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Abstract--We present a theoretical analysis of bubble growth in porous media by solute diffusion. Based on 
visualization experiments, a theoretical model is developed for bubble growth driven by a constant or 
a time-varying supersaturation in the far-field. It is shown that in porous media, gas evolution (patterns and 
rates) is much different than in the bulk. Patterns and rates of growth are identified for single and multiple 
gas clusters, using statistical models, such as percolation and diffusion-limited-aggregation (DLA). The 
effect of (heterogeneous) nucleation on the growth of multiple clusters is analyzed. Particular emphasis is 
placed on the critical gas saturation, Sgc, which denotes the critical value of the pore volume fraction 
occupied by the gas for the formation of a sample-spanning cluster. This quantity is studied in terms of the 
system parameters, notably the nucleation fraction and the pressure decline rate (pressure/time). Sgc is found 
to increase with the nucleation fraction and the pressure decline rate at relatively high rates, but to be 
independent of the latter at sufficiently small rates. The scaling of these results is also discussed. 

l. I N T R O D U C T I O N  

The evolution of gas saturation (bubble growth) in 
porous media is important to applications, such as 
solution gas-drive (Hunt and Berry, 1956; Firooza- 
badi et al., 1989; Kortekaas and Poelgeest, 1989; 
Moulu and Longeron, 1989; Kamath and Boyer, 
1993), which is a common method for the reco,very of 
oil from underground reservoirs, and boiling pro- 
cesses. Boiling in porous media is encountered in 
diverse fields, including geothermal reservoirs 
(Schubert and Straus, 1977), nuclear waste disposal 
(Doughty and Pruess, 1988) and enhanced heat trans- 
fer (Thome, 1990). Although the concepts presented 
are also applicable to boiling we shall focus in this 
paper on the first problem only, where the growth of 
the gas phase is driven by mass transfer. Contrary to 
external displacements in porous media, where a fluid 
phase displaces another immiscible phase at a speci- 
fied injection rate, which are well understood, internal 
displacements by an in situ growing phase, driven by 
diffusion, are still subject to controversy and con- 
fusion. This is true both for evaporation and conden- 
sation processes. The basic reason is the complex 
interplay of a multitude of factors, such as nucleation, 
diffusion, capillarity and viscous forces, all of which 
contribute to the growth of gas clusters (bubbles) in 
porous media, but which have not yet been treated in 
a comprehensive manner. In the majority of previous 
studies (Hunt and Berry, 1956; Moulu and Longeron, 
1989; Kashchiev and Firoozabadi, 1993ab), bubble 
growth in porous media has been approached follow- 
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ing models for growth in the bulk (Scriven, 1959; 
Szekely and Martins, 1971; Szekely and Fang, 1973; 
Plesset and Prosperetti, 1977), which is a questionable 
approach, given the disordered structure of the gas 
phase in a real porous medium. 

To address porous media effects, we have recently 
investigated the application of percolation concepts 
(Yortsos and Parlar, 1989) and also proceeded with 
a visualization study (Li and Yortsos, 1991). Yortsos 
and Parlar (1989) studied certain aspects of nucleation 
and bubble growth and derived a percolation model 
valid at conditions of very low pressure decline rates. 
Their emphasis was on the concept of the critical gas 
saturation, $9c, which denotes the onset of free gas flow 
and was defined by the authors as the value that 
signals the formation of a sample-spanning gas clus- 
ter. As is conventional in the porous media literature, 
by saturation of a fluid we denote the fraction of the 
pore volume occupied by that phase. Yortsos and 
Parlar (1989) found that the nucleation fraction and 
the geometric and topological features of the porous 
medium significantly affect Sgc. Li and Yortsos (1991) 
presented visualization studies similar to Danesh et al. 
(1987) and Yousfi et al. (1990) that showed the exist- 
ence of disordered patterns in model porous media 
(Fig. 1), and proceeded to develop a simplifed pore 
network simulator. The simulator matched quite well 
the visualization experiments. Despite these efforts, 
however, a theory for bubble growth in porous media 
is currently lacking. It is the purpose of this paper to 
provide a systematic study in this direction. 

We analyze single and multiple bubble growth with 
emphasis on the multiple bubble problem. Specifi- 
cally, we examine growth patterns and rates of growth 
and the effects of the process parameters. In two 
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(b) 
Fig. 1. Snapshots of gas cluster growth from carbonated water in a glass micromodel: (a) large scale view; 

(b) pore level sequence. 

companion papers (Li and Yortsos, 1994; Satik et al., 
1995), we have discussed aspects of single bubble 
growth. Li and Yortsos (1994) considered the interface 
stability for a single bubble in effective porous media 
(such as a Hele-Shaw cell). Satik et al. (1995) reported 
on the scaling behavior of single bubble growth in 
random media, where the scaling laws were found to 
be different from the classical. Here, we consider the 
general multiple growth problem in random porous 
media. Although the scope of the paper is general, 
a more specific objective is to determine Sgc which is 
an important variable in applications. This quantity 
reflects the cumulative effect of various processes, 
such as nucleation, cluster growth and competition 
and the effect of the rate of change of supersaturation. 
From a practical viewpoint, Sg~ signals the onset of 
bulk gas flow, which is usually undesirable in the 
recovery of the liquid oil phase, and it is a key para- 
meter in commercial simulators. 

Several laboratory studies have been conducted on 
Sgc before. Research has focused on determining its 
value and its dependence on various parameters, no- 
tably the pressure decline rate (pressure/time). Differ- 
ent values of S0c were reported by different authors. 
Handy (1958) relied on gas expansion during flow in 
laboratory experiments to report critical gas satura- 
tions in the range 4-11%. Moulu and Longeron 
(1989) estimated Sgc values from 6% for field condi- 
tions to 12% for laboratory conditions. In the experi- 

ments of Firoozabadi et al. (1989), values less than 
0.5% were reported. Kortekaas and Poelgeest (1989) 
measured Sgc values which varied from 7 to 27%. Platt 
and Lewis (1969) using field data estimated a critical 
gas saturation value of 27%. Finally, some investiga- 
tors have suggested that S0c is the same with the 
breakthrough gas saturation in an external displace- 
ment [where gas displaces an immiscible oil, 
Chowdiah (1987)]. In the latter case, Soc ought to be 
infinitesimally small. 

The effect of the pressure decline rate a has also 
been studied (Hunt and Berry, 1956; Firoozabadi et 
al., 1989; Kortekaas and Poelgeest, 1989; Moulu and 
Longeron, 1989; Kamath and Boyer, 1993). This 
quantity denotes the time rate of change of the far- 
field pressure, and also measures the change in the 
degree of supersaturation. The general consensus is 
that Sgc increases with an increase in a, presumably as 
a result of an increase in the nucleation fraction, and 
some of the experiments have indeed shown such 
trends. Implicit to this argument is the assumption of 
a reproducibility of nucleation events as a varies, 
which can be consistent only when nucleation is based 
on specific nucleation sites. This type of heterogen- 
eous nucleation was proposed by Yortsos and Parlar 
(1989) [see also Crum (1982); Atchley and Prosperetti 
(1989)]. At the same time, experiments in low per- 
meability rocks, where capillarity is strong, have 
shown negligible effects of a, at least in the range 
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investigated [order of psi/day, Kamath and Boyer 
(1993)-I. These latter findings are consistent with the 
low pressure decline rate model of Yortsos and Parlar 
(1989), where capillarity dominates cluster growth. 
Interesting aspects of gas displacement in external 
drives in the presence of gravity were reported by 
Dumor6 (1970). 

From the above, it is apparent that Sgc depends on 
a multitude of factors, such as the extent of nucleation, 
the competition between growing clusters and the rate 
of decline of the supersaturation. For its determina- 
tion, therefore, the general multiple cluster growth 
problem must be analyzed. It should be noted, how- 
ever, that sometimes the estimation of Sgc has been 
obscured with problems in data interpretation. For 
example, the practice is often taken to estimate Sgc as 
the gas saturation when gas first appears at the me- 
dium outlet. This can be misleading. Because of the 
possibility of nucleation sites and the subsequent clus- 
ter growth in the vicinity of the outlet, such evidence 
of macroscopic flow is unrelated to the formation of 
a sample-spanning gas cluster (see, for example, Fig. 
1). In fact, in the former case, the reported saturation 
would be a stochastic variable characterized by 
a probability distribution and the interpretation of 
results should be done carefully. For example, in 
a particular experimental realization, Li and Yortsos 
(1991) found that such a value of Sgc decreased as the 
pressure decline rate increased. A robust definition of 
Sgc should involve the formation of a sample-spanning 
cluster. This definition was introduced for the first 
time by Yortsos and Parlar (1989), it is consistent with 
the experiments of Kortekaas and Poelgeest (1989) 
and will be used in the remainder of this work. 

The paper is organized as follows: Section 2 de- 
scribes the theoretical formulation of the problem. We 
briefly discuss the mode of nucleation and the steps 
involved in bubble growth in porous media based on 
observations from visualization experiments (Li and 
Yortsos, 1991). Depending on the particular mode of 
supersaturation applied, three cases of bubble growth 
will be considered (see below). A common dimension- 
less description for all three cases is derived. Section 
3 discusses the growth of a single cluster. Although 
a summary of part of this problem can also be found 
in Satik et al. (1995), the description of single bubble 
growth is necessary before the main topic of multiple 
bubble growth is analyzed. Subsequently, we consider 
the general problem of growth of multiple gas clusters 
(Section 4). Patterns and rates of growth are derived 
for various conditions. Depending on the magnitude 
of the capillary forces, the nucleation characteristics, 
the depletion of supersaturation and the mass transfer 
mode, three specific regimes are identified. Finally, 
Section 5 addresses the determination of S~c and the 
effects of various parameters, such as the nucleation 
fraction and the pressure decline rate. Throughout the 
text, it is necessary to make references to related 
papers in various stages of publication (Yortsos and 
Parlar, 1989; Li and Yortsos, 1991, 1994; Satik et al., 
1995). 
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2. THEORETICAL FORMULATION 

Bubble growth in porous media is typically driven 
by the application of one of the following conditions: 

(i) Fixed supersaturation, where the pressure of the 
liquid in the far-field or in the production outlet is 
suddenly lowered (or raised) to a constant value, 
which remains constant for the remainder of the 
process. 

(ii) Constant liquid withdrawal from one or mul- 
tiple outlets, at a fixed volumetric flow rate. 

(iii) Constant rate of increase of supersaturation, 
where the liquid pressure in the far-field or in the 
production outlet is reduced at a fixed rate, a. 

