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Abstract-The sampling mechanism of a thin-walled, cylindrical aerosol sampling probe which faces 
directly away from the wind (180” orientation) is numerically investigated. The turbulent fluid flow is 
predicted by employing the control volume, finite-difference method and the k-e turbulence model. 
The particle trajectories are calculated by integrating the particle equations of motion and thus the 
aspiration efficiency of the sampler is determined. The numerical results have been obtained for two 
very long thin-walled cylindrical samplers of diameters D = 2 and 5 cm which have zero thickness 
and the operating conditions as used in the experimental investigations of Vincent et al. (1986, J. 
Aerosol Sci. 17, 211-224) have been considered. The dependence of the characteristics of the fluid 
flow and the aspiration efficiency on the freestream air speed, the diameter of the sampler and the 
ratio of the freestream speed to the sampling speed, have been thoroughly investigated. It is 
concluded that the numerical results for the aspiration efficiency are in reasonable agreement with 
all the existing experimental data for thin-walled samplers which are placed at 180” to the direction 
of the wind. 

INTRODUCTION 

Aerosol samplers are widely used in the sampling of aerosols in industrial hygiene in order 
to determine the concentration of particles in relevant size fractions in the ambient 
atmosphere and in clean rooms. In aerosol sampling numerous methods and devices have 
been developed and a large number of experimental and theoretical investigations have 
been performed. An important aspect of the sampling process is to determine the aspiration 
efficiency of a sampler and this is defined as the ratio of the particle concentration in the air 
sampled to the particle concentration far from the sampling location. The presence of the 
sampler inevitably disturbs the movement of the air and causes a distortion of the air flow. 
This distortion not only changes the motion of the original ambient atmosphere but also 
affects the motion of the particles and this may result in significant changes in the particle 
distribution in the vicinity of the sampler. 

Thin-walled sampling probes are used primarily for duct sampling (isokinetic) when the 
air velocity is known and the early experimental work and theoretical analysis concentrated 
on the situation when the sampler faces the wind, see for example Badzioch (1959), Vitols 
(1966), Sehmel (1967), Ruping (1968), Belyaev and Levin (1974), Jayasekera and Davies 
(1980) and Okazaki et al. (1987). These investigations have shown that the aspiration 
efficiency of the thin-walled sampler is a function of the particle inertia, namely the particle 
Stokes number, St, and the ratio, R, of the undisturbed freestream fluid speed, U,,, to the 
sampling speed, U,. In this case the air flow appears to take on a relatively simple flow 
pattern where the flow distortion in front of the sampler is divergent or convergent 
depending on whether the speed ratio R is greater or less than unity. Based on the 
experimental observations of the air flow and the motion of the particles, the early 
theoretical analyses on this sampler are almost entirely empirical. 

In practical applications of thin-walled samplers the operating conditions are much more 
complicated when the probe is oriented at any angle with respect to the wind. As this angle 
increases from 0” to an angle of less than 90” the air flow undergoes an increasing distortion 
when approaching the orifice of the sampler, thus increasing the effective bluntness of the 
sampler. Recently, some experimental work and semi-empirical analyses have been per- 
formed by Durham and Lundgren (1980), Davies and Subari (1982), Vincent et al. (1986), 
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Hangal and Willeke (1990) and Grinshpun et al. (1993). These works are based on the 
general knowledge of the shape of the flow pattern in the vicinity of the sampler and they 
have proved to give a fairly good understanding of this problem. However, the sampling 
mechanism is still to be fully revealed. For potential Aow past thin-walled samplers at 
orientations with respect to the flow direction from 0 to 90” a numerical investigation was 
performed by Dunnett (1990) using the boundary element method. However, this numerical 
model cannot be extended to situations where this angle of inclination is larger than 90” 
because the turbulent characteristics of the air flow now play an important role when 
predicting the aspiration efficiency. When the angle of inclination of the sampler is larger 
than 90” the air flow is much more complex and the flow pattern no longer appears as 
simply diverging or converging. Therefore all the previous mathematical models and 
semi-empirical formulae cannot reveal the principal mechanisms of the sampling process. 

