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Abstract-The k-8 model of turbulence is used for calculating dynamical and thermal fields in plane 
turbulent vertical jets in a uniform stagnant environment. A new effective approach to the solution of the 
governing system of partial differential equations (continuity, conservation of momentum, heat, turbulent 
kinetic energy and its dissipation rate) is suggested which is based on the introduction of mathematical 
variables. Comparison is made between the results of the present calculations and the experimental data 

of other authors, and satisfactory agreement is found. 

INTRODUCTION 

TRADITIONALLY, free convection is one of the most 
actual fields of modern thermophysics. This is 
ascribed to the important role of Archimedes forces 
in the occurrence of different hydrodynamic and 
thermal processes in nature and technology. The jet 
liquid and gas flows are no exceptions in this respect. 
Actually, investigations of turbulent jets in the pres- 
ence of buoyancy effects, which started from the late 
1940s [I], have turned at present into one of the most 
rapidly developing problems of hydromechanics, 
attracting the attention of specialists in diverse areas 
of research such as meteorology, oceanology, power 
engineering, etc. 

However, in contrast to forced jet flows, the prob- 
lems of studying buoyant jets are substantially more 
complicated both from the viewpoint of the procedure 
and technique of the experiment and the possibility of 
a theoretical solution of the problem. When, for tur- 
bulent flows without account of buoyancy forces, one 
succeeds in applying the similarity theory to correlate 
the results of laboratory measurements with the use 
of a small number of empirical constants, then in the 
case of jet development in the field of Archimedes 
forces the number of dimensionless groups increases 
and, as a rule, a complete similarity is not attained. 
Though, of course, in specific cases one manages, with 
an accuracy sufficient for engineering calculations, to 
use dimensionless relations for analyzing the averaged 
characteristics of the flow or carrying out an approxi- 
mate simulation [2, 31. This is responsible for the 
attention having been turned to a numerical analysis 
within the frameworks of diverse models of turbulence 
[4,5]. Since the greater portion of works dealing with 
the study and prediction of the processes of turbulent 

t Dedicated to Professor Dr.-Ing. Dr.-Ing.e.h, Ulrich 
Grigull. 

transport of momentum and heat in jets is based on 
the results of numerical experiments, the development 
of effective and reliable numerical schemes for solving 
the problems posed becomes a particularly urgent 
problem, very important for engineering practice. 

In the present paper a new method is suggested for 
calculating a turbulent plane vertical jet within the 
framework of the standard buoyancy-extended k-6 
turbulence model. The method consists essentially of 
the use of mathematical variables that simplify the 
governing system of equations and make it convenient 
for numerical integration. Comparison of the results 
of calculations with the experimental data of other 
authors has been made. 

GOVERNING EQUATIONS 

Consider a vertical turbulent jet issuing from a 
plane slit of width r,, with a velocity u,,, initial tem- 
perature T,, and density p0 into a non-stratified 
stationary space (pO < p,). The coordinate origin is 
located in the middle of the nozzle. The x axis is 
directed along the jet and the y axis runs normal to 
it. Let u and v denote the averaged velocities. Then, 
the starting equations for the developed motion and 
heat transfer (buoyancy) within the framework of the 
turbulent boundary layer model, with account taken 
of the Boussinesq approximation, can be written as 

!k+&zo 
ay 

a~ au a , , 
~~+uy=jj$-<uv)) 

g+vg= j+dT.)). (1) 

As is usually adopted for thin shear layers, the term 
with normal stresses is discarded from the momentum 
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jet half-width determined by coordinate Greek symbols 
_r at which u = u,/2 (or AT = AT,,,,U) B coefficient of thermal expansion 
Froude number, u~/g~ATOr, I: dissipation of kinetic energy of 
gravity acceleration turbulence 
kinetic energy of turbulence P density 
plane jet width (TX turbulent Prandtl number. 
averaged temperature, AT = T- T, 
temperature ~uctuation 
averaged velocity components in 
directions .Y and 2: 
respectively 
components of fluctuating velocity 
directions along jet axis. 