All these three cases will be considered here. The 
liquid-to-gas phase change occurs by two consecutive 
processes, nucleation and bubble growth. Nucleation 
in the present context was discussed in Yortsos and 
Parlar (1989). Because of the relevance to the multiple 
growth problem, it is also briefly discussed below, 
before the general problem of growth by solute diffu- 
sion is analyzed. As is conventional in porous media 
studies (Dullien, 1992), the porous medium is repre- 
sented by an equivalent network of nodes (pores or 
pore bodies) and bonds (pore throats) of distributed 
sizes. Figure 1 is a characteristic representation of the 
assumed structure. Further details are discussed later. 

2.1. Nucleation 
Multiple clusters arise from nucleation at different 

nucleation sites, and occur at various stages depend- 
ing on the particular process (Kennedy and Olson, 
1952; Stewart et al., 1953; Wieland and Kennedy, 
1957; Chatenever et al., 1959; Hoyos et al., 1990). By 
nucleation we refer here to the onset of the appear- 
ance of a macroscopic bubble (defined as that which 
would occupy a pore body or its fraction). In a pre- 
vious publication (Yortsos and Parlar, 1989), we 
examined various nucleation mechanisms and con- 
cluded that heterogeneous nucleation is the most 
plausible mechanism in porous media. Such bubbles 
arise from various sites on the pore walls containing 
trapped gas (either pre-existent or nucleated), which is 
released (the sites become activated), when the local 
supersaturation exceeds the capillary pressure of the 
site. For example, for a site in the form of a conical 
cavity of mouth radius W (Fig. 2), the activation 
condition would be 

K C  - Pl >1 2~ 

where concentration and liquid pressure are evalu- 
ated at the interface, 7 is the interfacial tension and 
linear phase equilibria were assumed. More generally, 
condition (1) applies to sites of various geometries, 
provided that W denotes an appropriate length (usu- 
ally the smallest constriction in a converging-di- 
verging geometry). Activation of sites in this fashion 
was reviewed extensively by Atchley and Prosperetti 
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Fig. 2. Schematic of a nucleation site of radius W in a pore 
body or radius r s (cavity size is exaggerated). 

(1989) and by Crum (1982). Analogous conclusions 
were also reached by Yousfi et al. (1991). In this 
model, therefore, the nucleation condition depends 
only on the local variables C and Pt, and does not 
involve the intrinsic kinetics of classical nucleation 
(whether homogeneous or heterogeneous). This im- 
portant distinction was not made in earlier publica- 
tions on solution gas-drive, where classical kinetics 
were used. However, typical experiments in porous 
media rarely reach the very large degrees of super- 
saturation required for homogeneous nucleation [see 
also Kamath and Boyer (1993)]. 

In another approach, it was recently suggested that 
nucleation in porous media occurs "instantaneously", 
namely in multiple sites at the same instant 
(Kashchiev and Firoozabadi, 1993). This notion prob- 
ably derives from homogeneous nucleation theory, 
which in the complete absence of surface heterogene- 
ities, predicts the simultaneous formation of a multi- 
tude of nuclei. However, "instantaneous" nucleation is 
also possible in our context, although only in the 
special case of a sudden step increase in supersatura- 
tion, which is sufficiently large for a number of nuclea- 
tion sites to be simultaneously activated (see below). 
In the general case, where the change in supersatura- 
tion is gradual, as in (iii) above, an instantaneous 
nucleation mechanism is doubtful. Instead, it is the 
pressure decline rate and the distribution of sites, 
which determine the ensuing activation of sites and 
bubble growth and affect the apparent "nucleation" 
rates and the critical gas saturation. 

2.2. Bubble growth 
Following nucleation, we consider, next, the math- 

ematical formulation of bubble growth for the case of 
the solution gas-drive problem. Similar consider- 
ations apply for the boiling problem but will not be 
presented here. We assume a two-component liquid, 
one component of which is volatile. Without loss in 
generality, we consider approximate phase equilibria. 
In the gas cluster denoted by subscript k, the ideal gas 
law applies 

Pgk Vk = nk.~T (2) 

X. Ll and Y. C. YORTSOS 

where Pgk is the gas pressure, Vk the cluster volume, nk 
its mole content, ~ the ideal gas constant and T the 
temperature. Gas-l iquid interfaces are located at pore 
throats in the cluster perimeter [Fig. 1 (b)]. We assume 

_ thermodynamic equilibrium and linear phase equi- 
libria 

Pgk = KCk (3) 

where Ck is the solute concentration at the cluster 
interface and K the solubility constant. Growth oc- 
curs by mass transfer over the cluster interface area, 
Ak, 

dnk fA On M w ~ -  -= dA (4) 

where M~ is the molecular weight of the solute and 
n is the outwards pointing normal. The solute trans- 
port obeys a convection-diffusion equation with dif- 
fusion coefficient D, which in a continuum formalism 
reads 

0C 
~ - ~ -  + - . v c  = ¢pDV2C (5) 

where ff is porosity. The velocity field is given by 
Darcy's law 

k 
u = - - V P  ( 6 )  

~t 

V-u = 0 (7) 

where gravity effects were neglected (see also below). 
For  simplicity, we may absorb ~b into t and D, and 
proceed by considering the mass balance (5) with 
~b = 1. These balances are appropriately recast in 
terms of finite differences to describe the problem in 
a disordered pore network (Li and Yortsos, 1991). 

Contrary to the bulk, gas clusters in porous media 
are not spherical but disordered, although menisci 
have a spherical geometry locally. Figure 1 from the 
glass micromodel experiments of Li and Yortsos 
(1991), who studied the growth of CO2 gas from 
saturated carbonated water, gives a clear demonstra- 
tion of these features. In particular, fractal structures, 
as a result of a percolation or viscous fingering pro- 
cess, are quite likely. The menisci in the cluster per- 
imeter may be stationary or moving. A meniscus is 
locked in place and cannot invade an adjacent pore 
throat when its capillary pressure threshold is not met 

27 
Pgk -- Ptj ~ - -  (8) 

rij 

where r o is the pore throat radius connecting a gas- 
occupied pore i to an adjacent liquid-occupied pore 
j and Po is the liquid pressure at pore j [Fig. l(b)]. 
When the capillary pressure is sufficiently high for the 
threshold to be exceeded, however, the meniscus can 
advance through the pore throat to fill the particular 
pore [e.g. pore m in Fig. 1 (b)], much like in a drainage 
process. Although the process of growth of a gas 
cluster is generally complex, it can be simplified by 
identifying two key steps observed experimentally: 
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A pressurization step, during which all interfaces in 
the cluster are locked (or only slightly advancing) and 
the gas pressure steadily increases 

dPgk ,dnk 
Vk ~ -  = ~ T  d~- (9) 

until the first capillary threshold at the perimeter is 
reached. 

A pore-filling step, immediately following the press- 
urization step, during which one or more perimeter 
throats have been penetrated, gas partially occupies 
the newly invaded pores, and both pressure and vol- 
ume (but mostly volume) change according to 

Pok ~ -  + dt J = ~ T d a t  (10) 

where the term in parentheses accounts for possible 
expansion. During this step, we assume that the capil- 
lary pressure in the invaded pore is negligible. In 
either step, the rate of mass transfer to the gas cluster 
is given by eq. (4) above. In general, several menisci 
may be advancing at the same time, while others may 
be locked because of capillarity. Various additional 
remarks on these two steps are given in Appendix A. 

In all applications (i)-(iii), we use the same initial 
condition 

C = C 0 ,  P t = P o  = KCo a t t = 0  (11) 

but different boundary conditions, depending on the 
particular process. For  case (i), we take 

C = C 0 ,  P t = P ~ , ~ < P o  at[x[--* ~ (12) 

or, for a finite system, 

~C 
- -  = 0 at the system boundaries. (13) 
On 

The latter applies both to impervious and to flow 
boundaries (where it becomes equivalent to 
Dankwerts '  condition). The other boundary condi- 
tions are 

- . I s .  U e n d S  = Q (14)  

where Sp is the production area, for case (ii), and 

P l = P o - a t  at[xl ~ ~ or at the production 
ports (15) 

for case (iii), where a is the pressure decline rate. 
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mined, for case (ii), and increasing with time, 
S =2 at/Po, for case (iii). We scale velocity based on the 
diffusive driving force, by taking its characteristic 

value u* to be DJa/l*, Q/l *z and D ~ a ~ o ,  in the three 
cases, respectively, where we also introduced the char- 
acteristic length l*. The latter scales diffusion, and 
may be different for different applications, as dis- 
cussed below. The characteristic time t* is taken to be 
t* = l* / u*. 

Next, a dimensionless pressure is defined, 
PD = (P - P~)/(Po -- P~,)Fll, where P~ refers to far- 
field pressure [which is fixed for case (i), but varies 
with time for the other two cases, in an unspecified 
manner for case (ii), and linearly in time, 
P~ = Po - at, for case (iii)]. With this definition, the 
far-field condition is Po = 0 (or no-flux) in all cases. 
The dimensionless number FI l =--Dp/kPo measures 
the pressure drop in the liquid due to flow induced by 
diffusion. It is typically small (of the order of 10 - 3  

for k = l m d ,  P o = 1 0 0 0 p s i ,  D = 1 0  ScmZ/s, and 
p = 1 cp). In this notation, the momentum balance 
reads 

2.3. Dimensionless formulation 
It is useful to introduce a common dimensionless 

notation, with dimensionless variables denoted by 
subscript D. First, we define the applied supersatura- 
tion, S = ( P o -  P~)/Po. It is constant for case (i), 
where it is also known as the Jakob number  

Po -- P~ Co - C~ 
Ja - (16) 

Po Co 

but it is generally variable, in a manner  to be deter- 

u o  = - V P o  (17)  

u o  = - 2 o V P o  (18)  

uo = - toVPo (19) 

for the three cases, where we defined the time-depen- 
dent variable 20 = Sl* D/Q for case (ii). For  conveni- 
ence, we can introduce the further substitution 
un = vo, uo = vo2o and uo = voto in the respective 
three cases, to reduce eqs (17) (19) to a common 
notation. 

Next, we define a dimensionless concentration Co, 
such that it takes the value one in the far-field, and 
a value near zero at the cluster interface. The appro- 
priate definition for all cases is 

C - Co 
Co = 1 + -  (20) 

CoS 

It is also convenient to introduce new time scales. We 
shall define dz = dto, dr = 2n dtn, and dr = to dto for 
the respective three cases, which can also be com- 
monly expressed as dz = (SD/l *2)dto. The latter illus- 
trates that the appropriate time scaling in all pro- 
cesses is diffusion-based. In this notation, the mass 
balance on the solute becomes 

sFaCu dinS7 
L cat + v~.VCD + (co  - = 1)-d~-r J V2C° 

(21) 

for all cases subject to the conditions Co = 1 at T = 0 
and in the far-field and to a no-flux condition at the 
interface boundaries. The important quasi-static limit 
V2Co = 0  is obtained at weak supersaturations, 
S ,¢ 1 (see also below). It is important to note that the 
latter condition is time-dependent for cases (ii) and 
(iii). 