Up to now, when the thin-walled sampler is at an angle of inclination larger than 90” 
there exists only the experimental investigation performed by Vincent et al. (1986) and this 
was for an angle of inclination of 180”. In this paper a qualitative analysis of the experi- 
mental data is also presented. The recent paper by Tsai and Vincent (1993) was an 
impaction model for blunt samplers at angles of 90’ and 180”. In the thin-walled cylindrical 
sampler limit a semi-empirical formula for the aspiration efficiency has been suggested in 
which the coefficients in the formula were found using a non-linear regression technique. In 
this work they have only considered, in general, the effects of the bluntness and the air flow 
pattern in the vicinity of the sampler on the aspiration efficiency. However, when the angle 
of inclination is greater than 90”, the air entering the sampler is substantially affected by the 
geometry of the sampler. When the sampler is facing directly backwards to the direction of 
the oncoming wind then the bluntness of the sampler causes the flow to diverge around the 
leading edge of the bluff body and near to the wall of the sampler there is a boundary layer. 
Thus a portion of the air which is sampled will flow into the boundary layer along the 
external wall of the sampler and finally into the orifice of the sampler. When the diameter of 
the sampler is small, or the freestream velocity is not large, then a large portion, or even all, 
of the sampled air will come from the flow in the boundary layer. Because the characteristics 
of the air flow in the boundary layer are significantly affected by the geometry of the 
external wall of the sampler, it can be concluded that the influence of the geometry of the 
sampler cannot be ignored in the sampling process. As sampling is taking place behind 
the sampler then particles in the vicinity of the orifice which are sampled have to change 
the direction in which they are moving very rapidly. However, the inertia of a particle in this 
region may cause the particle to escape and to continue its motion downstream of the 
sampler. The complicated nature of the air flow around the sampler makes the sampling 
process quite different from the situation when the sampler is inclined at less than 90” to the 
wind. 

In this paper we consider a thin-walled, cylindrical sampler which faces directly back- 
wards to the oncoming turbulent wind. We have found that when the length of the sampling 
tube, L, is much larger than the diameter of the sampler, D (say L/D > 15.0) there exists 
a fully developed turbulent boundary-layer in the mid-section of the external surface of the 
sampler and in this vicinity the streamlines are parallel to the walls. Therefore as a first step 
with such a complicated air flow we investigate a relatively simple case in which the 
sampling probe is very long, see Fig. 1, and therefore the effect of the bluntness of the 
upstream surface on the downstream facing sampler has been ignored. The resulting air and 
flow of particles which we obtain provides some fresh insight into the physics of the 
sampling process. Of course, the bluntness of the sampler is an important factor in the 
sampling process, as is the geometry of the sampling probe, and these effects will be included 
in a future investigation. 

When the probe is sufficiently long the turbulent boundary-layer along the external wall 
of the probe is fully developed at some distance upstream of the orifice of the sampler and 
we will assume that at the station AA’, see Fig. 1, the flow is fully developed. Further, inside 
and outside of the turbulent boundary-layer on the sampler the particles have had sufficient 
time to reach the same velocity as that of the air. A full numerical investigation of the 
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Fig. 1. Schematic diagram of a thin-walled, cylindrical sampler facing directly backwards to the oncoming wind. 

turbulent flow has been performed in order to simulate the turbulent air flow by using the 
turbulent k--E model. Once the air flow has been determined then the particle paths have 
been traced by solving the particle equations of motion from which the aspiration efficiency 
of the sampler may be obtained. 

MATHEMATICAL MODEL 

We only consider the domain downstream of the location AA’, see Fig. 1, and since the 
sampler is axisymmetrical we need only consider the solution in the semi-infinite domain 
ABCSOEA’FA’A as shown in Fig. 2. Cylindrical coordinates are used in which r is the 
coordinate in the radial direction and z is aligned with the axis of symmetry of the sampler 
and is measured positively in the direction of the freestream. At the location AA’ the 
turbulent flow outside the boundary layer of the probe is fully developed with an average 
speed Uc. Within the sampling probe at the location A’E the flow is fully developed 
turbulent flow in a cylindrical pipe with an average sampling velocity U,. Thus we define 
the velocity ratio R = U&l, and assume that the sampling probe has a diameter D and 
zero thickness. Because some of the fluid in the region A’A will enter the sampler and some 
will not, there will be a dividing stream surface which separates these fluids. In particular 
there will be a point on the axis of symmetry where there is a stagnation point, say the point 
S, see Fig. 2, and the distance from the stagnation point S to the orifice of the sampling 
probe is assumed to be x,. 

