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Abstract—The laminar and turbulent natural-convection flow in a two-dimensional square cavity heated
from the vertical side is numerically calculated up to a Rayleigh number of 10" for air and up to 10'° for
water. Three different turbulence models are compared : the standard k—& model with logarithmic wall
functions and the low-Reynolds-number models of Chien, and Jones and Launder. The position of the
laminar—turbulent transition in the vertical boundary layer strongly depends on the turbulence mode! used.
Moreover, multiple solutions for the transition position can occur for a fixed Rayleigh number at the same
numerical grid. The thermal stratification in the core of the cavity breaks up when the flow becomes
turbulent. Comparison of the averaged wall-heat transfer with experiments for the hot vertical plate and
for tall vertical cavities shows that the standard k—& model gives a too high prediction, whereas the low-
Reynolds-number models are reasonably close to the experiment.

1. INTRODUCTION

A TEMPERATURE difference over the vertical sides of a
cavity gives rise to the natural-convection flow of the
fluid inside. If the Rayleigh number, which is a charac-
teristic number of the problem, exceeds a critical value
the laminar flow can become turbulent. Because the
direct numerical simulation of the turbulent flow by
solving the full unsteady, three-dimensional Navier—
Stokes equations is beyond the possibilities of present-
day computers, the turbulence has to be modelled. A
well-known turbulence model is the k—¢ model.

When the flow is turbulent the Rayleigh number is
large (> 10° for air). For these large Rayleigh numbers
the flow has thin boundary layers along the vertical
sides of the cavity. The core of the cavity is thermally
stratified. In the part of the vertical boundary layer
closest to the wall, gradients in the flow are very large
and require the use of many computational grid
points. In most turbulence calculations the solution
in this part of the boundary layer is approximated by
‘universal profiles’: the logarithmic wall functions.
These logarithmic wall functions were originally
derived, and experimentally verified, for forced-con-
vection flows (for example the boundary-layer flow
along a plate in an oncoming velocity field). The log-
arithmic wall functions do not hold for natural-con-
vection boundary layers. However, because of lack of
better wall functions, they still are often used in
natural-convection problems. The search for the right
wall functions for natural-convection boundary layers
is going on [1-3].

Instead of using wall functions, it is also possible
to solve the flow equations up to the wall. The large
damping of the turbulence in the wall region requires

a modification of the standard k— model. A lot of
such modified models, the so-called low-Reynolds-
number k—¢ models, have been proposed in the litera-
ture. In ref. [4] all these models have been compared
for the flow of air along an elemental natural-
convection configuration, namely the hot vertical plate
in an isothermal environment. The low-Reynolds-
number models of Lam and Bremhorst, Chien, and
Jones and Launder turned out to predict the wall-heat
transfer closest to the experimental value. The use of
the standard k—¢ model with logarithmic wall func-
tions for k and ¢ gives a 30% too high prediction.

Another elemental natural-convection configur-
ation is the square cavity heated from the vertical
side. The boundary layer along the hot vertical side
of the cavity shows a close resemblance with the
boundary layer along a hot vertical plate in a stratified
environment. In the present study we have calculated
the flow of air and water in the two-dimensional,
square cavity for a Rayleigh number up to 10'%. The
performance of the standard k—¢ model with (log-
arithmic) wall functions, the low-Reynolds-number
k-¢ model of Chien [5] and the low-Reynolds-number
k—e model of Jones and Launder [6] are compared.
Calculations in the square cavity with the standard k-
& model with wall functions have also been made for
air by Markatos and Pericleous {7] and for water by
Ozoe et al. [8]. Ince and Launder {9] have recently
used the Jones and Launder model to calculate the
turbulent flow of air in tall vertical cavities.

A difficulty is that accurate experiments for the
turbulent flow in the square cavity do not exist. We
have used the experimental wall-heat transfer for very
tall cavities and for the hot vertical plate in an iso-
thermal environment to make a guess of the exper-
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A aspect ratio, height/width
¢ dimensionless wall-shear stress,
2v(dv/0x), [gBATH

Cis Cop €3, coefficients in e-equation

C, coefficient in v-equation

D low-Reynolds-number source term in k-
equation

E low-Reynolds-number source term in ¢-
equation

f frequency

i low-Reynolds-number correction for ¢,

1 low-Reynolds-number correction for ¢,,

f low-Reynolds-number correction for ¢,

g gravitational acceleration

Gy buoyancy production of turbulent kinetic
energy

H height of the cavity

k turbulent kinetic energy

Nu Nusselt number at hot wall,
— H/AT[0T/0x],,

Nu averaged Nusselt number at hot wall,
foNu d(y/H)

p pressure

p pressure correction in numerical iteration

P, shear production of turbulent kinetic
energy

Pr Prandtl number
Ra  Rayleigh number, gSATH? Prjv?
Re,  turbulent Reynolds number, k%/ve

S gradient of thermal stratification in
cavity centre, H/AT[0T/dy)

14 time

At numerical time step

T temperature

AT  characteristic temperature difference,
T.—T.