Subscripts 
X surrounding medium 
0 at jet exit 
c on jet axis 
m maximum value 
I dimensionless value. 

--I 

equation, while the energy equation does not involve 
the streamwise heat flux component. 

Due to the uncertainty of the quantities (z/z:‘) and 
(v’T’), standing respectively for the Reynolds stress 
and turbulent heat flux, the system of equations (I) is 
not closed and its solution is naturaily possible only 
with the use of any turbulence model. In the present 
work, the local values of the kinetic energy of tur- 
bulence k and of the rate of its dissipation t:. are 
taken as the basic quantities determining the turbulent 
transport. These values satisfy the following model 
equations : 

The algebraic expressions for the shear and transverse 
heat flux are connected to k and E by the sa-called 
Kolmogorov-Prandtl relation : 

Equations (l)-(3) form a closed system, which cor- 
responds to the k--E model of turbulence and involves 
five coefficients 

C,(W) = 0.09, Ok = I .o, 0, = 1.3, 

(; 1 = 1.44, (‘>,? = 1.92. (4) 

However, in contrast to the standard value, the value 
of the quantity cp is not constant but is an empirical 
function of the Froude number [6] 

‘;, =O.O9[1+;(l+tanh(ZIog$+3))~. (5) 

This is due to the fact that at large values of the 
streamwise coordinate x there is a quantitative 
difference between experimental and numerical 
results : at c,, = 0.09, model (l)-(4) correctly describes 
the experimentally observable relationships, but the 
predicted values for the jet flow become overestimated 
by 15-20%. For a free shear layer in the absence of 
Archimedes forces (F = co), relation (5) yields 
cJi(~) = 0.09, and the model is exactly reduced to the 
standard one. 

For a full statement of the problem, equations (l)- 
(5) should also be augmented with information about 
the initial and boundary conditions 

[u = u,,. T= To, E = B,), k = k, 

: 

when 0 < L < “5: > --_’ 
.Y = 0 

2 
u = 0. T= T,,, E = 0. k = 0 

when 11’ < _r < ix, 
2 

CALCULATION TECHNIQUE 

Usually the equations for averaged flow (l), to- 
gether with equations (2)-(6), after the transition to 
corresponding dimensionless variables, are integrated 
numerically by the unite-difference technique. In this 
case the flow region is overlaid with a rectangular grid 
on the plane x, y with the step AX, A,v ; whereas the 
partial differential equations at all the inner nodes of 
this grid are replaced by the difference ones. Further. 
the resulting non-linear system of algebraic equalities 
is solved by iteration with the aid of the factorization 
technique. The test numerical calculations show that 
when iterations are not carried out for solving each 
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of the finite-difference equations, the overall iterative 
process turns out to be non-convergent. 

Below, an alternative approach to the analysis of 
equations (l)-(6) is suggested. New coordinates are 
introduced 

i 

Y 
X=X, ?7=2 UBdY. (7) 

II 

Then, by virtue of the formulae of transition from the 
old variables X and Y to the new ones, 
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the following equations are obtained : 
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The advantage gained by the proposed replacement 
of variables is that in the case of numerical solution 
it ensures an automatic fulfilment of the enthalpy flux 
conservation law, which is defined as 

Qo=pC, cuuATdy 
s -a’ 

and also transforms the infinite region of integration 
into a finite width band. Then, the flow field, which 
is now a rectangle (at uniform initial velocity and 
temperature profiles 0 < X < co and 0 < q < l), is 
divided into n bands, and on each of the lines qL 
(i= 1,2 , . . . , n + 1) the derivatives with respect to q are 
replaced by their three-point central-difference ana- 
logues so that the original partial differential equa- 
tions are converted into a system of ordinary differ- 
ential equations. When the initial conditions are 
prescribed for velocity, temperature, kinetic energy 
of turbulence, its dissipation rate at the nozzle cut 
(uniform fields were adopted in calculations) 