We assume that the air flow is turbulent, according to the experimental operating 
conditions of Vincent et al. (1986). In order to simulate the turbulent flow, the standard k--E 
model, see for example Launder and Spalding (1974), has been employed. Therefore the 
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momentum equation for the turbulent fluid flow, in vector notation, is given by 

V-W = - $I + V.(“,VV) (1) 

and for incompressible turbulent flow we also have the continuity equation 

V*V=O, (2) 

where V = ue, + we,, u and w are the mean values of the turbulent components of the fluid 
velocity in the radial and axial directions, respectively, and e, and e, are unit vectors in the 
radial and axial directions, respectively, p is the density of the fluid and v, is the effective 
kinematic viscosity of the fluid and consists of the sum of the laminar kinematic viscosity 
v and the turbulent kinematic viscosity v,, i.e. v, = v + v,. 

The governing equations for the turbulent kinetic energy, k, and the turbulent energy 
dissipation, E, are 

(V.V)k = V .[(v+;)Vk]++c, 

(V-V)& = v. 

respectively, where 4 is the generation of the turbulent energy which is caused by turbulent 
stresses. The turbulent viscosity is given by 

k2 
v* = c,- 

E 

and the coefficients which occur in equations (3)-(5) are those employed in similar turbulent 
flow problems, namely 

C, = 0.09, ok = 1.0, aE = 1.3, CL = 1.44, C, = 1.92. 

Equations (l)-(5) have to be solved subject to the following boundary conditions: 

At the upstream boundary AA’: 
The radial velocity is such that u = 0, the axial velocity, w, satisfies the condition of fully 

developed turbulent flow, namely aw/az = 0, and the average value of the w component of 
velocity is UO. The turbulent kinetic energy, k, and the turbulent dissipation, E, satisfy the 
conditions dkldz = 0 and dE/aZ = 0. 

At the freestream boundary AB: 
au/i!% = 0 and awl& = 0, and k = (ZU,) 2, where 1 is the turbulent intensity which is 

specified by the experimental data of Vincent et al. (1986) and the value of E is also specified 
by the turbulent length scale L through the experimental data of Vincent et al., namely 
I = 0.06 and L = 7 cm, and hence the value of E is determined from E = k’.*/L. 

At the downstream boundary BC: 

au 
--0, $0, $0, $0. 
az 

On the axis of symmetry EC: 

u=o, @Lo, !g=o, $0. ar 
At the exit of the sampling probe A’E: 

au -zoo, $0, $0, $0, 
az 

and the average axial component of velocity, w, is US. 
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On the wall of the sampling probe A’F: 

t3k u=o, w=o, -_=o, 
ar 

and the value of E is given by the wall function method. 
The control volume, finite-difference method, as described by Ingham and Wen (1993), 

with a non-staggered grid and the SIMPLEC algorithm, see Patankar (1980) and Van 
Doormaal and Raithby (1984), has been used to solve equations (l)-(5). In order to 
guarantee and accelerate the rate convergence of the iterative procedure, the average 
pressure correction technique developed by Wen and Ingham (1993) was used at the orifice 
of the sampler. Several non-uniform grid systems were tested for the solution domain with 
- 7.1 < z/(0/2) < 7.1 and 0 < r/(D/2) < 9.1. It was found that when the mesh is finer than 

a 90 x 45 grid, independent solutions can be produced. In this paper all the results presented 
were obtained by using a 110 x 52 mesh and approximately 800 iterations can produce 
accurate results. The computations were performed on a Silicon Graphics Iris Indigo R3000 
and- typical CPU times were 0 ( 103) s. 