NOMENCLATURE

T, temperature of hot wall
T, temperature of cold wall

u horizontal velocity component

u, velocity component tangential to closest
fixed wall

u, characteristic shear-stress velocity,
J@ufoy,))

v vertical velocity component

X horizontal coordinate

y vertical coordinate

Va distance to closest fixed wall

Ver position of transition for hot vertical
boundary layer

vt dimensionless coordinate, y,u,/v.
Greek symbols

oy, a, coefficients in function for grid-point

distribution
B coefficient of thermal expansion
€ rate of dissipation of turbulent kinetic
energy

v molecular kinematic viscosity

v, turbulent kinematic viscosity

p density

o) turbulent Prandtl number for k

or turbulent Prandtl number for T’

G, turbulent Prandtl number for e.
Superscript

n time level.
Subscripts

i grid point in the x-direction

j grid point in the y-direction

max maximum of a quantity

w wall condition.

imental averaged wall-heat transfer through the
vertical side of the square cavity. The prediction of the
different models is compared with this experimental
value.

We will also discuss that the solution for the low-
Reynolds-number £—¢ models can be nonunique. For
a fixed Rayleigh number, both converged solutions
with an early and a late transition from the laminar
to the turbulent state in the boundary layer have been
calculated. Besides the averaged wall-heat transfer as
a function of the Rayleigh number, we also present
the following quantities as a function of height : wall-
heat transfer, wall-shear stress, maximum of the
vertical velocity, maximum of the turbulent viscosity,
horizontal velocity at half the cavity width and the
thermal stratification at half the cavity width.

2. MATHEMATICAL FORMULATION

We consider a square cavity, with fixed walls, that
is differentially heated over the vertical sides. The left
hot wall has a temperature 7T}, and the right cold wall
has a temperature 7. The horizontal floor and ceiling
are both adiabatic. The height of the cavity is H. The
x and y coordinates are chosen in the horizontal and
vertical direction, respectively.

The two-dimensional laminar and turbulent flow
in this square cavity is described by the Reynolds
equations. It is assumed that the fluid is incom-
pressible and satisfies the Boussinesq approximation

u Ov

dx Oy
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These Reynolds equations are obtained by time-aver-
aging the high-frequency turbulent fluctuations from
the Navier—Stokes equations. It seems a bit strange
that, despite the time-averaging, the unsteady terms
remain in the formulation. However, the time-aver-
aging is restricted to the broad-band spectrum of
turbulence, whereas the remaining unsteady terms
account for all weak unsteadiness that does not belong
to the turbulence. We can also define that the unsteady
terms represent all unsteadiness that is not modelled
by the turbulence model. In this study we are inter-
ested in the large-time behaviour of the flow ; we check
whether all unsteadiness dies out and a steady final
solution is reached. The Reynolds stresses appearing
in the Reynolds equations have been modelled with
the k—¢ model. Three versions of the k—& model are
compared :

(i) Standard k— model with wall functions
¢, =009 ¢,=14, ¢,,=192, =10,
0, =10, 6,=13, fi=fi=f,=10, D=E=0

wall functions at the first inner grid point: k = u?/
\/(Cu), &= ut041lvy".

(ii)) Low-Reynolds-number k—& model of Chien [5]
¢, =009, ¢, =135 ¢, =18 oao,=10,
o, =10, o,=13, f,=1—exp(—0.0115p%),

Ji=10, f,=1-3exp (—(Re/6)"),

k

2ve
D= -2v—, E= exp (—0.5y"
Va ya P (=057

atthe wall: k =g = 0.

(iii) Low-Reynolds-number k¢ model of Jones and
Launder [6]

¢, =009, ¢, =144, ¢, =192, o,=09,

—2.5
1+Rel/50
fi=10, fi=1-03exp (—Re}),

oJkY (kY
b=- [(a) +<Tﬂ
*uY GEAN
£= 2““[(&2) ¥ (a“)]

atthewall: k =¢e=0.

6=10, o,=13, f,=ex p<

In these relations the following dimensionless vari-
ables appear: u, = \/(v(0u/0y.).), y* = yu.fv and
Re, = k*/ve (y, is the distance to the closest fixed wall
and , the velocity component tangential to that wall).
In model (i) the wall functions are only used to
obtain boundary conditions for the £ and ¢ equations.
These expressions are based on the logarithmic wall
functions as originally derived for forced-convection
boundary layers. No wall functions are applied to the
velocity and temperature profiles.