Finally, we proceed to cast the interface conditions 
in dimensionless form. Condition (3) reduces to 

I-I1 Poo = Cok (22) 

CES 50-B-D 
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which, in view of I-I1 ,~ 1, also implies Cok '~ 1. This 
result derives from the negligible pressure drop in the 
liquid under typical bubble growth conditions and 
will be repeatedly used below. Nonetheless, the coup- 
ling between pressure and concentration cannot be 
neglected. 

The condition for the penetration of a perimeter 
bond, inequality (8), is now expressed as 

2 1 
Pog - Poo <~ - -  - -  (23) 

Ca roi j 

where we introduced the capillary number, 

D#r* , 
Ca = ~ ~ (24) 

and r* is a characteristic pore size. Clearly, Ca is the 
product of two factors, one based on the diffusion 
velocity D~r*/~k and another based on the applied 
supersaturation. Again, for cases (ii) and (iii), Ca is 
time-varying. Finally, dimensionless growth and 
pressurization conditions can be obtained. The press- 
urizing step condition (9) reads as follows: 

VDk~[FIt  S oak + 1 -- S] = ~ dAo (25) 

where the dimensionless solubility constant ~ = 
~ T / M w K  was defined, while the filling step (10) is 
described by 

(SCok + 1 -- S) dVDk fA ~3C° d A °  (26) 
dz = ~t o~ ~no 

assuming negligible expansion. We conclude that the 
important dimensionless variables that emerge from 
the above are the level of supersaturation S, the capil- 
lary number Ca and the two parameters ~ and 1-I 1. 

The solution of the problem of bubble growth in 
porous media is best obtained with a pore network 
simulator. Pore network simulations are useful for 
understanding displacements in porous media and 
have been frequently used. Here, the porous medium 
is represented by an equivalent network of pores of 
distributed sizes, joined by bonds of a different size 
distribution. Pores are taken to represent the storage 
capacity, bonds represent flow resistance and provide 
capillary pressure thresholds. For immiscible dis- 
placement, interfaces are allowed to reside in pore 
bodies only, the occupancy of which is partial, in 
general, and dictates the volumetric content of the 
pore. Capillary effects when the interface fills the pore 
body are generally neglected. After complete occu- 
pancy of the pore body, the meniscus can invade 
a neighbouring pore throat if the corresponding capil- 
lary barrier is exceeded. Although pore network simu- 
lation has often been used in immiscible displace- 
ments (Lenormand et al., 1988; Rege and Fogler, 1988; 
Blunt and King, 1991; Knight et al., 1990), the simula- 
tion of bubble growth processes has only been re- 
cently attempted (Li and Yortsos, 1991). Consistent 
with these key rules, a pore network simulator was 

developed by Li and Yortsos (1991), where both the 
flow field and the concentration field were computed 
following the above formulation. The particular de- 
tails can be found in Li and Yostsos (1991). Here, we 
shall make use of the simulator to understand pat- 
terns and rates of growth. 

3. GROWTH OF A SINGLE CLUSTER 

The first problem to be considered is growth of 
a single cluster in a porous medium. The correspond- 
ing problem of growth in the bulk has been analyzed 
in great detail by many authors, following the seminal 
work of Scriven's (1959), where similarity solutions 
were developed for the problem corresponding to case 
(i). The bubble radius R was shown to follow the 
similarity scaling R oc ~ ,  the prefactor being propor- 
tional to . ~  at low Ja. Many other effects, including 
inertia, non-equilibrium thermodynamics etc., were 
also analyzed (Szekely and Martins, 1971; Szekely and 
Fang, 1973) and reviewed by Plesset and Prosperetti 
(1977). 

In past works, bubble growth in porous media was 
also modeled using bulk models. For example, some 
authors (Moulu and Longeron, 1989; Kashchiev and 
Firoozabadi, 1993a, b) postulated that for case (i), 
single bubble growth in a porous medium also obeys 
the bulk growth similarity scaling. In addition, the 
further conjecture is often made that for case (iii), this 
similarity solution remains valid, leading to the new 
time scaling R oc t\/a,, as the Jakob number is now 
time-dependent. In view of the previous discussion, 
such analyses should be viewed as overly simplified, 
since they ignore many aspects fundamental to por- 
ous media, such as non-compact patterns, which can- 
not be simply corrected by a shape factor, as typically 
done in effective media. Compact growth patterns are 
possible in effective porous media, such as Hele-Shaw 
cells, however, the growth and stability of which was 
analyzed recently (Li and Yortsos, 1994). In such 
structureless systems, the , ~  similarity scaling is 
obeyed, provided that capillarity is sufficiently strong 
to preserve radial symmetry. 

To characterize single bubble growth in a porous 
medium requires that the two aspects of cluster pat- 
tern and its rate of  growth be determined. We expect 
a percolation pattern for sufficiently small cluster sizes 
and a departure towards a viscous fingering pattern at 
larger sizes. Rates of growth depend on mass transfer, 
although the scaling exponents also depend on the 
particular pattern, thus on the competition between 
capillary and viscous forces as well. The boundaries 
that delineate these regimes were recently determined 
by Satik et al. (1995) but only for case (i) of a fixed 
supersaturation. As the growth of a single bubble 
under various conditions is necessary to understand 
the more complex multiple cluster problem, we pro- 
ceed with a discussion of the problem and generalize 
the results of Satik et al. (1995) in the appropriate 
cases. 
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3.1. Single cluster growth pattern 
Consider the growth of a single cluster in the three 

cases described above. The cluster follows a percola- 
tion pattern, if perimeter pore throats are invaded 
"one-at-a-time", such that the largest available bond 
is always invaded first. These rules are the same with 
invasion percolation in drainage, except that here, in- 
vasion occurs from an internal, rather than an ex- 
ternal, source, and the possibility exists for many such 
internal sources (because of multiple nucleation sites). 
In this sense, the process is reminiscent of secondary 
imbibition at very low capillary numbers (Lenor- 
mand, 1990) or of vapor desorption in porous media 
(Yortsos and Parlar, 1989). Provided that the ratio in 
density between liquid and gas is sufficiently high, as 
is the case in typical applications, trapping of liquid 
occurs and should be included in the process. 

The following conditions must apply for the exist- 
ence of a percolation pattern: (1) Immediately preced- 
ing and during a pressurization step, all interfaces 
must be locked. This step concludes by the invasion of 
the largest among all available perimeter throats, 
when the filling step commences. (2) During a filling 
step, only one pore is filled and the simultaneous 
penetration of another throat is not possible. For 
instance, it is not possible that while the meniscus is in 
motion in some location, m, penetration occurs at 
another location, j [Fig. l(b)]. 

The first condition is always satisfied, since during 
pressurization, the liquid pressure outside the cluster 
and the gas pressure inside the cluster are both spa- 
tially uniform (no flow). The second condition, how- 
ever, relies on the magnitude of the viscous pressure 
drop. During the filling of a partly occupied pore m, 
the capillary pressure in the pore is small (taken equal 
to zero), thus P9 ~ P~,,.. For the simultaneous pen- 
etration of a perimeter bond at another location j re- 
quires Pg - Pl,j >~ 27/ri~ [Fig. 1 (b)], namely that a suf- 
ficiently large viscous pressure drop must exist be- 
tween pores m and j, Pt.,, - Pz,i >~ 27/rij. Conversely, if 
a percolation pattern is to be followed, the reverse 
inequality must be valid for any two such pores. This 
will be the case for sufficiently small cluster sizes. 
Sufficiently large pressure drops across the cluster, 
likely to increase with cluster size and with the capil- 
lary number, violate this constraint and lead to a dif- 
ferent regime. Thus, although the pressure drop in the 
liquid does not affect significantly the interface con- 
centration [see eq. (22)], it can be sufficiently large for 
viscous effects to be comparable to capillary forces 
and must be calculated. Inclusion of the flow field 
substantially increases the complexity of the numer- 
ical simulation. 

When the pattern is of the percolation type, growth 
occurs by penetration of the largest size perimeter 
throat. Before this event, all interfaces are locked in 
place and a (relatively short) pressurization period 
elapses, during which, for cases (i) and (iii), mass 
transfer leads to the build-up of the gas pressure 
according to eq. (25). It must be pointed out that this 
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scenario is not true for case (ii), however, where the 
bubble grows at a constant rate and penetration of the 
largest perimeter throat is reached by a fast (instan- 
taneous) decrease of the liquid pressure to the appro- 
priate threshold, instead of the slow increase asso- 
ciated with the pressurization step. In all cases, upon 
the subsequent invasion of the largest perimeter 
throat, capillary pressure requirements relax and fill- 
ing of the partly invaded pore continues following eq. 
(26), where volume expansion must also be considered. 

The other distinct pattern corresponds to rates of 
growth and cluster sizes sufficiently large, such that 
viscous forces dominate. In this regime, capillarity is 
negligible and adjacent pores are invaded at the rela- 
tive rates determined from the flow-field determined 
condition (A1). Here, the problem reduces to the stan- 
dard displacement of a liquid by a gas. The corres- 
ponding pattern is of the viscous fingering-type and 
should share many of the diffusion-limited aggrega- 
tion (DLA) properties typically assigned to such pat- 
terns [see also Li and Yortsos (1994) for a detailed 
discussion of this instability]. While the effect of mass 
transfer in either percolation or viscous fingering re- 
gimes is mainly on the rate of growth, mass transfer 
may also affect the pattern characteristics during the 
transition between these regimes. 

The transition from a percolation to a viscous fin- 
gering pattern begins when more than one perimeter 
pore is invaded or become partly occupied. Numer- 
ical simulations and a scaling study were conducted to 
demarcate this percolation boundary. Because of ex- 
cessive computational requirements, all simulations 
were conducted in relatively small (or 50 x 50) net- 
works. Typical simulations patterns are shown in Fig. 
3. The pattern is strictly percolation [Fig. 3(a)_q. if the 
cluster radius of gyration R is smaller than a critical 
size R p. Otherwise, more than one pore can be in- 
vaded at the same time and a purely percolation 
pattern ceases to exist. For sufficiently large sizes 
(R > R°Y), the patterns tend to the characteristic vis- 
cous fingering pattern [Fig. 3(b)]. Both R p and R ''s 
were found to decrease with an increase in the capil- 
lary number, namely with an increase in D, # and Ja 
in case (i),/~ and Q in case (ii), D, p, a and t in case (iii), 
and with a decrease in 7 and k in case (i), 7 in case (ii), 
and 7 and P0 in case (iii), respectively [where in the 
above we took l * ~  r*, and k ~ (r*)2]. For fixed 
values of S, the two boundaries, R p and R vf, are 
a single function of Ca (Fig. 4). However, an increase 
in S for the same Ca leads to lower critical values, due 
to increased effects of convection. We should note that 
the boundaries in Fig. 4 correspond to rather high 
capillary numbers, because of the small cluster sizes 
involved due to the small computational domains. 
For larger cluster sizes, the transition between regimes 
occurs at lower (and more realistic) capillary numbers. 
Such an extrapolation of the limiting curve can be 
provided by a scaling analysis (Satik et al., 1995). 