If the particle Reynolds number is much less than unity the i component of the 
Lagrangian equation of motion of the particle takes the form 

dxi 
dt* = upi 9 

St 2 = gi + Uli - l$i 9 

(6) 

where St = y*d,,U,/(18pD/2) is the Stokes number, y* is the density of water, d,, is the 
particle aerodynamic diameter, p is the viscosity of the air, xi is the position of the particle, 
t* = tUo/D is the non-dimensional time, Upi is the i component of the velocity of the particle, 
Gi is the mean velocity of the fluid and u’~ is the fluctuating component of the fluid velocity. 

Because particles respond to the turbulent motion of the fluid they do not follow the 
mean motion of the fluid, resulting in particle turbulent diffusion. When the Stokes number 
of the particle is very small, i.e. St .+ 1.0, the particle responds to the turbulent fluctuation 
very rapidly and the particle diffusion is similar to that of the fluid. As the Stokes number 
increases, the particle diffusion decreases because of the inertia of the particle, and when 
St >> 1.0, the effect of the turbulent motion of the fluid on the motion of the particle becomes 
negligible. In general there are two models for investigating such particle motions, namely 
stochastic and non-stochastic. The stochastic model attempts to produce a particle distribu- 
tion in the fluid by the use of a diffusion coefficient. Peskin (1962) has obtained an 
estimation of the diffusion coefficient for a one-dimensional flow; but for complex fluid 
flows, such as the one considered in this paper, no experimental or theoretical work has 
been performed which gives a reliable estimation for the diffusion coefficient. The stochastic 
model, see for example Shuen et al. (1983) assumes that a particle interacts with a series of 
turbulent eddies and the fluid velocity fluctuations are isotropic with a Gaussian distribu- 
tion. By solving equations (6) and (7), the trajectories of many such particles may be 
calculated and the statistical properties calculated from an ensemble average of such 
particle motions. This method is much more expensive in computing time than the 
stochastic model and also the choice of a length scale for the turbulent eddy, the lifetime and 
the standard deviation of the Gaussian distribution will affect the results obtained using this 
method. 

Generally the turbulent fluctuating velocity is much smaller than the mean fluid velocity 
and under the assumption of local isotopic turbulence a particle has an equal chance of 
diffusing in the two directions which are normal to the mean particle motion. Therefore, 
when there exists a uniform inlet concentration of particles it is expected that the inertia of 
the particle will be more important than the particle diffusion in the determination of the 
aspiration efficiency. Therefore, as a first approximation, we neglect the effect of particle 
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diffusion on the aspiration efficiency of the sampler and this allows us to simplify equation 

(7) to 

It is possible that the small discrepancies that occur between the experimental data and the 
results obtained in this paper may be due to neglecting particle diffusion, the effect of 
particle inertia on the particles’ ability to respond to the turbulent motions of the air. 
Further work on this aspect is at present being performed. 

It has been assumed that at the location AA’ the particle has the same velocity as that of 
the air and that the concentration of particles is constant. Further, it is also assumed that for 
a given particle size all of the particles which are within the limiting particle surface will be 
sampled and therefore there is no particle deposition on the external wall of the sampling 
probe. Thus the aspiration efficiency of the sampler is given by the expression 

A = Qo/Q, (9) 

where Q. is the flux of air which is enclosed by the particle limiting surface at the upstream 
location AA’ and Q is the sampled flux of air which enters the sampling probe. 

When the orientation angle of the probe is 180”, only Vincent et al. (1986) have measured 
the aspiration efficiency for thin-walled samplers and they considered samplers with 
diameters D = 2 and 5 cm, oncoming wind speeds U0 = 1.0,2.0 and 3.8 m s- ’ and sampling 
velocity ratios R = 0.67,0.87, 1.0 and 2.0. They used two cylindrical, thin-walled, shallow- 
tapered samplers with a sharp edge. This geometry is slightly different from our idealized 
“thin-walled” cylindrical sampler with parallel walls. However, because of the shortage of 
experimental data we have had to use this data in order to compare with the results 
obtained from our numerical investigation. 