Rodi {10] has suggested that the coefficient ¢, is
close to 1 in vertical boundary layers and close to 0 in
horizontal boundary layers. An approximation that
satisfies both limits is used in the present formulation

= tanh |v/uf. 2)

In the literature there is still no consensus on the right
formulation of ¢;, and G,. For example, Fraikin ez al.
[11] took ¢;, = 0.7/c,, and Ince and Launder [9] took
¢y, = | in their turbulent cavity calculations. If the
Rayleigh number is increased to infinity, the turbulent
solution in the cavity consists of natural-convection
boundary layers along the vertical walls and an almost
stagnant, stably stratified core region (see Fig. 1).
The streamlines in the core are practically horizontal.
Turbulence is concentrated in the boundary layer and
is almost absent in the core. The stability analysis
(see, e.g. Nachtsheim [12]) for the laminar natural-
convection boundary layer along a heated vertical
plate in an isothermal environment shows that the
critical gradients in both the velocity profile and the
temperature profile can initiate an instability and the
transition to turbulence (giving a hydrodynamic and
thermal instability, respectively). The hydrodynamic
instability mechanism is represented by the P;-term in
the k-equation, whereas the thermal instability mech-
anism is represented by the G,-term. The stability
analysis for the core (approximated as an inviscid,
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F1G. 1. Turbulent flow of air at Re = 10'* (Chien model):
(a) streamlines ; (b) isotherms.

stagnant, thermally stratified environment; see, e.g.
Drazin and Reid [13]) shows that the thermal insta-
bility is only damped if the stratification is stable, i.e
if the density decreases with height, or (provided
f > 0) if the temperature increases with height. The
present formulation for the thermal source G, in the
k-equation does not seem to be in line with these
stability analyses. The source ¢,,c;G, has the right
sign in the stably stratified core, namely less than or
equal to 0, but its value is everywhere close to zero.
This is a consequence of the almost horizontal stream-
lines in the core, giving ¢;, ~ 0 according to equation
(2). Therefore, it might be better to use ¢5, = 1 in the
core. Because the y-derivatives in the vertical bound-
ary layers are small compared to the x-derivatives, the
present formulation gives |G| « |P;|. This implies
that the thermal instability mechanism is not
accounted for very realistically in the vertical bound-
ary layer. Ince and Launder [9] have proposed the
inclusion of a 07/dx contribution in the G -term.

R. A. W. M. HENKES ef al.

Actually the use of a Reynolds-stress model, instead
of the k—¢ model, automatically leads to such a con-
tribution. Peeters and Henkes [14] have used the
Reynolds-stress model for the turbulent natural-con-
vection boundary layer along a heated vertical plate
in an isothermal environment. In the inner layer (i.c.
from the wall up to the velocity maximum) G, is close
to zero, but in the outer layer (i.e. beyond the velocity
maximum) it is roughly 30% of the total production
of turbulent kinetic energy. Because the corrected G-
term gives rise to both an increasc of k and &, the
overall influence on v, turns out to be small. Therefore,
the use of the old formulation for G,. as we still do in
the present study, will not lead to large differences
in quantities like the wall-heat transfer, the velocity
maximum, the stratification, ctc.

After nondimensionalization of the dependent and
independent variables (with the help of H, AT =
T,—T,, gB and v), the solution in the square cavity
depends only on two characteristic numbers: the
Prandtl number (Pr) and the Rayleigh number
(Ra = gBATH? Pri{v?). The solution is centro-sym-
metric with respect to the centre of the cavity.

3. NUMERICAL PROCEDURE

The spatial derivatives in the equations are dis-
cretized with the finite-volume method on a staggered
grid. The solution domain is covered with finite
volumes, having a grid point for the u-velocity in the
middle of the west and east side and a grid point for
the v-velocity in the middle of the north and south
side of each volume. All other variables have their
grid point in the centre of a volume. The equations
are integrated over each volume, after which mass,
momentum, 7, k and ¢ fluxes are discretized with finite
differences. We have discretized these convection
terms with the hybrid scheme. This implies that the
second-order accurate central scheme for the con-
vection is locally replaced by the first-order accurate
upwind scheme as soon as the grid size exceeds a
critical value. In comparison with the use of the central
scheme for all grid points, the hybrid scheme is more
stable during the iteration process to solve the dis-
cretized system. We checked that continuvation of the
iteration process on the central scheme, after the solu-
tion for the hybrid scheme has been obtained, only
leads to very small differences.

The appearance of boundary layers requires a non-
equidistant grid that gives a strong grid refinement
along the walls. The sides of the finite volumes are
positioned according to

R = tanh [OC] (i/imax - 1/2)] .
H~;<1+~- J (3a)

tanh (z,/2)
i=0,1,....i
/N RN P
H jom 2m S'“(z”jm)’
j=01...

(3b)

- o Jmax
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where a, is derived from the expression a,=
o /sinh (a,), in which «, is chosen close to zero: the
smaller «,, the stronger the grid refinement along
the vertical walls. The first inner grid point is approxi-
mately positioned at x,/H = d,/iy... In most cal-
culations we took o, = 0.0015.