The existence of critical cluster sizes can be anticip- 
ated from the previous work on the capillary and 
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Fig. 3. Snapshots of simulated single cluster growth under conditions of (a) capillary control and 
(b) viscous control. 

viscous fingering regimes by Lenormand (1989), ex- 
cept that here mass transfer must be additionally 
considered. In a companion paper, we have proposed 
such a scaling theory (Satik et al., 1995) for case (i) to 
interpret the numerical findings of Fig. 4. It was 
shown that for case (i) and under the assumption that 
the concentration field is quasi-static, S ,~ 1, the per- 
colation boundary in a 3-D system scales as 

(RP~ ~/~÷ ~ o~Ca 
~ coast (27) 

where ~ is the standard deviation of the pore size 
distribution and v is the exponent of the correlation 

length in percolation [v = 0.88 in 3-D, Stauffer 
(1985)]. A different result involving logarithmic cor- 
rections was found for 2-D growth 

V~l /v tn~)e tCa ~ 
r-*J ~ n ~  coast (28) 

where Re denotes the outer boundary of the medium, 
assumed radially symmetric. The same scalings are 
also expected for case (iii) except that it must be kept 
in mind that Ca is time-dependent. However, to deter- 
mine the scaling of the percolation boundary with the 
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Fig. 4. Percolation and viscous fingering boundaries from simulations in a 50 x 50 square lattice 

pressure decline rate for case (iii) the rate of growth 
must also be determined, as discussed below. 

Analogous results were found for the boundary that 
demarcates the transition from a purely DLA pattern 
to a percolation regime. For example, the correspon- 
ding equation in 3-D geometries reads (Satik et a[., 
1995) 

($)(+) - const 

with logarithmic corrections necessary for 2-D geo- 
metries. These theoretical results were found in quali- 
tative only agreement with the simulations of Fig. 
4 due to the strong finite size effects. Computational 
limitations do affect the accuracy of these non-local 
problems, where concentration and pressure fields 
must be calculated (Li and Yortsos, 1991). 

Somewhat different scalings are obtained for case 
(ii). Here, mass transfer is not relevant in setting the 
viscous forces, and the percolation boundary is 

(!y’ cd _ cOnSt (301 

where the modified capillary number, Ca’ = Qp/yr*, 
was introduced, and similarly for the viscous bound- 
ary. 

It must be remarked that in the transition towards 
a purely viscous fingering regime, the viscous forces 
across the cluster may be sufficiently strong to cause 
the mobilization of the entire cluster. For example, 
cluster mobilization is possible for sufficiently large 
cluster sizes in the presence of gravity (DumorC, 1970). 
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Because mobilization is the result of viscous forces 
across the cluster exceeding the capillary forces, this 
boundary is expected to be parallel to the percolation 
boundary. Cluster mobilization could have important 
ramifications on the definition of the critical gas satu- 
ration. 

3.2. Rates of growth 
The second important aspect in the characteriz- 

ation of bubble growth is rates of growth. As pointed 
out previously, compact bubble growth obeys the 
similarity scaling R a $ under the following condi- 
tions: 3-D growth in the bulk or in an effective porous 
medium for case (i), or 2-D growth in an effective 
porous medium (Hele-Shaw cell) for case (ii). In the 
3-D case, this is the result of the scalings V - R3 and 
dn,/dt _ R, from which the 4 scaling follows. 

Consider now the rate of growth in a 3-D porous 
medium. Because of the fractal patterns involved, the 
scaling of volume to the radius of gyration obeys 
a different expession 

& - (R/r* ID’ 

where D, is the fractal dimension of the gas cluster 
(equal to 2.5 for both a 3-D percolation cluster and 
a 3-D DLA cluster). Expression (31) is valid provided 
that the cluster size is sufficiently large for the power 
law to apply (otherwise finite-size effects must also be 
included). To calculate the rate of growth requires an 
expression for the mass transfer. As before, we con- 
sider the case of quasi-static diffusion. For cases (i) 
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and (iii), solving eq. (21) at S ,~ 1 and substituting the 
results in eqs ~26) and (31), yields the following expres- 
sion: 

( R ~  o: ' 4~ct(Dy -- 1) 
r * /  - D :  r (32) 

where we take without loss l* = r*. In terms of time t, 
the cluster grows according to the scaling 

R ~ (Jat) l / to:-  1) (33) 

for case (i), and 

~at2~l/tD: 1) 
R ~ \~-o,] ( 3 4 )  

for case (iii), respectively. Evidently, as a result of its 
ramified structure, the cluster grows faster (R ~ t 2/3 or 
t 4/3) than in its effective medium analogue (which is 
R ~ t 1/2 or t), in the two cases, respectively. The cor- 
responding expressions for the rate of growth in a 2-D 
medium must include logarithmic corrections (Satik 
et al., 1995) 

r*J 

where we again assumed l* = r*, and where D :  = 1.89 
for 2-D percolation and D :  = 1.70 for 2-D viscous 
fingering. Analogous expressions that also include 
effects of convection (larger S) have not been derived 
and they are currently under study. Again, case (ii), 
where a constant growth rate is imposed, has a differ- 
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ent scaling 
R ~ (Qt) 1/°s (36) 

for any dimension and Q. These are all different 
from the xf t  scaling corresponding to an effective 
medium. 

Having the information on the rate of growth, the 
scaling of the critical size of the percolation boundary 
R p in terms of the pressure decline rate a for case (iii) 
can be obtained. By eliminating time between the 
expression for the supersaturation and the rate of 
growth, one can readily show the result 

which suggests a straight line with slope - v/[v(1 + 
Df )  + 2] in the appropria te  log- log plot. This is con- 
sistent with the numerical trends obtained with the 
pore network simulator as shown in Fig. 5. 

We conclude that  during single bubble growth in 
a porous medium the following regimes develop in 
succession: a short durat ion early-time regime, where 
finite size effects dominate  (e.g. R / r *  - RD < 10), the 
growth is still compact  and the effective medium 
scaling R D ~ t  1/2 applies; a percolation regime 
(10 < R D ~ R~), where the gas bubble is a percolation 
cluster and the scaling follows from the above using 
the fractal dimension of the percolating cluster; 
a transition towards a viscous fingering regime 
(Rf~ < RD < R~:); and a viscous fingering regime 
(R~ f < RD), where the scaling changes according to 

1 0 1  . . . . . . . .  , . . . . . . . .  , . . . . . . . .  , . . . . . . .  , . . . . . . . .  

R 

l 

10~ . . . . . . . .  i 
0 3 1 0  4 

R p 

10 s 10 s 10 7 10 8 

a (psi/hr) 

Fig. 5. Effect of pressure decline rate on the percolation boundary from simulations in a 30 x 30 square 
lattice. 
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the viscous fingering fractal dimension. The percola- 
tion and viscous fingering limiting sizes, R~ and R~ I, 
respectively, depend on Ca and S. 

All the above predictions are valid under the as- 
sumption that mass transfer occurs by quasi-static 
diffusion. For  compact patterns (bulk growth) under 
the conditions of case (i), the appropriate condition is 
readily shown to be Ja<< 1, uniformly in time. How- 
ever, this is not necessarily true for the case of fractal 
patterns either for case (ii) or (iii), where the supersatu- 
ration is time-dependent. The validity of the condition 
in these cases is examined in Appendix B, where it is 
shown that the bulk condition can still be used to 
denote mass transfer dominated by quasi-static diffu- 
sion when the above percolation and viscous fingering 
boundaries are reached. When the quasi-static ap- 
proximation fails, a different scaling would result. At 
present such a scaling theory is not available. 

4. GROWTH OF MULTIPLE CLUSTERS 

As pointed out previously, at typical conditions, 
growth of the gas phase occurs from multiple sites, 
each of which is generally activated at each own 
supersaturation [dictated by capillary and geometri- 
cal characteristics of the type shown in inequality (1)]. 
Given a distribution of sites, several important issues 
arise, for example the competition between growing 
clusters, the ensuing patterns and rates of growth, the 
prediction of site activation in terms of the parameters 
of the system and, ultimately, the determination of the 
critical gas saturation. 
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Before we proceed with the analysis of multiple 
cluster growth, we must note that the competition 
between growing clusters in a porous medium is dif- 
ferent than in the bulk, where, under quasi-static con- 
ditions, it is often described by Ostwald ripening. The 
latter is based on the solubility dependence on curva- 
ture and predicts the growth of larger bubbles at the 
expense of smaller ones. Because it relies on the direct 
proportionality between bubble size and radius of 
curvature, which is indeed obeyed in the bulk, how- 
ever, Ostwald ripening is of less relevance to porous 
media, where cluster size and capillarity are weakly, if 
at all, coupled. In porous media, the competition 
between growing clusters is controlled by the pore 
structure and by mass transfer, thus the solubility 
dependence on radius is less important. 

To characterize the multiple cluster problem, 
a measure of the cluster volumetric density must be 
introduced. We shall define the nucleation fraction, 
fq(t), which is the number fraction of sites which have 
been activated at time t and around each of which 
a cluster has grown. Assuming that the site activation 
can be modeled as in expression (1), we can assign 
a distribution F(W), much like a pore size distribution 
~(r), to all the pores of the porous medium (Fig. 6) 
(where only the largest among possibly many such 
cavities will be considered in a given pore). This distri- 
bution F is expected to have a mean much smaller 
than the average pore size, so that the majority of the 
pores do not become activated. The cavity size distri- 
bution is useful in estimating the nucleation fraction, 
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Fig. 6. Schematic of probability distribution functions (pdf) for nucleation cavity F(W) and pore throat size 
~(r). 
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particularly for the case of slow growth, where con- 
centration gradients are small. Then, f~(t) can be cal- 
culated as a function of the prevailing supersaturation 
AP(t), from the following simple expression: 

F(W) d W. (38) 
fq = 2y/AP(t) 

To actually computefq(t) in the general case, however, 
requires the solution of the entire problem and 
a knowledge of the site distribution. In the absence of 
any information, the location of nucleation sites and 
their activation thresholds must be considered as ran- 
dom variables. 