FLUID FLOW RESULTS 

In order to reveal the general characteristics of the turbulent air flow in the vicinity of the 
orifice of the sampler, the streamline patterns are presented in Fig. 3 for D = 5 cm, R = 1.0 
and U0 = 1.0, 2.0 and 3.8 ms-‘, where the stream function has been normalized by 
(D/2)* rc U,. It can be observed that as the magnitude of the velocity U0 increases, the air flow 
patterns do not change significantly. However, it is observed that the position of the 
streamlines near to the external wall of the sampler are affected by the velocity U, such that 
the larger the value of the velocity U0 then the closer to the wall of the sampler are the 
streamlines. This means that the relative thickness of the boundary layer, which is defined as 
a/(0/2) where 6 is the thickness of the turbulent boundary-layer, decreases in size as the 
upstream velocity U,, increases in magnitude. Also the secondary flow which occurs just in 
the entrance region of the sampler increases in strength as the velocity U0 increases. The 
numerical results show that when the velocity U0 increases from 1.0 to 3.8 m s- ‘, the 
distance from the plane of the orifice of the sampler to the stagnation point decreases from 
about x, = D/2 to about 0.84 x (D/2) Therefore the increase in the velocity upstream of the 
sampler causes the stagnation point to be closer to the sampler. 

In order to investigate the effect of the sampling velocity ratio, R, on the air flow, Fig. 4 
gives the streamlines for D = 5 cm, U,, = 2.0 m s-l and R = 0.67, 1.0 and 2.0. As the 
sampling flow rate increases, the upstream radius of the limiting surface of air, which divides 
the flow sampled from that which is unsampled, varies from about 1.38 x (D/2) to about 
1.66 x (D/2) , and the position of the stagnation point increases from about x, = 0.9 x (D/2) 
to about 0.95 x (D/2) as R decreases from 2.0 to 0.67. This shows that as the sampling flow 
rate increases, the radius of the limiting air surface has been significantly increased but the 
position of the stagnation point is not significantly affected. It is also observed that the 
secondary flow in the vicinity of the edge of the sampler becomes smaller. 

The effect of the diameter of the sampler on the streamlines is presented in Fig. 5 for 
U,,=2.0ms-‘, R=l.O and D=2 and 5 cm. It is observed that when D = 5 cm the 
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Fig. 3. The streamlines for the air flows when D = 5cm and R = 1.0: (a) U, = l.Oms-‘; (b) U,, = 2.0msC’; 
(c) U, = 3.8 ms-‘. 

streamlines near to the external wall of the sampler are closer to the wall than when 
D = 2 cm. This indicates that larger samplers have a relatively smaller turbulent boundary- 
layer thickness. Also it is observed that the larger the diameter of the sampler, the closer to 
the plane of the orifice of the sampler is the stagnation point. This is because the thinner 
boundary-layer allows the air to flow around the edge of the sampler with a higher velocity. 
We also observe that the larger the value of the diameter of the sampler, the larger is the size 
of the secondary flow just inside the orifice of the sampler and this is because larger diameter 
samplers have larger velocities near to the edge of the sampler. This leads to a stronger 
separation, namely a larger secondary flow. 
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Fig. 4. The streamlines for Ui, = 2Oms~‘andD=5cm:(a)R=2.0;(b)R=1.0;(c)R=0.67 

The velocity profile of a fully developed turbulent flow on a smooth straight wall is 
expressed by the logarithm formula 

+ 5.5, 

where W = w/U, and U* = P/U, and Re = UoD/v. From this expression we observe that 
when the non-dimensional distance y/D is given then the non-dimensional velocity, W, 
depends on the Reynolds number Re. The larger the value of the Reynolds number the 
larger is the value of W. Because both increasing U, and D produces a larger value of the 
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Fig. 5. The streamlines of the air flows for R = 1.0 and U0 = 2.0 m s-l: (a) D = 2 cm; (b) D = 5 cm. 