U,= 1, B,= 1, K,=2xlO-‘, 

E, = 1.6x 1O-3 (X= 0) 

or in a certain section X* (they can be model con- 
ditions or those taken from experiment), the Cauchy 
problem is obtained which is integrated by the stan- 
dard Runge-Kutta technique with an automatic selec- 
tion of the step along the dimensionless coordinate 
X = x/ro. In this connection, the proposed com- 
putational scheme is free from the drawbacks inherent 
in the numerical analysis of turbulent boundary layer 
equations by the methods of straight lines. As is 
known, the version X = const. requires the solution of 
the boundary-value problem for a system of ordinary 
differential equations (the shooting method is used), 
which usually depends strongly on the boundary con- 
ditions lacking at Y = 0. 

Suppose the problem has been solved, i.e. the 
expressions of U(X, q), 0(X, q), K(X, q) and E(X, q) 
have been found. Then, to bring the solution to an 
end, the following equality should be used : 

1 ’ drl 
y=2 0 u0 s- 

which ensures the transition of the unknown functions 
to the physical plane. 
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Table I. Predicted and experimental (in parentheses) [7] 
values of the mean characteristics of a plane buoyant jet 

fF = 20) 
_ -.. _. ._... ~_~_ 

""0 Ai-.!'dT y__w wy_____ ~'__ 0 h 'YC) h> i\r.rri 

20 0.827 0.305 2.43 3.04 
(0.813) (0.371) (2.48) (3.02) 

30 0.X06 0.224 3.42 4.22 
(0.797) (0.270) (3.44) (3.92) 

40 0.798 0.177 4.37 5.3x 
(0.758) (0.206) (4.31) (4.92) 

50 0.794 0.146 5.31 6.52 
(0.726) (0.161) (6.50) (7.54) 

60 0.792 0.125 6.24 7.66 
(0.778) (0.138) (7.04) (7.60) 

~~.____._..__ ~_~~_.___ ~-_~ _~~._~ -- 

I presents calculated (0, = 0.5) and cxperimcntal [7] 
variation of the velocity u,/u,, and temperature 
ATJAT, along the flow axis as well as the half-width 
of the dynamical and thermal boundary layers in a 
plane buoyant jet at F = 20. A satisfactory agrecn~ent 
between theory and experiment for all four quantities 
can be noted on the whole. Usually, to correlate the 
results of numerical investigation, a special unified 
form of calculated data representation is used. It is 
based on the self-similarity properties of the jet flow 
structure at large values of the sircamwise coordinate 
and the corresponding normalization of main charac- 
teristics. It is found that when .Y, > 5 the predicted 
changes in the flow parameters for all the versions 
(1 < F d 500) can be approximated by the following 
power-law relations : 

u, = 2.15, 0, = 2.70.x,‘, h, =0.106x, 

bN = 0.130s. uI = QF"', 0, = fi,F"', 

.&., = ,yp 2,z 
(9) 

Comparison of equations (9) with the generaiized 

experimental data from ref. [7] 

u, = 2.13. 0, =2.56x, ‘. h,, = 0.1 1.~ h,, =0.133-y, 

again reveals their satisfactory agreement. As to the 
turbulence characteristics, the numerical data 

indicate that the latter attain their asymptotic values 
at a somewhat greater distance (approximately when 
.Y, > 8) from the jet source than parameters (9). The 
averaging of the experimental values of (u’), (c’), 
shear (u’v’) and of the transverse turbulent heat flux 
(P’T’) within the range 40 < X < 60 gave [7] 

Since the value of <M.‘) was not measured in lab- 
oratory investigations [7], the kinetic energy of tur- 
bulence was calculated from the equation 

k = ;((u”)+(~‘~)+(w’~)) = ;((24”)+2(1.“),. 