The time dependence is treated implicitly ; the spa-
tial derivatives are evaluated at the new time level
n+1, and the time derivatives are approximated with
two time levels (B2 scheme)

5(1) a4+ ¢n+ | _¢n
<“{,}7) = T +O(Ad). 4)

The discretized system at the new time level n+1
consists of non-linear, algebraic equations which are
solved iteratively with a line Gauss—Seidel method.
Alternating sweeps are made from the west to the
east side and from the east to the west side of the
computational domain. The updating of the iterative
solution is such that only tridiagonal matrices have to
be solved at a line. In each Gauss-Seidel sweep the
variables u, v, T, k and ¢ are updated one after the
other at a line. After each sweep the pressure is
updated with a pressure-correction method. This
method determines a pressure correction as long as
the continuity equation in the finite volume is not
satisfied : the pressure is increased/decreased as long
as there is a net inflow/outflow of mass. The pressure
correction is described by a Poisson equation

’p"  pfou  dv
*52‘1}(5*5;)- ©)

This equation is solved with a direct solver. Dis-
cretization of equation (5) gives a symmetric band
matrix for the Laplace operator, having fixed co-
efficients which only depend on the geometry. The
LU decomposition of this matrix has to be determined
only once and can be stored. The sweep process at the
new time level is stopped when the pressure correction
in each finite volume and the heat flux through the
boundaries are below a certain criterion. Typically
5-10 sweeps at each time level are sufficient.

The calculation is started with a certain initial field
at £ = 0 and we integrate in time until a steady final
solution is reached. The time evolution in the cavity
is dominated by three time scales: ¢, = H*/v, t, =
(H*v)Ra="* and t; = (H*v)Ra~"? (see ref. [15]).
The conductive time scale ¢, determines the time to
reach the steady state and ¢; determines the required
time step; roughly 7,/t; = Ra'? time steps are
required to calculate the steady solution. For example
the solution for Ra'* should require of the order of
107 time steps. This amount of time steps can con-
siderably be reduced if we can get rid of the conductive
time scale. This can be achieved by calculating an
initial guess with the steady formulation. The
unsteady terms are omitted and the transport vari-
ables are solved by the same Gauss—Seidel procedure

a'p
ox*

Ral/18p, 16

“max
<BATH

®

-
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F1G. 2. Typical time evolution to the steady state (Chien
model, air at Ra = 10'").

as previously described. The equation for the pressure
correction is obtained by using the SIMPLE method
of Patankar and Spalding [16]. This equation is also
solved iteratively with the Gauss—Seidel solver. Some
underrelaxation is required to prevent divergence
of the iteration process. After approximately 3000
Gauss—Seidel sweeps the speed of convergence has
slowed down, and we switch over to the unsteady,
more physical, formulation. The conductive time scale
is already solved at the moment of switching and only
the order of 7,/t; = Ra'* time steps are required to
reach the converged steady state. Indeed we find that
for Ra = 10" roughly 4000 time steps are sufficient.
As also found by Jones [17] and Thompson et al.
[18], in the present calculations we revealed that the
time scale 7, (which is proportional to H/\/ (gPATH),
the Brunt-Viisdld time scale) determines the maxi-
mum time step that still gives a stable numerical time
integration. In all cases we used At\/(gBATH)/H =
0.25. A typical time evolution is shown in Fig. 2. In
all calculations the damped oscillations are related to
internal gravity waves in the core. For the turbulent
solutions, almost irrespective of the Rayleigh number
and Prandtl number, the frequency of the damped
oscillations approximately is fH/,/(gBATH) = 0.087.
Ozoe et al. [8] have also calculated the turbulent flow
in the same square cavity with the unsteady approach,
using the k—& model with wall functions. From their
Fig. 13 we derive that the unsteady evolution shows
oscillations with a frequency fH/\/(gBATH) = 0.083
(Ra=6.3x10"", Pr = 6.7;24 x 60 grid, A1,/ (gPATH)/
H ~ 1/12). This value is close to our result. But in
contrast with our results, the oscillations of Ozoe et
al., do not die out in the core for increasing time. We
refined our time step up to Ar,/(gBATH)/H = 1/24,
and switched over to the central scheme, but still did
not find their periodic behaviour for r — cc. In all
cases the unsteadiness dies out and the turbulent solu-
tion reaches a steady final state. Both the use of a
slightly different turbulence model or an insufficient
numerical accuracy can account for the difference.
The use of low-Reynolds-number k—¢ models
requires a sufficient number of grid points in the inner
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F1G. 3. Numerical accuracy of the wall-heat transfer (Chien
model, air at Ra = 10'3).

part of the boundary layer. The different models lead
to differences in the prediction of the wall-heat trans-
fer of about 20% . Such differences can easily be lost
if the number of grid points is too small and/or the grid
points are not properly distributed. Figure 3 shows
the wall-heat transfer for increasing grid refinement
(40 x 40, 60 x 60, 80 x 80 grid). For example in the
horizontal direction at half the cavity height, the
80 x 80 grid for air at Ra = 10'? has about 30 grid
points in each vertical boundary layer and about 20
grid points in the core. Within the vertical boundary
layer 13 grid points are between the wall and the
velocity maximum. For water at Ra > 10'° refining
the constant a, in equation (3a) from 0.0015 to
0.00015 increases the accuracy for a given number of
grid points. All results which are presented in the
sequel were obtained on the 80 x 80 grid. By repeating
the calculations on the 60 x 60 grid, each result was
checked to have only a small numerical error.