Reynolds number, the larger the sampler or the velocity upstream of the sampler the higher 
is the non-dimensional velocity within the boundary layer and the thinner is the non- 
dimensional boundary layer thickness. This explanation confirms what we have observed in 
Figs 3 and 5, namely the larger the diameter or the freestream velocity the higher is the 
velocity in the boundary layer and the thinner is the boundary layer thickness. It is also 
observed that all of the sampled air comes from the turbulent boundary layer and the larger 
the Reynolds number the faster is the acceleration of the air in the vicinity of the orifice of 
the sampler. 

We therefore conclude that the effect of a relatively low value of the Reynolds number on 
the sampling process cannot be ignored. This means that for relatively slow freestream air 
speeds, or samplers of small diameter, the Reynolds number may significantly affect the 
sampling process. 

ASPIRATION EFFICIENCY 

As discussed above, the diameter of the sampler and the freestream velocity can signifi- 
cantly affect the characteristics of the turbulent boundary-layer and therefore in this paper 
we present the results for different fixed values of U,, in order to more clearly illustrate the 
effects of the Stokes number St, the diameter of sampler D and the sampling velocity ratio 
R on the aspiration efficiency of the sampler. Figure 6a shows the aspiration efficiency A as 
a function of the Stokes number, St, when U0 = 3.8 m s -I for the two sampler diameters 
D = 2.0 and 5.0 cm, and R = 0.67,1 and 2. Comparisons have also been made with the 
experimental data of Vincent et al. (1986). All the numerical and experimental data show 
that the aspiration efficiency steadily decreases as the Stokes number increases and both 
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Fig. 6. The variation of the aspiration efficiency as a function of the Stokes number: (a) Ui, = 3.8 m s ‘; (b) 
U0 = 2.0 m s- ‘; (c) U0 = 1.0 m s- I. The experimental data have been taken from Table 3 of Vincent et al. (1986). 

sets of results have very similar tendencies for the two sampler diameters and for all of the 
sampling velocity ratios. In Fig. 6a the numerical results and experimental data show that 
for any sampling velocity ratio, the larger the diameter of the sampler the smaller is the 
aspiration efficiency. This is because the larger the sampler the higher is the velocity in the 
boundary layer upstream of the sampler and thus the particles in this boundary layer have 
a larger inertia which causes them to be sampled less easily. This phenomenon was also 
observed by Vincent et al. (1986). However, the physical reason for this behaviour was not 
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revealed and also in the recent work of Tsai and Vincent (1993) the diameter of the sampler 
as an independent parameter was not considered. It is also observed that increasing the 
value of the Reynolds number leads to a thinner turbulent boundary-layer which results in 
a smaller portion of the air which is sampled coming from the boundary layer. Therefore it 
can be expected that when the Reynolds number is sufficiently high the effect of the 
boundary layer on the aspiration efficiency will disappear. Based on both analyses of the 
characteristics of the air flow and the aspiration efficiency we conclude that the Reynolds 
number is an important independent parameter of the sampling process unless the size of 
the sampler is very large, or the freestream velocity is very high. 

Also, from Fig. 6a we observe that as the value of R decreases, for example by increasing 
the sampling flow rate, the aspiration efficiency increases. As the particles approach the 
orifice of the sampler they accelerate due to the existence of the accelerating region in 
the vicinity of the edge of the orifice of the sampler. Very near to the wall of the sampler the 
acceleration of the air in the axial direction is much greater than that in the radial direction. 
Increasing the distance from the wall the acceleration in the axial direction decreases but the 
acceleration in the radial direction increases. As the sampling flow rate decreases, i.e. as 
the value of R increases, the limiting stream surface, which separates the sampled from 
the unsampled air, becomes closer to the external wall of the sampler. Near the wall of the 
sampler the particles undergo a higher acceleration in the axial direction than in the radial 
direction and this results in a decrease in the aspiration efficiency. As the sampling flow rate 
increases, i.e. as the value of R decreases, the limiting stream surface increases its distance 
from the external wall of the sampler. Then, even further from the wall of the sampler the 
particles undergo a lower acceleration in the axial direction than in the radial direction and 
this results in an increase in the aspiration efficiency. In the experimental work of Vincent et 
al. (1986) an effect of the sampling velocity ratio on the aspiration efficiency was not found 
and a possible reason for this could be the shortage of the experimental data because for 
each sampler and freestream velocity only one or two sets of data for each value of R were 
obtained. 