It is also of interest to compare the results of 

numerical integration of equations (8) and of lab- 
oratory measurements in the case of the forced jet 

development (F = -/-). 
Calculations were started at the uniform fields of 

II,,. O,,, R,, and E,, at the exit from the slit irr, -= 0.6) 
and were continued until the initial profiles became 
self-similar. The prediction of the asymptotic behav- 
iour of the average parameters 

I;<. = 2.40X ’ 2. 0, = 2.14x ’ :. 

h,, = 0. I 16x. h,, = if. 154.Y. 

and also of the turbulent characteristics of the plane 

jet in the case of 

<u’On, (dTi), 

II,: 
= 0.023, ---- = 0.029. 

kc 
L&AT, 

ui = 0.067, 
‘ 

turns out to be in adequate agreement with the exper- 
imental one [S, 91 

r!c = 2.44X ’ ‘. 0, = 2.27X ' :. h,, = 0.1 1.~. 

(U’V’)“, 
h,, = 0.167x, ~~~ -- 

li; 
= 0 026 V-‘)!Y = () 018 ’ I u,AT, ’ ’ 

k, 
ut = 0.067 

c 

in spite of some q~ntitative discrepancies. 
It should be noted that an important problem is the 

determination of the number of bands n with which 
the flow region is overlaid in the process of numerical 
analysis. In the present calculations the value n = 100 
was selected. A further increase in the number of 
bands did not lead to a substantial refinement of 
numerical data. The study of the effect of the size 
by = l/n showed that a suitable accuracy may he 
attained at a smaller n. Actually, calculations with 
II = 80 yield results differing from those with n = 100 

by less than 1%. 

CONCLUSION 

In the present paper a new method is suggested for 
numerical integration of the system of partial differ- 
ential equations describing the development of a plane 
vertical turbulent jet in a stagnant non-stratified 
medium. The method is based on mathematical vari- 
ables that make it possible to write the starting equa- 
tions in a form convenient for numerical analysis. As 
a result, the problem of the search for the unknown 
functions is reduced to the solution of a system of first- 
order ordinary differential equations by the Rungc- 
Kutta method. This enables one not only to raise the 
efficiency but also to avoid the di~culties inherent in 
numerical calculations by means of ordinary finite- 
difference schemes. Finally, it should be noted that 
the proposed method can also be used for numerical 
investigation of other types of jet flows. 
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ETUDE NUMERIQUE DE JETS TURBULENTS PLANS ET FLOTTANTS 

R&m&--Le modtle k-e de turbulence est utilise pour calculer les champs dynamique et thermique dam 
des jets plans verticaux turbulents dans un environnement uniformement au repos. On suggere une 
nouvelle approche efficace, basee sur I’introduction de variables mathematiques, pour resoudre Ie systtme 
d’equations aux derides partielles (continuite, conservation de la quantite de mouvement, de la chaleur, 
de I’energie cinitique turbulente et de son taux de dissipation). Une comparaison est faite entre Ies resuhats 
des presents calculs et Ies don&es experimentales d’autres auteurs, et on constate un accord satisfaisant. 

NUMERISCHE UNTERSUCHUNG EINES TURBULENTEN EBENEN 
AUFTRIEBSSTRAHLS 

Zusammenfassung-Mit Hilfe des k-e Turbulenzmodells wird das Geschwindigkeitsfeld und das Tem- 
neraturfeld in einem ebenen turbulenten senkrechten Strahl in einer ruhenden Umgebung berechnet. Das 
System partieller Differentialgleichungen, das sich aus den Erhaltungssiitzen fur Masse, Imp&, Warme. 
turbuiente kinetische Energie sowie die Dissipationsrate ergibt, wird auf der Grundiage ma~ematischer 
Variabler ein neues L~sungsverfahren vorgeschlagen. Die Ergebnisse dieser ~rechnungen werden mit 
Versuchswerten anderer Autoren verglichen, wobei sich eine ~f~~enstellende tibereinstimmung ergibt. 

YMCJIEHHOE kiCCJIEa;OBAHkIE TYPBYJIEHTHMX lUIOCKElX BbIHYJKAEHHbIX H 
l-IJ-IABY%iX CTPYft 