The existence of multiple nucleation sites intro- 
duces a new characteristic length in the system, which 
for a 3-D geometry is 

r* 
lq (~bfq)l/3. (39) 

This length sets the minimum spacing between centres 
of growing clusters at any given time and denotes the 
appropriate diffusion scale for the system (thus, in the 
multiple cluster problem one can take l * ~  lq). In 
describing multiple cluster growth, we shall examine 
cluster growth patterns and rates of growth. 

4.1. Growth patterns 
Assume that at any given time there exist multiple 

nucleation centers, with cluster sizes sufficiently small 
for each cluster to grow following a percolation pat- 
tern. The percolation boundary previously developed 
for a single cluster should be applicable here as well: 
the existence of multiple clusters slows down mass 
transfer due to screening effects, while at the same 
time the mass that reaches each cluster is less than in 
the single cluster problem, since more pores are com- 
peting for the same amount of solute. As a result, 
viscous pressure drops are also smaller. Thus, for each 
cluster to remain in the percolation pattern regime, 
namely for it to grow by invasion of the largest throat 
in its perimeter, the condition lq < R p, where R p is 
evaluated from the single cluster expression, should be 
sufficient on the average. Because of expression (39), 
this condition can be translated into one on the nu- 
cleation fraction 

8 
fq >~ dp[RPo(Ca, S)]3 (40) 

where the normalized critical size Rg(Ca, S) is a func- 
tion of Ca and S, as described in Section 3. For typical 
values of Ca, S and fq, this condition should be well 
obeyed. Thus, in the remainder of the paper, we shall 
proceed with the assumption that all clusters individ- 
ually grow by following percolation rules locally and 
neglect any viscous effects on the pattern. 

It follows that given the various clusters (or their 
mother activation site) and the porous medium 
geometry, the sequence, but not the rate, of pore 
throat invasion of each cluster is fixed. In view of the 
previous theory, a cluster would either be in a pressur- 
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ization stage, during which all menisci are locked and 
the gas pressure is in the process of increasing for the 
penetration of a subsequent throat, or in a filling 
stage, during which a meniscus advances in the newly 
occupied pore. Although the percolation rules are 
followed locally for each cluster, however, they are not 
necessarily followed globally. In fact, three different 
patterns can be identified as described below. 

(1) Global percolation: At any given time, we may 
arrange the throats in the perimeter of all clusters in 
a sequence of decreasing sizes,, e.g. TI, T2, T3 . . . . .  T,. 
We shall call the pattern a global percolation pattern if 
T1 is always the next throat to be penetrated, regard- 
less of the size or the location of the particular cluster 
of which this throat becomes part. It will be shown 
below that this is possible at low pressure decline 
rates. 

For a global percolation pattern to be possible, 
either all clusters must be in a pressurization stage or 
only one cluster must be in a filling stage. This condi- 
tion can be fulfilled only if the mass transfer rates to 
the non-growing clusters become negligibly small 
sometime during the filling stage, so that their pres- 
sure stabilizes. For this to be true, in turn, requires 
that the corresponding interface concentrations rap- 
idly become equal to the far-field concentration, Ca. 
Consider, for example, two clusters, one filling (f) and 
one pressurizing (p) and denote by C s and Cp their 
respective interface concentrations. Assuming negli- 
gible viscous pressure drop, we can readily show that 
the following holds: 

2~ 
Cp <~ Cf + -- (41) 

Krp 

where rp is the size of the largest perimeter pore throat 
of the pressurizing cluster. For the clusters to remain 
in their respective stage until the completion of the 
filling of cluster f, and in view of the fast mass transfer 
during the pressurization step alluded to in expression 
(A3), requires Cp~ Coo. Because we also have 
C I = P~/K,  inequality (41) implies K C o o -  Po~ <~ 
2y/rp. In other words, for a global percolation pattern 
to be possible, the supersaturation in the system, 
KCo~ - P~, must be sufficiently weak compared to 
the capillary pressure level. A necessary condition for 
this is supersaturation depletion, namely C~ must 
decrease with time sufficiently fast. For case (iii) this is 
likely to be true at sufficiently low decline rates. De- 
pletion of supersaturation occurs because of the finite 
size of a system involving multiple growing clusters. 

Based on these ideas, the following condition for 
a global percolation pattern can be derived as shown 
in Appendix C: 

a ,~ ( r~ , .~ ,q ,  . (42) 

This condition sets an estimate for global percolation 
conditions to apply. Expression (42) is an improved 
version of a previous heuristic result derived by Yor- 
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tSOS and Parlar (1989) and sets an estimate on the 
upper limit ofa. Because r* is proportional to x/k, the 
condition is likely to be applicable to lower permeab- 
ility media. It is also favored at conditions of high 
capillarity and a relatively high nuclear fraction. 

The existence of a global percolation regime is very 
useful, for the order of site occupation is predeter- 
mined, given the nucleation characteristics of the por- 
ous medium. The full problem can be solved, includ- 
ing the sequence of pore occupancy, the sequence of 
site activation (assuming their characteristics are pre- 
cisely known) and the nucleation fraction evolution, 
the evolution of gas saturation as a function of pres- 
sure and time, and the magnitude of the critical gas 
saturation, as discussed later in this paper. 

When global percolation is not followed, any two 
clusters may be at different stages. For example, while 
cluster i is at a pressurization step, cluster j may be at 
a filling step and vice versa. Thus, the exclusivity 
condition of "one-pore-at-a-time" will not hold, ex- 
cept at conditions of global percolation. Now, growth 
occurs simultaneously in the various clusters, which 
compete for the available solute. For example, in the 
case where two clusters are simultaneously in a press- 
urization stage, the cluster that grows next may not be 
the one with the largest perimeter throat but the one 
where mass transfer is highest. The exception is case 
(ii) involving growth at a constant rate, where if all 
clusters are temporarily frozen, subsequent penetra- 
tion takes place by a reduction of the liquid pressure 
to the level necessary for the throat with the least 
overall capillary pressure threshold to be invaded. In 
general, however, the simultaneous lock of all clusters 
is rather unlikely in view of expression (A3): As long as 
the ratio Pc/Pt and the cluster sizes remain small 
enough, At,  cannot exceed At I by an order of magni- 
tude, as would be required for the rapid filling of all 
clusters. Thus, the order by which pore throats in 
different clusters are invaded is not solely dictated by 
capillarity alone but is also affected by the rates of 
mass transfer. Contrary to the single cluster problem, 
mass transfer affects the growth patterns in the mul- 
tiple cluster problem. Two such patterns are discussed 
below. 

(2) Percolation DLA: Assume that all nucleation 
sites have been activated at the onset of the process 
(instantaneously) and no further nucleation is pos- 
sible. For example, this is possible under the condi- 
tions of case (i) of fixed supersaturation, or in the early 
stages of case (iii) at relatively high decline rates, 
where the supersaturation has not been depleted. 
Given the location of the nucleation sites, mass trans- 
fer rates can be computed for each cluster, the sub- 
sequent growth of which is obtained from eq. (25) with 
the penetration sequence in each duster satisfying 
percolation rules. Furthermore, under the assumption 
that the mass transfer is quasi-static, the concentra- 
tion field is reduced to the solution of the Laplace 
equation 

V2CD : 0 (43) 
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subject to the boundary conditions 

Co,o~ = 1 in the far-field (44) 

Co = 0 at the cluster interfaces (45) 

the latter arising from eq. (22) in the limit of small I-I 1 . 
We shall denote this as a percolation-DLA pattern. 
Indeed, this problem involves an interesting combina- 
tion of DLA rules for computing the mass transfer and 
of percolation rules for advancing each cluster. This 
pattern can be equivalently computed without the 
need of a detailed simulator, by using the following 
simple algorithm: From random sites at the boundary 
of the computational grid, a number M of random 
walkers are launched, which terminate their walk 
when any cluster is encountered. Each cluster grows 
by occupying the largest size perimeter throat avail- 
able to it per local percolation rules. However, the 
rate of growth of a cluster k is taken to be in propor- 
tion to the flow Mk of walkers it receives in this 
internal 

d Vok Mk 
(46) 

dtD M ' 

It should be pointed out that contrary to the classical 
DLA cluster, each individual cluster here is of the 
percolation type. However, the overall pattern is not 
the global percolation discussed previously, but a dif- 
ferent pattern determined from the solution of the 
mass transfer (DLA) problem. Furthermore, although 
clusters near the boundary are likely to receive a lar- 
ger mass flux and to grow accordingly faster, the 
random location of the pore to be invaded next, as 
a result of local percolation, weakens substantially the 
usual screening and shielding effects associated with 
DLA processes. This enables clusters away from the 
system boundary to grow, despite their disadvantage- 
ous position. A comparison of the statistical algo- 
rithm with the numerical solution of the full problem 
shows an excellent agreement. Patterns typical of this 
regime are shown in Fig. 7, where M = 2000 and the 
computational size is 30 × 30. Figure 7(a) shows the 
numerical simulation results with the fixed concentra- 
tion, Co,~ = 1, prescribed at the boundaries, while 
Fig. 7(b) shows the results simulated with the DLA 
algorithm. The two methods give very similar results. 
Because the statistical analogue works well only for 
the boundary condition Co,~ = 1, however, this 
model should be a good approximation only for pro- 
cesses at a constant supersaturation. When used for 
case (iii), the model is successful at the early stages, but 
it becomes progressively worse when substantial 
supersaturation depletion commences. 

(3) Percolation-modified DLA: The most general 
pattern at conditions of capillary control involves the 
constant pressure decline relate case (iii), but at rates 
higher than expression (42), such that although the 
supersaturation is being depleted, it remains higher 
than the capillary pressure level. The prototypical 
problem here involves growth of multiple clusters in 
a finite system (e.g. a square network in 2-D), at one 
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Fig. 7. Comparison of patterns for ease 1 (percolation-DLA): (a) numerical simulation; (b) percola- 
tion-DLA algorithm. 

side of which the pressure declines at the prescribed 
rate, the other sides being no-flow boundaries. Even 
though we may still take weak supersaturation, S ,~ 1, 
the problem cannot be solved by considering the 
quasi-static limit V2Co = 0, which, for a finite system, 
has the trivial solution CD = 0 (assuming 1-11 ,~ I). 
Instead, it requires the full consideration of the transi- 
ent and convective terms in eq. (21), which, because of 
their dependence on the flow field, make it equivalent 
to solving the full problem. Nonetheless, a simplified 
model that describes cluster competition can be de- 
veloped by neglecting convection, but by retaining the 
transient terms. With this assumption, which retains 
the supersaturation depletion, eq. (21) yields 

d 
[(Co - I)S] = V2CD (47) 

Co = 0 at cluster boundaries (48) 

0CD = 0 at system boundaries. (49) 
On 

For  case (iii), the system admits the separable form 
solution 

(al~/DPo) G(x) - S 
Co = 1 + (50) 

S 

where G(x) is only spatially and configuration-depen- 
dent and is given from the solution of the following 
problem: 

V2G = - 1 (51) 

G = 0 at cluster boundaries (52) 

aG 
- -  = 0 at system boundaries. (53) 
On 

Equation (51) represents a steady-state reaction-dif- 
fusion problem with a constant source term equal to 
1, with perfect sinks at the cluster boundaries and with 

no-flux condition at the system boundaries. We shall 
call the resulting pattern, the percolation-modified 
DLA pattern. As before, a statistical analogue for this 
problem is also possible and involves a random walk. 
Here, however, the walkers originate at random points 
in the liquid, contrasted to the previous pattern where 
they are launched from the boundary. As in the pre- 
vious model, the growth of the clusters is taken in 
proportion to the flow of walkers they receive. Also as 
in the previous problem, however, the exact mapping 
to actual time and pressure is not possible with such 
an approach. 