4. EXISTING EXPERIMENTAL AND
NUMERICAL DATA

Accurate measurements for the turbulent natural-
convection flow in the cavity are still difficult to
obtain. For the comparison of the present numerical
results with experiments, we have to rely on exper-
iments performed in cavities with an aspect ratio
(A4 = height/width) larger than 1. Cheesewright ez al.
[19] and Cheesewright and Ziai [20] obtained exper-
imental data for air in the 4 = 5 cavity, MacGregor
and Emery [21] measured a whole range of Prandt]
numbers in large-aspect-ratio cavities (up to 4 = 40),
Cowan et al. [22] measured the flow of water in large
aspect-ratio cavities (up to 4 = 60) and Betts and
Dafa’Alla [23] measured air in the 4 = 30 cavity.

At large Rayleigh numbers (> 10%), boundary lay-
ers develop along the vertical sides. If for a certain
large, but fixed, Rayleigh number the aspect ratio is
increased, the rising boundary layer along the hot wall
and the falling boundary layer along the cold wall will
touch each other and the core region disappears. In
the limit of 4 — oo the flow becomes parallel (i.e. one-
dimensional). Two-dimensional effects are restricted

to a thin region close to the horizontal walls. The
turbulence in this case reaches its maximum at the
vertical centreline of the cavity. The flow in the large
cavities as measured by MacGregor and Emery,
Cowan et al. and Betts and Dafa’Alla are nearly
parallel, giving an averaged wall-heat transfer

Nu = ¢ Ra"? (6)

with the constant ¢ = 0.046, 0.043 and 0.053, rc-
spectively. The Nusselt number (Nu) is the dimen-
sionless heat transfer through the hot wall:
Nu= — H/AT[0T/¢x},. The averaged Nusselt num-
ber according to equation (6) is independent of the
aspect ratio. However, the boundary layers in the
square cavity are not mixed up; the turbulence is
concentrated in the boundary layers and is almost
absent at the vertical centreline of the core. Therefore,
the averaged wall-heat transfer in the square cavity
might differ from equation (6). Cheesewright ez al. [19]
have measured velocity profiles for air as a function of
height along both the hot and cold wall inan 4 =5
cavity. In contrast with what follows under the Bous-
singsq assumption, the deviation from the centro-sym-
metric state in the experiments is relatively large.
Cheesewright er al. contribute this deviation to heat
losses through the horizontal walls, which were not
perfectly adiabatic. Also three-dimensional cffects
might have influenced the experiment. The heat losses
cause the horizontal boundary layer along the ceiling
to become turbulent. The boundary layer along the
floor is relaminarized, as in our calculations. The
aspect ratio 5 is still small enough to have separated
vertical boundary layers.

Comparison of different existing wall-heat transfer
experiments for the vertical hot plate in an isothermal
environment up to about Ra = 10'? leads to (see ref.
{4]) Nu, = 0.118Ra)”* (Nu and Ra are based on the
coordinate y along the plate and on the temperature
difference between the wall and the cnvironment).
Under the approximation that the core in the square
cavity is also isothermal, this result can be rewritten
as

Nu = 0.047Ra"". (7

Here Nu and Ra are based on the cavity height H and
twice the temperature difference between the hot wall
and the isothermal core. But actually the core of the
square cavity is stratified, which might give an aver-
aged wall-heat transfer that differs from equation (7).
For example, laminar calculations show that the
stratification in the core leads to a 40% higher aver-
aged wall-heat transfer for the cavity compared to the
hot plate in an isothermal environment (see ref. [24]),
Nu = 0.304Ra"* and 0.218Ra' * respectively for air.
However, we will show that in the turbulent case the
stratification in the core is more isothermal than in
the laminar case. It is remarkable that the measured
averaged wall-heat transfer for the plate (7) is close to
the experimental relation for large-aspect-ratio cavi-
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ties (6) ; equation (7) will be used for comparison with
the numerical results in the square cavity.

Betts and Dafa’Alla calculated the cavity for an
infinite aspect ratio, comparing different low-Reyn-
olds-number k—¢ models. In general, all these models
predict a too high wall-heat transfer and a too low
velocity maximum. In order to improve the per-
formance of the Jones and Launder model, Ince and
Launder [9] modified the E-term in the s-equation
with the Yap correction. This correction accounts for
the large turbulent diffusion from the centreline of the
tall cavity towards the wall. With the Yap correction,
Ince and Launder calculated that Nu = 0.051Ra'?
for A = co. Further they used this modified model to
calculate the cases with 4 =10, 5 and 1. The Yap
correction does not influence the results in the cases
with 4 = 5 or 1, where the vertical boundary layers
are not mixed up at the centreline. They fitted their
numerical results for these finite aspect ratios to
Nu = 0.047Ra'"*. As shown in Fig. 4(a), their Ray-
leigh number in the case of the square cavity was
too small to get a turbulent solution: their wall-heat
transfer in this case is practically equal to our laminar
result.

