure 1. Comparison of sound speed for three models with u~ = u2. 
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value of a* is determined. This underscores the need to apply limiting processes carefully when 
comparing different flow models. 

The other pair of eigenvalues us x v, correspond to the propagation velocities of interracial 
waves. In this case, u, is appromixately equal to u2, and as expected, the liquid phase 
dominates. We note that Vs is real only when 

(Ul -- U2) 2 "~ P*(P'2 -- p O g H /  p102. [20] 

When [20] is not satisfied, the dispersion relation for small-amplitude sinusoidal pertur- 
bations, which is identical to [17] for short wavelengths, indicates that short-wavelength 
interfacial waves will grow exponentially in amplitude. We interpret this as representing a 
transition to large, but finite, amplitude interfacial waves. Therefore the conditions for which 
our stratified flow equations cease to be hyperbolic correspond to the conditions for which our 
simplifying assumptions (p ~,i = 0; p~ = 0; Aik = constant) are no longer consistent with the flow 
structure. To improve the de.scription of the flow structure, we must derive more representative 
closure equations. We will return to this matter later. 

For annular flow, a simple model for ( P k -  P~) may be obtained using reasoning similar to 
that for flow over a wavy wall. This suggests that 

Pk - -P i  = OtkpkCpk(Ui-  U2)2/2 k = 1, 2 [21] 

where Cpk is a dynamic pressure coefficient. In terms of the general equations [13], we see that 

~k = C p k ( U l -  u2)2/2 

and for the special case C . , ( u ~  - u92  ~ a2k (consistent with the assumption of small amplitude 
interracial waves) 

/3p = 1; [3,~ : - C'p(ul - u2)212; [3~, = C * ( u l  - u2); [3~ = - C * ( u l  - u2) 

where C~ = p~Cp~ + 02Cp~ and C* = at02Cp2 - a jp iCp~ .  

Substitution for the above terms in determinant [17] and calculation of the eigenvalues 
yields acoustic propagation velocities that are nearly identical to those for the stratified flow 
case, i.e. a* ~ al. The propagation velocities of interracial waves are 

1~ = U a "4"- Oa [22] 

where Ua = Us -- C * ( U l  - u2) /2p* and 

va 2 = [c~ta2{p*C~ + (02 - p l ) C *  - Pro2} + (C*/2)21( u, - u2) 2/ p.2" 

We note that vo is real only when 

C .2 + 4ala2[p*C~ + ( p :  - pOCk] > 1. 
4ata2pt02 

[23] 

Equation [23] imposes a constraint on the smallest values allowed for Cpk, i.e. minimum 
values for a stable annular film to exist. For the special case Cv2 = - Cp~ = Cp, [23] yields the 
approximate condition (pl ~ p2) 

C. > p~/02. 

This annular flow model does not explicitly impose an upper bound on C. although it is clear 
that the onset of either entrainment or large amplitude inteffacial waves is inconsistent with the 



ONE-DIMENSIONAL MODELS FOR TRANSIENT GAS-LIQUID FLOWS IN DUCTS 33 

assumptions made in the derivation of the separated flow equations. Here we must rely on 
external criteria, based on physical arguments, for flow regime transition such as those 
presented by Dukler (1978). 

MIXED FLOWS 

Mixed flows are characterized by much stronger coupling between the gas and liquid phases 
than exists in separated flows. As a special case we will consider a flow of bubbles (or droplets) 
dispersed in a liquid (or gas) matrix. The following assumptions appear consistent with 
experimental observations: 

(i) The phase pressures are equal at any cross-section, i.e. pl = p2 = p. Since we will assume 
that p ~ pi, it would be more appropriate to set the pressure of the dispersed phase equal to the 
interface pressure. However, because p~ will not be very different from p, the error in our 
assumption will be small. 

(ii) The gas and liquid adjacent to the interface are at the local saturation condition 
corresponding to the average pressure p so that h~ = hR.(p). 

(iii) The interface velocity is equal to the average velocity of the dispersed phase, i.e. 
uu = uq for a bubble flow. 
The interface heat transfer terms are defined as 

qk~ = ak~c~( T ( p  ) - Tk )/ A [24] 

where c~ = 3ad/rd, and Cltd and rd denote respectively the volume fraction and average radius of 
the dispersed phase. Heat transfer from the wall to the continuous phase is 

q~ = 4A~w(Tw - Tc)/d [25] 

where the subscript c denotes the continuous phase. Heat transfer from the wall to the 
dispersed phase is assumed to be zero. Similarly, the wall shear stress experienced by the 
continuous phase is 