Growth patterns obtained by the numerical solu- 
tion of the full problem, including convection, for 
a constant pressure decline rate and an initially fixed 
nucleation fraction are shown in Fig. 8(a). Compared 
with the pattern obtained from the simulation of the 
full problem, the modified DLA results [Fig. 8(b)] are 
similar at early times (or at low nucleation fractions), 
but they deviate somewhat from the numerical simu- 
lation when the cluster density increases. If progress- 
ive nucleation is included, additional sites will be 
activated, the growth of which changes somewhat the 
dynamics of the process and the patterns obtained. 
This analysis is still in progress. Percolation-modified 
DLA patterns differ significantly, however, from per- 
colat ion-DLA patterns (Fig. 7). 

We conclude this section by commenting on the 
growth patterns of case (ii) of constant liquid with- 
drawal rate. As previously noted, the supersaturation 
is likely to be highest at the beginning of the process, 
during which time nucleation would be completed. 
Global percolation requires that viscous pressure 
drop is negligible compared to the capillary pressure 
and the growth rate is sufficiently large so as not to 
allow for significant mass transfer in the pressurizing 
cluster. The second condition can be determined fol- 
lowing arguments similar to those for case (iii). Dur- 
ing the time interval it takes for the growing cluster to 
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Fig. 8. Comparison of patterns for case 2 (percolation-modified DLA, a = 1 psi/h): (a) numerical simula- 
tion; (b) percolation-modified DLA algorithm. 

complete a filling step, At = VffQ, the pressure of the 
pressurizing cluster has increased by the increment 

A p ~ (  Vs ~ ( ~ T ~ 4 7 t R k S D  (54) 
\QVk/ \Mw]  

where the quasi-static approximation was used for 
mass transfer. For a rough estimate we may further 
approximate Rk by the nucleation length l~ and make 
use of expression (B6) to yield the approximate condi- 
tion 

Po < r \ r /  " 

Clearly, this can only be satisfied at very small nuclea- 
tion fractions and/or  at high capillary pressures. 

4.2. Rates of  orowth 
The evolution of the gas saturation as a function of 

time is trivial for case (ii), but of considerable interest 
for the other two cases, in particular for case (iii). 
Here, because of the correspondence between pressure 
and time, gas saturation and pressure are also in 
one-to-one correspondence, with the pressure decline 
rate as a parameter. Simple results are possible for the 
case of low pressure decline rates, where global per- 
colation applies. During this process, the sequence of 
pore occupancy is known a priori. The sequence of 
pore occupation dictates the gas saturation level, 
which is in turn related to the system pressure. Be- 
cause of the assumed weak supersaturation levels, 
concentration gradients are small, and the integral 
balances for solute and total mass read 

Mwdn + Vrd[C~(1 - So) ] + C®dV~ = 0 

- VrdSg +dV~=O.  (56) 

After some manipulations, we obtain the following 
relation between pressure and gas saturation, Sg: 

P ' =  l - S , +  (57) 
Po 

based on which the time evolution of S o is determined. 
It is evident that as the solubility constant K in- 
creases, the gas saturation decreases [Fig. 9(a)]. The 
rates of growth are directly obtained from eq. (57) by 
substituting for the pressure 

S O = ~ _ ~  1 - PoJ - 1 (58) 

as shown schematically in Figs 9(a) and (b). As ex- 
pected, the effect of the pressure decline rate is to lead 
to an increase in the gas saturation at a fixed time. 
However, in this regime, Sac is only a function of the 
nucleation fraction, independent of a. This scaling 
applies at pressure decline rates sufficiently low for the 
pattern to be at conditions of global percolation. 
Because the latter requires a non-trivial nucleation 
fraction, eq. (58) is expected to be applicable only 
during the latter stages of the process, the earlier part 
being approximately described by the single cluster 
growth rate expression (34). For a given pressure 
decline rate, the transition from expressions (34) to 
(58) occurs earlier at higher nucleation fractions. 

When the pattern is a combination of local percola- 
tion and mass transfer [type (2) or (3) discussed pre- 
viously], an analytical scaling of the saturation with 
time cannot be obtained. Although the early time 
growth still obeys the scaling (34), the subsequent 
rates of growth cannot be simply obtained and the full 
numerical solution of the problem is necessary. We 
have examined the sensitivity of the rate of growth on 
the following parameters: (a) pressure decline rate at 
a fixed nucleation fraction, all sites activated at the 
onset of the process; (b) pressure decline rate at 
a fixed sequence of activation sites, each activated 
at a specified supersaturation; (c) nucleation fraction 
at a fixed pressure decline rate, with all sites activated 
at the onset of the process. Typical results are shown 
in Figs 10-12 for the conditions of gas growth from 
carbonated water saturated at 72 psia. Shown in Fig. 
10(a) is the sensitivity of the S O vs t curve for case (a) 
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Fig. 9. Evolution of gas saturation vs time for global percolation: (a) effect of solubility parameter c~; 
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involving 16 nucleation sites. As the pressure decline 
rate increases, the gas saturation at a fixed time (or 
equivalently at a lower pressure) increases. This effect 
is also observed when the global percolation model is 
used [eq. (58)]. A different representation of this is 
shown in Fig. 10(b), where the variation of the pres- 
sure-saturat ion curve is plotted in terms of the pres- 
sure decline rate. The overall effect is the consistent 
lowering of the saturation corresponding to a given 
pressure as a increases. Because in this region the 
pressure-saturation curve is sensitive to a, the satura- 

tion does not scale uniquely with the product at, as in 
the case of global percolation. 

When the nucleation fraction is not fixed at the 
beginning of the process, but each site is activated at 
a prescribed supersaturation [case (b)], the effect of 
the pressure decline rate remains the same, higher 
values of a leading to higher saturations at a fixed 
time [Fig. 1 l(a)], and to lower saturation at a fixed 
pressure [Fig. l l(b)]. In this simulation, successive 
sites were activated at intervals of 1 psi, for a total of 
40 activated sites. Finally, the effect of the nucleation 
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fraction, fq, where all sites are simultaneously ac- 
tivated at the onset of the processes [case (c)], is 
shown in Fig. 12. As anticipated, the saturation at 
a fixed time (or pressure) increases with fq. 

5. CRITICAL GAS SATURATION 

We are now in a position to determine the critical 
gas saturation, Sgc, which was introduced as the criti- 
cal value of the gas-occupied pore volume fraction at 
which a sample-spanning gas cluster forms. To under- 
stand the effects of the various factors on Sgc, we must 
consider the various patterns discussed in Section 4. 

5.1. Sgc at global percolation 
At conditions of global percolation, Sgc is only de- 

pendent on the nucleation fraction, specifically on the 
interdependence between pore and cavity size distri- 
butions, ~(r) and F(W),  respectively, and on the sys- 
tem size, L (expressed as lattice size). When only one 
site is allowed for nucleation, the critical gas satura- 
tion coincides with the volumetric fraction of the 
percolation cluster, the scaling of which follows the 
power law (Stauffer, 1985) 

Sgc(O, L) ~ L °I-E = L -ply (59) 
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where E denotes the Euclidean dimension of the por- 
ous medium, and fl is the exponent scaling the per- 
colation cluster mass [fl ~ 0.14 in 2-D and fl ~ 0.43 in 
3-D, Stauffer (1985)]. It follows that Sgc(0) vanishes for 
a sufficiently large size L, although the asymptotic 
approach is quite slow ( ~  L -°'11 in 2-D and 
~ L -° '5°  in 3-D). The slow decay in 2-D explains the 

large Sgc values typically obtained in 2-D micromodel 
experiments and in 2-D pore network simulations. It 
must be remembered that eq. (59) is valid as long as 
the size does not exceed the percolation boundary, 
beyond which percolation rules weaken• 

When a non-zero nucleation fraction is involved, 
two cases need to be considered, one involving an 

instantaneous, and another a sequential activation. In 
either case, Sgc consists of contributions from clusters 
growing from different nucleation centers until 
a sample-spanning cluster has formed. We may separ- 
ate the contribution from the percolation cluster [the 
fractal contribution corresponding to eq. (59) above] 
from the contribution from the rest of the clusters (the 
Euclidean contribution). The latter is the sum of 
a number fqL E of nucleation centers, each contribu- 
ting a total of (l/r*) DI pores, thus 

S~(fq, L) = Sgc(O, L) + (const) f~Ln(l/r*)D'. (60) 
L E 

With the further approximation I ~ lq and using aver-  
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sion of expression (39) with a generalized Euclidean 
dimension E, we obtain 

Sgc(f q, L) ~ (const)L -B/" + (const)ff/ 'E. (61) 

This approximation,  valid at sufficiently small fq, 
shows that  the size scaling of the critical gas satura- 
t ion is independent of the nucleation fraction. None- 
theless, the importance of size decreases as the nuclea- 
tion fraction increases and, furthermore, for a suffi- 
ciently large size, Sgc is very sensitive to the nucleation 
fraction (e.g. Sgc ~f~.o5 in 2-D and Sgc ~ fqo.16 in 3-D). 
This means that even small nucleation fractions have 

a disproport ional ly large effect on Sgc. Typical plots of 
Sgc vs fq from simulations in finite-size lattices are 
shown in Fig. 13. Consistent with the theory, the 
curves show a rapid increase of S~ at low fg, and 
a much slower growth at larger values. 