Markatos and Pericleous [7] and Ozoe er «l. [8]
calculated the turbulent flow in the square cavity,
using the k—¢ model with (logarithmic) wall functions.
Ozoe et al. calculated the flow of water on a 24 x 60
grid. The distribution of grid points is such that only
one gnd point falls between the wall and the velocity
maximum in the vertical boundary layer. Therefore,
they do not claim that their results are grid inde-
pendent. Their averaged wall-heat transfer at Ra =
6.3 x 10'® (Pr = 6.7) is indicated in Fig. 4(b). Mark-
atos and Pericleous calculated air on a 60 x 120 grid.
The distribution of grid points is such that 10-15
points fall in the vertical boundary layer, and care
was taken that several of these points fall between the
wall and the velocity maximum. They checked that
grid refinement up to 100 x 160 points leads to small
changes. Comparison of their wall-heat transfer
results with the present results for the k—& model with
wall functions in Fig. 4(a) shows that our results are
about 20% lower. Maybe this difference is a conse-
quence of the slightly different formulation of the wall
functions,

5. NUMERICAL RESULTS FOR
AIR AND WATER

Laminar and turbulent solutions have been
obtained for air (Pr = 0.71) up to Ra = 10'* and for
water (Pr = 7.0) up to Ra = 10"°. For the low-Reyn-
olds-number models of Chien, and Jones and
Launder, the solution in which &, ¢ and v, vanish
everywhere satisfies equations (1) with its boundary
conditions. This solution defines the laminar velocity
and temperature field. As long as the Rayleigh number
is below a certain critical value this laminar solution
is steady and forms a unique solution of equations

experimental:
- -~ Nu =0,047 Ra'?

13
-3

Nu Ra~
°

numerical:
o standard k¥ —¢ model with w.f.
x Chien model
+ Jones & Launder model
4 Markatos & Pericleous {1984}
2 Ince & Launder (1988)

} L

faminar
Nu = 0.304 RaV*
.99 } }

+
12° N 18¥  Ra 1"

numerical:
o standard k—e model with w.f.
x Chien model
+ Jones & Launder model
4 Qzoe et al. (1985)

173

Nu Ra™

experimental:

o Nu = 0047 Ra1® laminar

Nu = 0.32 Ra'#

.oa : : }
18" Ra 184

1.
19° 18"

(b)

FiG. 4. Averaged wall-heat transfer : (a) air; (b) water.

(1). We switched off the turbulence model and cal-
culated this laminar branch of solutions. For increas-
ing Rayleigh number (> 10°%) the averaged wall-heat
transfer for the laminar solution in Fig. 4 follows the
asymptote Nu = 0.30Ra"* for air and Nu = 0.32Ra'*
for water. If the turbulence model is included, the
solution can leave the laminar branch for Ra > Ra,,
and follows the turbulent branch: Ra,. is a so-called
bifurcation point of the equations. The averaged wall-
heat transfer in Fig. 4 shows that Ra, depends on
the turbulence model used. For air, the Chien model
bifurcates at Ra,, ~ 10'° and the Jones and Launder
model at Ra,. ~ 10'!, Increasing the Prandtl number
delays the bifurcation: for water, the Chien model
bifurcates at Ra,, ~ 10'° and the Jones and Launder
model at Ra,, ~ 10", The standard k— model with
wall functions shows the earliest transition to tur-
bulence, namely at Ra, ~ 10° for air and at
Ra,, ~ 10" for water.

When the standard k—¢ model is used, the laminar
solution (with zero turbulent viscosity) is not a solu-
tion of equations (1), because it does not satisfy the
boundary condition (wall function) for the kinetic
energy at the first inner grid point. We calculate that
below a critical Rayleigh number the standard k—¢
model gives a turbulent viscosity which is close to zero
everywhere. This solution can be interpreted as an
approximation of the laminar flow. Above the critical
value the turbulent viscosity suddenly increases and a
turbulent solution is found. This sudden increase is
also seen in the wall-heat transfer for the standard k-
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F1G. 5. Non-uniqueness of the turbulent solution (Jones and
Launder model, air at Ra = 10'?, 80 x 80 grid).

¢ model in Fig. 4. Because we cannot prove that the
(nearly) laminar branch in the standard k—& model
still exists for Ra > Ra,, as is trivial for the low-
Reynolds-number models, it is not certain that the
standard k-¢ model contains a bifurcation point.
Examining the development of the wall-heat trans-
fer along the hot vertical side of the cavity in Fig. 5
shows a sudden increase beyond a critical height (v,,).
This increase represents the laminar-turbulent tran-
sition. Some of our calculations show that the position
of the turbulent transition is not uniquely given as a
function of Pr and Ra. The position depends on the
initial solution at 1 = 0 with which the evolution to
the steady state is started. For example at the same
80 x 80 grid we calculate two different solutions for
air at Ra = 10'" with the Jones and Launder model
(see Fig. 5): the one with an early and the other
with a late transition. We have carefully checked the
convergence to the steady state for both solutions. The
difference between the laminar part of both solutions
is related to a difference in the core stratification. The
non-uniqueness of the transition region is also found
in the experiments of Jaluria and Gebhart [25] (and
private communication with Gebhart) for the hot ver-
tical plate in an isothermal environment. We expect
that for a fixed Rayleigh number even more than the
two partly turbulent solutions we found can exist:
probably y, can be anywhere between a minimum
distance (below which the solution is always laminar)
and a maximum distance (beyond which the solution
is always turbulent). The minimum distance equals
H if the Rayleigh number is below Rea, and the
maximum distance reaches zero if the Rayleigh num-
ber is sufficiently {ar beyond Ra.. Hence, for very
large Rayleigh numbers the boundary layer is fully
iurbulent. A late transition decreases the averaged
wall-heat transfer ; for each Rayleigh number in Fig.
4 we have selected the averaged wall-heat transfer of
the solution with the lowest position of transition, in
cases where multiple solutions were calculated. It is
interesting to note that also for the standard k—& model
non-uniqueness was found : for example two solutions
were calculated for air at Ra = 10"7" using the
60 x 60 grid. The non-uniqueness of the turbulent