• ~ = 2.fpcu~E/d 2. [261 

To complete the set of closure equations, we need equations for p ~,i, p ~, Ak~, rd~ and (p -p~). 
For an idealized bubble or droplet flow it should be possible to define unique equations for each 
of these terms but this has not been done. The usual approach is to neglect some of the terms 
arbitrarily (e.g. Ark = 0) and then use simple physical arguments for those that remain. This 
leads, for example, to the following functions for (p -p~) and ~'ai (Stuhmiller 1977): 

( p  - p~) = C p p A U a  - u~) 2 [27] 

,¢di = Cocipclua - ucl( Ud - uc)/ A [28] 

where Cp and Co are respectively dynamic pressure and drag coefficients. An equation for the 
interracial pressure component P;,i is then derived from the classical theory for forces acting on 
an accelerating sphere and Stuhmiller writes 

} P tdi= -- P Ici : -- OgdPcCvra - ~  ( 14c -- Ud) "~- lid ~X  ( uc -- ud)  [29] 

where Cvm is the virtual mass coefficient (1/2 for non-interacting spheres). Recent work by 
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Drew & Lahey (1979) suggests the following more general function 

Pdi = -- P~i = -- a,to~C~m _ + {Ud -- (1 -- Ad)(U~ -- UdJt -'~X J 

+ aapcC~m [ ~  + {U~ --(1--  Ad)(U¢ -- Ud)}-~X ] [30] 

where ;ta is a coefficient that must be determined from experiments (they note that as ad--' O, 

ha -~ 2). 
To simplify the determination of the propagation velocities corresponding to the above 

choice of closure equations, we will again consider a constant enthlapy case. The resulting 
characteristic determinant with [30] is 

(ud -A) ~af(Ud -A) ad 0 

~c "U - ( u c - A )  p-~2~ ~-A)  0 ~c 

P --Pi 1 - -  (u~ - A ) +  c~uv~ - A )  -c~u~c - A )  
adpd Pd 

P -- Pi 1 - -  -c~u~-,~) (uc-,~)+c~u~-A) 
Otcp,- Pc 

: 0 [311 

where u~ and uw are the convective velocities of the virtual mass associated with the dispersed 
and continuous phases respectively and C'k--OldPcCvra/Olkp k. In general, the eigenvalues of 
determinant [31] cannot be obtained in a simple analytic form. However, we note that they have 
the general form 

A:u,, ,+_v, , , ,  u*+_a* 

where um -+ vm and u*-+ a* correspond to the propagation velocities of interfacial and acoustic 
waves respectively. For our present purposes it is sufficient to consider only the limiting cases 
of incompressible flow and of Ud approaching uo 

For an incompressible flow (i.e. ak(Uk -- A)/pk "~ ak 2) the propagation velocities of interfacial 
waves are defined as follows: 

u,,, = {a~paUa + aapcuc + [2ua - aa(Ua - u~)lC*/2}/p* 

Vm 2 = {(p* + C*)Cppc + ad2C'2/4 - OtcOtdPc(pd + C*)}Au2/R .2 [32] 

where C* = p~Cv,Jao The condition for vm to be real, i.e. for the bubble/droplet flow to be 
stable, is 

4Ce#c(O* + C*) + a r C  .2 > 1 
4a~apc(pa + C*) 

[331 

and this establishes the smallest values allowed for the dynamic pressure and virtual mass 
coefficients. We see that for Cp = 0, Cv,, must be >4a2c/aa and for Cvm = 0, Cp must be 

> CtcOLdPd]p*. 
In the limit as Ud approaches Uo the acoustic propagation velocity a* is given by 

a .2 = a*2(! + Cvmpclacp*)/(1 + Cvmpc/pd + Cvmad/ac). [34] 
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We note that if Cv,, = 0, a* = a*, while in the limit as Co" becomes large, a* approaches the 
speed of sound corresponding to the EVUT model. Figure 1 shows a comparison between a* 
(Cvm = 1/2) and sound speeds corresponding to the EVUT and separated flow models. Ardron & 
Duffey (1978) have done a detailed analysis of the dispersion equation corresponding to the 
case u~,c = Uvd = Ud, Cp = 0 and Co,. = (1 + 2aa)12ao Their analysis shows that the propagation 
velocities are in good agreement with available experimental data. We conclude that the effects 
of virtual mass introduced by [29] and [30] are necessary to describe correctly the acceleration 
of the dispersed phase. However, because the space-time distribution effects have been 
arbitrarily neglected, there remain questions about the precise form of the equations for p ~i. 

S A M P L E  N U M E R I C A L  P R O B L E M S  

A number of numerical experiments have been performed using the models described in the 
previous two sections, as well as simple variations of them. The first problem studied involved 
the acceleration from rest of a stratified steam-water mixture (al = 0.5) in a 1 m long pipe due 
to a constant pressure difference between the inlet and outlet. The stratified flow model was 
used with the wall and interface mass, heat and momentum transfer set to zero. The channel 
height was chosen so that the flow equations were hyperbolic only for the first 1.2 ms of the 
transient. A simple explicit numerical solution procedure was used with the advective terms 
approximated by "upwind" finite difference operators. 