In the case of sequential activation of sites, Sgc can 
in principle be determined given the pore and throat  
size distributions ~(r), ~tb(r), and the nucleation site 
size distribution, F(W). This approach was outlined 
by Yortsos and Par lar  (1989) for a general problem 
and numerically illustrated for idealized Bethe lattices. 
A statistical analogue is to consider cluster growth 
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Fig. 13. Critical gas saturation vs nucleation fraction for global percolation regime. 

from one site first, follow invasion percolation rules, 
and activate at random a new site i every Mi time 
steps (or occupied sites). For example, if the first 
nucleation cavity has size WI (corresponding to the 
globally maximum cavity size), the fraction of eligible 
to be penetrated throats is pl = S~', Ctb(r)dr, the frac- 
tion of the actually penetrated throats scales as 
P(P~) ~- IP~ - PcI'~ and one may take M~ = LEp(pl).  
After the throats become penetrated, another pore is 
activated and growth from both clusters is possible. 
From now on the ratio of the newly activated pores to 
the pores allowed for penetration is equal to 
F(rl)/o~b(ri) , although its ratio to the actually invaded 
pores, 1/Ms, is larger because of the lack of accessibil- 
ity, 

1 F ( r , ) ( d p )  
Mi - otb(ri) ~ . (62) 

Here, P is the invaded fraction of pores, clearly a func- 
tion of the history of the process and of the bond 
percolation probability p. While the previous power- 
law scaling applies in the single cluster case, the gen- 
eral problem does not admit a universal power law, 
however, and must be solved separately for each case. 

5.2. Sg¢ at local percolation 
While analytical results are possible for global per- 

colation, the more general patterns discussed pre- 
viously require a numerical solution. We consider the 
case of pressure decline rates sufficiently low for local 
percolation to apply, but sufficiently high for global 
percolation not to be enforced. As in the previous 
case, different results are obtained depending on the 
mode of nucleation. 

When the pressure decline rate is fixed and all 
nucleation sites are activated at the onset of the pro- 
cess, an increase in nucleation fraction will generally 
result in an increase of Sac. Shown in Fig. 14 are 

simulation results for a 40 x 40 network and a pres- 
sure decline rate of 1 psi/h. If no additional nucleation 
is allowed, the pressure decline rate does not affect 
significantly the critical gas saturation. This interest- 
ing and important result can be directly explained by 
reference to the two patterns described by eqs 
(43)-(45) and eqs (47)-(53), both of which assume 
weak supersaturation, such that convection is not 
very significant. Given the nucleation site positions, 
the succession of cluster growth obeys geometrical 
and topological rules which are independent of the 
pressure decline rate. Thus, although the time change 
of the pattern is a strong function of rate, its geometry 
is the same for all processes, independently of the 
decline rate. It follows that Sgc, which is a topological 
and geometric property, is also independent of a in this 
case. The numerical simulations in a 40 × 40 lattice 
with 16 nucleation sites (Fig. 10) show that this is 
indeed the case over a wide range of pressure decline 
rates. The value of Sgc, however, does depend on the 
nucleation fraction as in the previous case of global 
percolation and we expect that Sgc has the same size 
scaling as Sgc(fq, L) in eq. (60). 

When nucleation occurs by successive site activa- 
tion, Sgc is dependent on a, higher pressure decline 
rates resulting in higher critical gas saturations. The 
general interpretation of this effect is that at higher a, 
the effective supersaturation in the system is higher, as 
a result of both lower liquid pressure and slower 
depletion rates, thus giving rise to activation of ever 
smaller cavity sizes, thus to a larger nucleation frac- 
tion, and to a larger Sgc. This effect is clearly seen 
when model eqs (47)-(53) is used in the activation 
condition (l). We note that in the dimensionless nota- 
tion, expression (1) becomes 

2H 1 1 
CDk -- HI  P t ~ k  > /  - -  - -  (63) 

Ca WOk 
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Fig. 14. Simulation of critical gas saturation vs nucleation fraction for a = 1 psi/h. 

where W was made dimensionless with the average 
pore size, and in view of i l l  ,~ 1, the condition reduces 
to one involving concentration only 

2H1 1 
Cok >1 C--a WD----~k" (64) 

In dimensional variables expression (64) implies that 
the supersaturation at any site is effectively given by 
the far-field pressure Po~. Consider, now the applica- 
tion of eq. (50) from the percolation-modified DLA 
pattern. After rearrangements inequality (64) becomes 

2yD 1 
Wok >1 - -  (65) 

ar* 12 G(xk)" 

Because the precise value of G(xl) depends on the 
solution of the entire problem (47)-(53), it is certainly 
affected by the existence of various clusters. Given 
a configuration, however, G(xi) is f ixed,  independent 
of other process parameters. Then, relation (65) shows 
that there is a higher activation probability [lower 
right-hand side of relation (65)] at lower values of y, 
D and f~, and at higher values of a and r*. Thus, we 
anticipate that the nucleation fraction would increase 
with an increase in a, and that as more nucleation sites 
become activated, further nucleation becomes pro- 
gressively more difficult and may possibly terminate. 
The numerical simulations of Fig. 11 confirm these 
trends. 

Incidentally, we note that expression (65) in con- 
junction with some simple geometries for the solution 
of eqs (47)-(53) can be used to provide estimates on 
nucleation conditions. For example, if only one clus- 
ter, with center at the origin and effective radius R, is 
considered, and G(x) is approximated by the effec- 
tive medium solution around this cluster, G = 
(I/6)(R 2 - Ixl 2) + (Re/3)(lxl - R), where Re is the 
outer boundary and spherical symmetry was as- 

sumed, further nucleation will not occur if 

127D 
Wma x < a(Re _ R) 2 (66) 

a condition likely to be satisfied at very low a, every- 
thing else being fixed, but to be progressively worse as 
time (and R) increase. 

6. CONCLUDING REMARKS 

In this paper, a theoretical analysis of bubble 
growth processes in porous media, with particular 
emphasis on solution gas-drive, were developed. The 
model included nucleation, phase equilibria, mass 
transfer, capillary and viscous effects. Both single and 
multiple cluster growth were analyzed in terms of 
growth patterns and rates of growth 

For a single cluster, the pattern is invasion percola- 
tion from a single source at sufficiently small sizes, low 
capillary numbers and supersaturations, but becomes 
a viscous fingering pattern at sufficiently large sizes. 
The rate of growth of a single cluster was found to 
scale differently than in the classical growth in the 
bulk, reflecting the porous media characteristics. For  
the multiple cluster problem, the existence of multiple 
nucleation centers affects the process dynamics. At 
sufficiently low pressure decline rates, a global per- 
colation pattern develops, in which growth is com- 
pletely controlled by capillarity. At higher decline 
rates, although each cluster follows percolation rules, 
the rates of cluster growth are dictated by mass trans- 
fer, which in some cases can be modeled by a DLA 
model. Appropriate patterns were identified. 

The critical gas saturation value depends on the 
underlying growth pattern. At conditions of global 
percolation, Sgc only depends on the nucleation frac- 
tion, here assumed to be due to the existence of 
specific nucleation sites. Nucleation is significant for 

CES 50-8-E 
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the other patterns as well. When all nucleation sites 
are activated at once, Sg¢ is not affected by the pres- 
sure decline rate, but depends on the nucleation frac- 
tion only. On the other hand, Sgc depends on the 
pressure decline rate, generally increasing with a, 
when site activation is sequential. In the latter case, 
the critical gas saturation also increases with the nu- 
cleation fraction. 

An important question of relevance to practical and 
field applications concerns the scale-up of the results 
derived. For the case of single cluster growth, the 
scaling theory of equations (27)-(37) is applicable. For 
the case of multiple cluster growth, the various sub- 
cases must be separately examined. If the pressure 
decline rate is sufficiently small such that expression 
(42) is obeyed, the gas saturation evolves according to 
eq. (58), which shows the dependence on a and P0, 
with the critical gas saturation scaling according to 
eqs (59)-(61). Because the numerical simulations pre- 
sented here correspond to a 2-D network, finite size 
effects are strong and result in Sgc values much larger 
than in an actual physical system. Also, because of the 
small sizes involved, the numerical values are sensitive 
to the particular realizations taken in activation sites, 
different realizations leading to different Sgc values. 
For realistic values, a much larger system in 3-D must 
be solved. This is currently under consideration. If 
a regime other than global percolation applies, strong 
finite size effects on Sgc are also expected. However, 
given a sufficiently large system in a 3-D lattice, these 
effects can be successfully eliminated. Early growth 
rates should be tractable by the single cluster problem 
described above, while late growth rates scale in an 
implicit fashion with the degree of supersaturation S, 
the growth rate group alg/DPo, and the nucleation 
activation condition (65). In the multiple cluster prob- 
lem, the implicit assumption has been made that vis- 
cous forces are negligible over capillarity, which is 
satisfied if condition (40) holds. Because of the rela- 
tively low values of Ca, this is likely to be the case in 
all practical applications. Following the creation of 
a sample-spanning cluster, however, viscous effects 
should be tested as in typical gas-liquid displace- 
ments (Rege and Fogler, 1988). 

An additional remark pertains to the physical pro- 
cesses following the onset of Sgc. In a finite system, 
such as a laboratory core, gas flow at the outlet end 
would commence following the onset of a sample- 
spanning cluster. The production of the gas is now the 
result of both diffusion and displacement of the gas 
phase out of the porous medium. Because of the 
pressure condition at the outlet, this type of displace- 
ment resembles counter-current imbibition and may 
lead to the break-up of the sample-spanning cluster. 
The result would be a lowering of the gas saturation in 
the system, and the subsequent growth of other gas 
clusters. In a large-scale system, the practice is usually 
taken to assign Sgc as the end-point value to curve-fit 
a secondary drainage relative permeability curve. This 
is not correct, strictly speaking. The development of 
gas saturation has become possible through nuclea- 

tion events, rather than external invasion, and the 
corresponding flow function ought to reflect this. 
Analytical results for relative permeabilities in Bethe 
lattices were derived by Yortsos and Parlar (1989) 
with the nucleation fraction included as a parameter. 
However, related results in regular 3-D lattices do not 
exist at present. 