solution in the transition regime for the standard k—¢
model supports the suggestion that also this model,
like the low-Reynolds-number models, has a bifur-
cation point at Ra,,. ’

The gradient of the vertical temperature profile in
the centre of the cavity (S = H/AT[0T/dy)) is shown
in Fig. 6 as a function of the Rayleigh number. The
laminar branch is calculated by switching oft the tur-
bulence model. For completeness we have also cal-
culated the solution for small Rayleigh numbers.
When the Rayleigh number is close to zero there is
only conduction, giving a zero vertical temperature
gradient. Beyond Ra = 10° the temperature in the
core becomes stratified, and the gradient in the centre
follows the asymptote S = 1.0 (for air). [f the standard
k—e model is used, the stratification leaves the laminar
branch at about Ra = 10°, In the transition region
the stratification increases sharply, after which it falls
back to values below the laminar solution. For
increasing Rayleigh number the stratification for the
turbulent solution is broken up. Extrapolation sug-
gests that it totally vanishes for infinitely large Ray-
leigh numbers, according to the asymptote (for air)

H ¢T
m —— = —22 ~116 ‘
Rluan:L AT 6), nre 2.266 Ra (8(1)
or
T—T,] i
Rluiina(, 7 = 142.266 (;—i — '1) Ra—\'e. (8b)

Figure 6 also gives an experimental value of the strati-
fication as found by Cheesewright ef al. [19] for air in
the 4 =5 cavity. This value is close to that of the
calculation. The stratification for water is roughly a
factor 2 smailer than for air. Deviations in the strati-
fication between the different turbulence models are
small.

The small stratification in the turbulent case motiv-
ates a comparison with the hot vertical plate in an
iscthermal environment. As already mentioned in the
previous paragraph. Nu = 0.047Ra'® fits both the
experiment for the hot vertical plate and for the tall
vertical cavity. For air (see Fig. 4(a)) the Jones and

: i
% 1
H oT 2 laminar I ‘
T o F |
AT 3y x turbulent x ‘
Sox !
1.6+ R
| \ z
! , , ;
| ? : |
! | X ;
i water N
cl ¢ o———""° %
5 i o
/ x
{ . air
| x|
/ X . % i
air 4 experimental (air, A=5) Rt \1‘
[ Cheescwright et al. (1986) water
.8 — .
18° 1e° 18°®  Ra 18"

FI1G. 6. Thermal stratification in the centre of the core (stan-
dard k— model with wall functions is used in the turbulent
case).
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F1G. 7. Comparison of the averaged wall-heat transfer
between the cavity and the plate.

Launder model is closest to this experiment, the Chien
model is a bit too high and the standard k—¢ model is
much too high. Also for water (seec Fig. 4(b)) the
standard k¢ model gives a too high wall-heat transfer,
whereas the Chien model and the Jones and Launder
model are reasonably close to the experiment. Indeed,
the agreement for none of the models is extremely
well. However, there is both an error in the experiment
itself as an error due to the comparison with exper-
iments in related configurations instead of the square
cavity itself. It is clear that there is a strong need for
accurate measurements in the square cavity for the
high-Rayleigh-number fully turbulent regime. In Fig.
7 we have compared the calculated averaged wall-heat
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FiG. 8. Comparison of different turbulence models for air
at Ra = 10'*: (a) wall-heat transfer; (b) wall-shear stress;
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maximum ; (e) horizontal velocity at x = H/2; () thermal

stratification at x = H/2.
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transfer for each model in the cavity with the result
for the same model at the hot vertical plate [4]. The
characteristic temperature for the plate is taken as
2T,—T,), in which T is the environment tempera-
ture. For air the agreement between the cavity and
plate result for each model is close, but for water the
deviation is larger, in particular for the standard k—¢
model. One should expect the opposite, because for a
given Rayleigh number the stratification for water is
closer near the isothermal state than for air. However,
a nearly isothermal core does not guarantee that the
wall-heat transfer for the cavity is the same as for the
plate: also the horizontal walls influence the devel-
opment of the vertical boundary layer.