Figure 6b shows the aspiration efficiency as a function of the Stokes number St when 
U, = 2.0 ms-‘, R = 0.67, 1 and 2 and for the two samplers of diameters D = 2.0 and 
5.0 cm. It is observed that the effect of the Stokes number on the aspiration efficiency is 
similar to the situation when U, = 3.8 m s-i, see Fig. 6a. Both the numerical results and the 
experimental data show that the aspiration efficiency is lower for the larger value of D. It is 
also observed from Fig. 6b that the sampling velocity still affects the aspiration efficiency at 
large values of D but this effect is smaller at the smaller values of D. The comparison 
between the theory and experiment for the aspiration efficiency is good. 

Figure 6c shows the aspiration efficiency as a function of the Stokes number, St, when 
U, = 1.0 ms-‘, R = 0.67, 1 and 2 and for the two sampler diameters D = 2.0 and 5.0 cm. 
Once again the numerical results show that the Stokes number is a very important 
parameter which dominates the sampling process. In this case, in which there is a low 
freestream velocity, the numerical results still predict a decreasing value of the aspiration 
efficiency as the diameter of the sampler increases, albeit at a slower rate. Also the results 
show that the aspiration efficiency is not significantly affected by the sampling velocity ratio 
for both of the diameters of the sampler considered. This indicates that the effects of the 
sampling velocity ratio on the aspiration efficiency increases with increasing freestream 
velocity. 

When the freestream velocity U0 = 2.0 and 3.8 ms-‘, the experimental data in Figs 6a 
and 6b show less scatter than they do in Fig. 6c when U, = 1.0 m s-i for the aspiration 
efficiency as a function of the Stokes number. Although there is much scatter in the 
experimental data when U, = 1.0 m s-l the theoretically predicted curves in Fig. 6c 
reasonably represent the tendency of the aspiration efficiency as a function of the Stokes 
number. A possible explanation for this could be that at the larger freestream velocities, i.e. 
at larger values of the Reynolds number, the turbulent eddies are of a small scale and the 
fluctuating velocities are of high frequency and also the larger freestream velocities lead to 
a larger particle Stokes number of particle. At the smaller values of the Reynolds number 
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the turbulent eddies are of a larger scale and the fluctuating velocities are of low frequency 
and the particles which have a smaller Stokes number due to smaller freestream velocity, 
respond faster to the fluctuating fluid velocity. Therefore we postulate that the large-scale 
turbulent eddies, the low frequency fluctuating velocities and the small Stokes number 
produce the scatter in the experimental data. 

CONCLUSIONS 

The sampling mechanism of an idealized thin-walled cylindrical sampler at an angle of 
inclination of 180” has been investigated by employing numerical techniques and the 
turbulent k--E model. Good agreement between the numerical predictions and the available 
experimental data has been obtained and we conclude that: 

(a) When a thin-walled cylindrical sampler is facing directly backwards to the oncoming 
wind, the inertia of the particles, namely the particle Stokes number, St, dominates the 
sampling process for any size of sampler, freestream velocity and sampling velocity ratio. 

(b) The turbulent-boundary flow along the external wall of the sampler is of secondary 
importance in calculating the aspiration efficiency. The increase in the diameter of the 
sampler, or the magnitude of the freestream speed leads to a decrease in the relative 
thickness of the turbulent boundary-layer and this produces a decrease in the aspiration 
efficiency. 

(c) When the freestream velocity is fixed, the sampling velocity ratio has a smaller effect 
on the aspiration efficiency than does the diameter of the sampler. The effect of the sampling 
velocity ratio becomes significant only for large values of the sampler diameter D or 
freestream velocity UO. 

Future research work should include an investigation into the influence of the bluntness 
of the sampler, in particular the impaction of the particles on the leading face of the sampler, 
the effect of particle diffusion on the aspiration efficiency and calm air sampling through 
thin-walled tubes. 
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