Although a comprehensive analysis of the effect of 
gravity was not attempted, it is rather straightforward 
to delineate the conditions under which it can be 
neglected. In the case of a single cluster, the percola- 
tion boundary is simply obtained from a balance of 
gravity and capillary forces which yields a condition 
similar to Section 2, where the Bond number, Bg 
= Apg(r* )2 /7, is substituted in place of the capillary 

number. Gravity effects on the interface concentration 
would be unimportant as long as the relative vari- 
ation is negligible, namely when the following condi- 
tions are satisfied: 

p, g r * ( R )  
Po ~ ~ l (67) 

and 

P t gr* - -  ~ (~bfq) 1/3 (68) 
Po 

for the case of a single cluster of size R, and for 
a multiple cluster problem, respectively. We anticipate 
important effects of gravity when either of these is 
violated, the likelihood of which increases in high 
permeability and low pressure systems. 
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NOTATION 

a pressure decline rate, Pa/s 
A surface area, m 2 
C concentration of solute (dissolved gas), kg/m a 
Ca capillary number (dimensionless) 
Ca' modified capillary number (dimensionless) 
Co initial concentration of solute, kg/m 3 
Coo far-field concentration of solute, kg/m 3 
D diffusion coefficient, m 2/s 
D I fractal dimension 
E Euclidean dimension 
fq nucleation fraction 
F cavity size distribution, m-1 
Ja Jakob number (dimensionless) 
k permeability, m 2 
K solubility constant, Pa/(kg/m 3) 
I length, m 
L lattice extent, m 
M random walker number 
M w molecular weight, kg/mol 



n number of moles, mol 
N number of pores in a cluster 
P pressure, Pa 
Po initial system pressure, Pa 
P~ far-field system pressure, Pa 
Pc capillary pressure, Pa 
Q liquid withdrawal rate, m3/s  
r pore radius, m 
R radius of gyration, m 
Re outer boundary radius, m 
:~ ideal gas constant, J / m o l / K  
S supersaturation (dimensionless) 
Sg gas saturation (dimensionless) 
S~c critical gas saturation (dimensionless) 
t time, s 
T temperature, K 
u velocity, m/s  
V volume, m 3 

W cavity radius, m 

Greek 

7 
2 

P 

T 

letters 

dimensionless solubility constant 
percolation probability exponent 
interfacial tension, N / m  
dimensionless pressure drop for case (ii) 
viscosity, Pa s 
correlation length exponent 
density, kg/m 3 

standard deviation 
dimensionless time 
porosity (dimensionless) 

Superscripts 
• characteristic value 
p percolation 
vf  viscous fingering 

Subscripts 
D dimensionless 
f filling stage 
,q gas 
i pore i 
j pore j 
k cluster k 
l liquid 
m pore m 
p pressurizing stage 
T total 
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APPENDIX A 

The following remarks are appropriate regarding the two 
steps of pressurization and pore filling taken to represent 
bubble growth. 

Remark 1: Across any meniscus, the proper interface condi- 
tions are 

un = v, (AI) 

~C 
pg(Vn - ug,,) = D - -  (A2) 

0n 

where ug, is the normal component of the gas velocity at the 
interface and V, the normal interface velocity. Diffusion to 
a stationary interface (V, = 0) results in a net gas flux into the 
cluster away from the interface (ug, < 0), which subsequently 
affects through eq. (A2) the rate of growth of other advancing 
interfaces (V~ ~ 0). To determine ug, requires the solution of 
the gas momentum equation. Without loss in generality, we 
elected not to do so, and to solve for the integral balances (9) 
and (I 0) only. Consideration of transport in a growing phase 
of a non-negligible viscosity, however, is important in stabil- 
ity problems (Li and Yortsos, 1994). 

Remark 2: It is useful to provide an estimate of the relative 
time increments involved in the two steps. The ratio of the 
time pressurization, Atpk, to the time of filling, Atlk, of cluster 
k is roughly equal to 

Atpk Vk Pc 
(A3) 

Atfk V~ Pz 

where P~ measures a typical capillary pressure, and V, de- 

notes the volume of a single pore. Because we can further 
take the approximation V,~ NkV,, where Nk denotes the 
number of sites in cluster k, expression (A3) suggests that for 
small cluste.rs and low capillary pressure (high permeability) 
systems the pressurization step is much faster than the filling 
step, while for large clusters and high capillary pressures (low 
permeabilities) it becomes comparable to or slower than the 
filling step. 

Remark 3: During the filling step, we assume that the capil- 
lary pressure is negligible and that only the newly invaded 
pore is filed. In reality, when the threshold is reached and 
the invasion of a new pore begins (which constitutes 
a "rheon" event) all other menisci in the bubble interface 
recede somewhat, the corresponding pores becoming slightly 
less occupied. This small loss of volume is replaced during 
the subsequent filling step. Such a sequence has been actually 
observed in our experiments for small size clusters. Simula- 
tion results showed very small differences when the more 
detailed mechanism was included, thus we proceeded to 
neglect it. 

Remark 4: Immediately following penetration of the throat, 
and due to the relaxation of the capillary pressure require- 
ments, rapid volume expansion takes place, during which 
mass transfer is negligible. The corresponding volume ex- 
pansion during this step, A V~, is 

AVe Pc (A4) 
- - ~  = N , p~. 

For small cluster sizes or low capillary pressure systems, A V, 
is smaller than the site volume hence the previous approach 
can be used. On the other hand, if AVe > V s, the possible 
penetration of additional pore throats may occur within 
a very short time and in the absence of significant mass 
transfer. Appropriate modifications are then necessary. 

APPENDIX B 
An important question in relation to Section 3 is the 

validity of the quasi-static approximation. For compact pat- 
terns (bulk growth) under the conditions of case (i), the 
appropriate condition is readily shown to be Ja <~ 1, uni- 
formly in time. However, this is not necessarily true for the 
case of fractal patterns in either case (i) or (iii). Consider the 
solution ofeq.  (21) in the limit S <~ 1 

Ro 
C o =  - - - +  1 (B1) 

r 

where R is related to r through eq. (32). This approximation 
is well satisfied if the condition SlOCo/Orl ~ 1O2Co/Or21 ap- 
plies at r = R, which, in view ofeq.  (Bl), is 

S,C(3-Df)/(D! I) ~ I. (B2) 

In fractal patterns (Dr < 3), and contrary to the compact 
cluster case (D s = 3), the validity of the approximation is 
time-dependent. To determine whether eq. (B2) is still applic- 
able when the percolation boundary is encountered, we solve 
eq. (32) for z, make use ofeq. (27), and substitute the results in 
eq. (B2) to obtain the following condition at the percolation 
boundary: 

S I -t~/(~+ i))(3-oi) <~ I. (B3) 

For the typical values v = 0.88 and D I = 2.5, the above is 
equivalent to S <~ I. For case (i), the latter translates into the 
condition Ja <~ I, uniformly in time, as in the bulk. For case 
(iii), however, some additional work is necessary. Here the 
growth of a single bubble can be graphically traced (by 
eliminating time) by a straight line in a R vs Ca log-log plot. 
By rearranging eq. (32) we rewrite 

' 4  (os- 1)( Po  Ca2 (B4) 
r*] D I \ar  .2 ] (O#r*/?k)" 
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The intersection of R with the percolation boundary, R p, 
gives the critical time tp at which the transition from percola- 
tion to viscous fingering commences. We can readily show 
that the corresponding supersaturation Sp satisfies the scal- 
ing 

(o..5,,-,,,,.,, (o...V,,.,o.-,>,.,, 
(B5) 

For the quasi-static assumption to remain valid until this 
boundary is reached, requires S~,¢ 1, which for typical 
conditions (a ~ 1 psi/day, Po ~ 1000 psi, D ~ 10 -5 cm2/s, 
# ~ 1 cp, r* ~ 1/~m and ? ~ 60 dyn/cm) is easily satisfied. 

We conclude that the previously derived scalings are valid 
provided that Ja ,~ 1 for case (i) and Sp ,~ 1 for the case (iii). 
It is interesting to inquire about the concentration fields for 
case (ii). Quasi-static mass transfer implies a supersaturation 
S varying as 

a 
S ~ . (B6) 

4n~ Dr* R o 

Since the latter decreases with an increase in cluster size, the 
quasi-static assumption (S ,¢ 1) should be questionable at 
least in the early times of the process. In fact, however, it is 
doubtful whether quasi-static conditions apply at all during 
the percolation regime, because this would require 

7r*2J \ D r / ~  4n~x (B7) 

as shown by substituting expression (B6) into expression (30), 
which is unlikely to be satisfied under typical conditions. Of 
course, this does not affect the validity of the percolation 
boundary or the scaling eq. (35), both of which were derived 
independently of mass transfer considerations. 

Similar considerations apply for the viscous fingering 
boundary. For case (i), the analogous to expression (42) 
equation reads 

S i tOs~3-Ds~,'~Os-l~l ~ 1 (B8) 

which is equivalent to the bulk condition Ja ,~ 1, since 
D l ~ 2.5 for 3-D viscous fingering. For case (iii) of variable a, dC~ 
the intersection of the curve of the radius R with the viscous 
fingering boundary R,.s yields the supersaturation S,,y, which dC~ 
can be approximated by 

(ar.2~ti,Ds+,i(D#r. ~ os/w.+ l, 

The quasi-static approximation requires S~s ,~ 1, which is 
expected to be valid at sufficiently small values of a. 

A P P E N D I X  C 

It was shown in Section 4, that for global percolation to be 
applicable the following condition must hold: 

27 
Ca(t) - Po + at < ~ - -  (C1) 

Krp 

which states that the effective supersaturation in the system 
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remains bounded and it is of the same order of magnitude as 
the capillary pressure level. To derive a condition on a from 
inequality (C1), we need an estimate of C~(t). Under the 
assumption of small concentration gradients, we obtain from 
mass balances 

dC~ 1 fA o C d A  d t  (1 - S . )  = - - - D  ( C 2 )  
Vr • On 

where S o is the gas saturation, Vr refers to the total pore 
volume and Ar is the total area for mass transfer, The mass 
transfer term in eq. (C2) must be evaluated over all clusters, 
clearly a difficult task. However, we can obtain a rough 
estimate by using the quasi-static approximation and assum- 
ing that the mass transfer to all other clusters is a small 
fraction e of the rate to the growing cluster (recall that only 
one cluster grows at-a-time in this regime). Then, we obtain 

dC~ (1 - S , ) =  -4nDR(t)(C,~ - C,) 
dt 

where R is the radius of the growing cluster. The growth of 
the latter can be expressed as 

°'_ 
\r*) Mw 

(1 - Sa) dC~ 
× (C4) 

e.q5 dt 

where, in view of eq. (31), 

dS0_  r * d  (Ro~ °s IC5) 
dt VT.dt\r* j 

These three equations can be reduced to one equation relat- 
ing the variation of C® to Ci =- (Po - at)/K. Assuming suffi- 
ciently small Sg, one finds the approximate equation 

~_ [4.DPo ( eqbfq ~' " ° '  ] 

L(r*)2a \1 - Sg/ ] 

(C6) 

to be solved subject to the initial condition Co~ = Co, 
C~ = Co - 27/Krl, where 27/rl is the initial supersaturation 
at the onset of growth. The condition for global percolation 
is that C~ stays close to C~ to within the capillary pressure 
limit. Because an asymptotic solution to expression (C6) is 
C~ ~ C~ + Z where 

a(r* )2 Co 
X ~ (C7) 

DPo(edpfq)'- liO'¢ txliDs 
a reasonably good estimate of the condition for global per- 
colation is X < 2y/Kr*, which translates into eq. (42) in the 
text. 