Figure 2 shows the steam velocity transients 0.5 m from the inlet obtained with 8, 16, 32, 64 
and 128 equal size space increments and time increments chosen to maintain a constant Courant 
number (a*At/Ax). The steam velocity transients obtained with 8--64 space increments were 
nearly identical suggesting that spatial convergence had been achieved and there was no 
indication of solution instability. However, when 128 space increments were used, the solution 
deviated from the others within two milliseconds and oscillations of rapidly increasing am- 
plitude developed. The fact that the instability occurred after the stability condition [20] was 
violated is quite possibly coincidental because the complex eigenvalues are associated with the 
surface waves whose time scale is much longer than that of the pressure oscillations associated 
with the numerical instability. Nevertheless, the differential equation system is linearly unstable 
in this case, and the smoothness of the solutions with fewer space increments suggests that the 
inherent numerical damping stabilizes the solution algorithm. The instability is not simply due 
to round-off problems, because solutions with different arithmetic precision had the same 
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Figure 2. Vapour velocity at mid-length of a duct containing a stratified gas-liquid flow that is accelerated 
from rest. 
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A second problem studied is an idealization of the Edwards & O'Brien (1970) blowdown 
experiment with a 4-m long, 32-mm-dia. horizontal pipe. Both stratified and bubble flow models 
were used with the following wall and interface transfer terms: 

fl~,c~.,/A = oq(0.2 Rel-I/5)/d 

f2.c2JA = a2(64/Re2)/d 

Aicki/ A = lO00alot2Cpkpk 

l:ici/A = a ja2(l + 75a2)/d (stratified flow) 

Coci/A = ad(48/Rea) (bubble flow) 

where Cpk and Rek are the specific heat and Reynolds number of phase-k respectively. Rea is 
the bubble Reynolds number defined by 

Red = 2p~lua - u~lR 
Uc 

In the bubble-flow model the following assumptions were made: cp = 0, Cvm = 0.5 and R = 
0.5 ram. The virtual mass equation [30] was used with Aa = 0.5, 0 and 1. However, these choices 
resulted in imaginary inteffacial propagation velocities before choked flow was established at 
the outlet. In the results that follow we used a virtual mass term of the following form: 

CvrnOtdpc [ ~'i(t ltd -- Uc ) + Uv -~x ( Ud -- Uc ) ] 

where uv = (OtdPdUd +acpcuc)/p*. This form resulted in a hyperbolic equation set for the 
complete blowdown. 

The mathematically correct treatment of the outflow boundary condition (for hyperbolic 
models) is clear; in the case of single-velocity models (e.g. HEM, EVUT), we specify the outlet 
pressure and use the compatibility equations for the inward-directed characteristic to calculate 
the velocity. If the resulting velocity is greater than the speed of sound, we instead specify 
u* = a* and use the compatiblity equation to calculate the pressure, which will be higher than 
the reservoir pressure. This approach requires that we know the compatibility equation, and 
strongly suggests that u* is more appropriate than Ud and uc, at least at the boundaries. 
Unfortunately, except for special cases, we do not have an exact analytic expression for u* and 
the correct form of the compatibility equation in question is unknown. Incorrect treatment of 
the outflow boundary has a strong effect on the overall solution in a blowdown problem, since 
the total mass inventory depends on the discharge rate. In this study the eigenvalues of IB-AA[ 
were calculated numerically at the outlet and the boundary condition u* = a* was applied when 
appropriate. 

The pressure histories 0.2 m from the closed end during the early stages were virtually 
identical for the stratified and bubble flow models as shown in figure 3. Also shown are results 
obtained using the EVUT model and homogeneous equilibrium model (HEM). The important 
feature is the undershoot in pressure, observed in the experiment and predicted by the models 
that allow for thermal non-equilibrium between the phases. The algorithm used to solve the 
EVUT equations differed from the others and is more dissipative; therefore, we belive that the 
difference between the EVUT solution and the solutions obtained from the separated and 
bubble flow models to be due to the solution algorithm rather than effects of unequal phase 
velocities. 

Figure 4 shows the outlet velocities of the dispersed and continuous phases predicted by the 
bubble flow model as well as the mixture velocity predicted by the homogeneous equilibrium 
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Figure 3. Predicted pressure histories near the closed end of a duct during blowdown: short term bebaviour. 
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Figure 4. Gas and liquid velocity histories at the open end of a duct during blowdown: bubble flow model. 

model. Not that the homogeneous equilibrium model predicts that the flow chokes almost 
immediately after break initiation, while the bubble flow model predicts a delay of about 2 ms. 
As can be seen, the choking condition u*= a* means that ut <at  and u2<a2. Following 
choking, the pressure at the outlet rises and, because the pressure gradient driving the flow has 
momentarily decreased, the gas and liquid velocities also decrease. Beyond 15 ms the flow again 
accelerates as vapour generation progresses within the pipe. 

Figure 5 shows predicted pressure histories 0.2 m from the closed end later in the blow- 
down. As might be expected, pressure histories predicted by the bubble flow model using 
closure equations appropriate to a near homogeneous flow are in good agreement with those 
obtained from the homogeneous equilibrium model. 

CONCLUSIONS AND RECOMMENDATIONS 

We have presented one-dimensional models for simple separated (stratified, annular) and 
mixed (bubble, drople0 gas-liquid flows which are physically reasonable. A summary of the 
various constitutive terms involved in these models appears in table 1. While more detailed 
checks against experiments are required, the various propagation velocities are in good 
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Table I. Constitutive relationships 

Variables 

)hase-to-lnterface 
)ressure difference 

(Pk-Pi) 

)hase-to-interface 
transfers 

( T l i ' q l i ' q 2 i )  

)hase-to-wall 
transfers 

(~kw' qkw ) 

space time 
distribution 
)arameters 
(Ajk' s) 

interface variables 

Pi' Uki,hkl 

Separated 

Stratified 

(-1) k %0k -~ 
2 

Annular 

(u,-uo) 2 

akOk~pk *~ * 

Mixed Flows 

Bubbly, Droplet 

Cppz(Ul-U2 )2 

qkl = Xki %(T(Pi)-Tk)/A 

Ill = 1/2 flCiOiJUl-U2[(Ul-U2)/A 

qkw = Akw Ckw(Tw-Tk)/A 

Tkw = 1/2 fkwckwPk u~/A 

constant 

Pki = Pki = O, Ukl ~ u2, hki=hk(Pi) 

Tcw= 2f0cU~/d2 

qcw = 4Xcw(Tw-Tc)/d 

(eqn. 30) 

0~< Cvm~ 0.5 

O <  ~,d ~ 2 

P=Pi=Pk 

Uki = u d 

agreement with experimental observations. We believe that these models provide a basis for 
developing a more general model for transient boiling flows. More specifically, future work 
should be focused on developing more general equations for the closure terms (Pk -Pi),  P~i, p~ 
and Ajk. 

For a simple stratified flow (small amplitude interfacial waves), a self-consistent model has 
been derived assuming that the interfacial pressure and space-time distribution parameters (Ajk) 
are constant. The model is shown to be valid when the interface stability condition [20] is 
satisfied; failure to satisfy this condition indicates onset of large amplitude interfacial waves 
that violate the basic assumptions of the model. These waves introduce important multi- 
dimensional flow effects that must be accounted for in the closure equations for Ark (Ajk can no 
longer reasonably be assumed constant) and p;,i. Henry (1971) has suggested that virtual-mass- 
like terms should be added to the momentum equations. As shown for mixed flows, these terms 
increase the coupling between the phases as required. In our future work, we plan to use 



ONE-DIMENSIONAL MODELS FOR TRANSIENT GAS-LIQUID FLOWS IN DUCTS 39 

potential flow solutions for simple wave trains to determine the appropriate form of the 
equations for Ajk and P;,i. 

In the case of one-dimensional models for m/xed flows, it is not clear whether the 
virtual-mass effects represented by [29] and [30] have been included in a self-consistent manner, 
because the space-time distribution effects have been neglected. The choice Ajk = constant, 
while convenient, is arbitrary. It is widely accepted that distribution effects must be in- 
corporated in the mass conservation equations (e.g. through Zuber's distribution parameter Co) 
to predict correctly the propagation of void disturbances (kinematic waves). Therefore there is 
no a prior/reason to assume A~k = const. Because these terms appear as derivatives, they will 
affect the propagation velocities of acoustic and interfacial waves. As in the case of wavy 
stratified flows, it may be possible to determine the relative importance and form of the Ajk and 
P~,i terms from multidimensional potential flow solutions for idealized bubble flows. 

As a consequence of the space-time averaging procedure, the interface is not explicity 
treated in the one-dimensional model. Therefore, external criteria are needed to determine the 
flow regime and basic information about the flow structure (wave amplitude, degree of 
entrainment, bubble size distribution, etc.). Specification of the closure equations must be based 
on this information. 

Finally, we believe that hyperbolic flow equations, while not necessarily essential, are 
desirable because they have well understood mathematical properties; of particular importance 
are the explicit rules for boundary conditions specification and the well established numerical 
solution procedures. Therefore, hyperbolic systems of equations should be sought until a 
violation of the flow physics demands otherwise. 
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