In Fig. 8 we have compared several quantities, as
calculated by the different turbulence models, as a
function of height for air at Ra = 10'*: wall-heat
transfer, wall-shear stress, maximum of the vertical
velocity, maximum of the turbulent viscosity, hori-
zontal velocity at half the cavity width and the thermal
stratification at half the cavity width. In this figure the
dimensionless wall-shear stress is defined as

o Qv ‘v 9
T GBATH\ox ), ©)

All the quantities are scaled such that the turbulent
solution is almost independent of the Rayleigh
number. These scalings are consistent with those we
formulated in ref. [3] for the hot vertical plate. Figure
8 shows that the differences between the turbulence
models are largest for the wall-heat transfer and the
wall-shear stress. These quantities belong to the inner
layer of the vertical boundary layer, i.e. the layer from
the wall up to the velocity maximum. Differences for
the vertical velocity maximum are small. The cal-
culated velocity maximum is reasonably close to the
experiment of Cheesewright er al. [19] for air at
Ra = 5x10'""inthe A = Scavity. Differences between
the models for quantities in the outer layer of the
vertical boundary layer are small. For example the
small difference in the maximum of the turbulent vis-
cosity as calculated by the Jones and Launder model
is due to the slightly later transition of this model. The
later transition of the Jones and Launder model is
also recognizable in the horizontal velocity at half the
cavity width as shown in Fig. 8(e). For increasing
height in this figure we find (modulus value of the
horizontal velocity is considered): (1) a thin high-
speed horizontal boundary layer close to the floor, (ii)
the velocity falls back to an almost zero value directly
outside the horizontal boundary layer, and (iil) at
the height of the transition the horizontal velocity
suddenly increases, reaches 4 maximum and becomes
zero in the centre. The increase of the horizontal vel-
ocity is related to the sudden thickening of the bound-
ary layer at the laminar—turbulent transition position
demanding a larger inflow of fluid from the environ-
ment. The thermal stratification in the core (Fig. 8(f))
is linear, except close to the horizontal walls. Figure
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F1G. 9. Comparison of different turbulence models for water
at Ra = 10'%; (a) wall-heat transfer; (b) vertical velocity
maximum.

9 compares the wall-heat transfer and velocity
maximum for water. Differences between the wall-
heat transfer are largest.

6. CONCLUSION

Fine grids (up to 80 x 80 points) and a proper dis-
tribution of the grid points (with a strong con-
centration in the vertical boundary layers) are
required to get an accurate numerical solution for the
high-Rayleigh-number laminar and turbulent natural-
convection flow in the square cavity heated from the
vertical side.

Below a critical Rayleigh number (Ra,,) the solution
is laminar everywhere. Increasing the Prandtl number
incrcases Ra,: the standard k-¢ model finds
Ra,, ~ 10° for air and Ra,, ~ 10'" for water. The low-
Reynolds-number k—¢ models find higher values. The
Jones and Launder model remains laminar even to
Ra,, ~ 10" for air and to Ra,, ~ 10" for water. Ra,,
is a bifurcation point of the flow equations using a
low-Reynolds-number k— model. For all turbulence
models used (standard k—& model, Chien model and
Jones and Launder model) multiple (partly) turbulent
solutions were calculated on the same grid and at a
fixed Rayleigh number above Ra.. This refers to
the non-uniqueness of the position of the laminar-
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turbulent transition in the vertical boundary layer.
All the models uniquely determine the fully turbu-
lent solution at the highest Rayleigh numbers we
considered.

The laminar solution at high Rayleigh numbers
(>10°% shows a thermal stratification in the core
which is almost independent of the Rayleigh number.
When the flow becomes turbulent, the stratification
decreases with increasing Rayleigh number and seems
to vanish totally for infinitely large Rayleigh numbers.
The nearly isothermal core suggests a comparison of
the averaged wall-heat transfer for the turbulent flow
in the cavity with the wall-heat transfer for the hot
vertical plate in an isothermal environment. Indeed
deviations are small for air, but they are larger for
water. Comparison with both the experiment for the
plate and for tall vertical cavities shows that the pre-
diction for the averaged wall-heat transfer by the stan-
dard k—& model is too high, whereas the low-Reynolds
number models of Chien, and Jones and Launder are
reasonably close to the experiment. A more definitive
conclusion about the accuracy of the different models
requires the availability of accurate measurements in
the square cavity at Ra > 10'2

Differences between the turbulence models are larg-
est for quantities that are determined in the inner layer
of the vertical boundary layer, for example the wall-
heat transfer and the wall-shear stress. Differences for
the vertical velocity maximum, the turbulent viscosity
maximum, the horizontal velocity at half the cavity
width and the thermal stratification in the core are
small. Differences between the models are larger for
water than for air.
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CONVECTION NATURELLE DANS UNE CAVITE CARREE, CALCULEE AVEC DES
MODELES DE TURBULENCE A FAIBLE NOMBRE DE REYNOLDS

Résumé—La convection naturelle laminaire et turbulente dans une cavité bidimensionnelle carrée chauifée
sur un coté vertical est calculée numériquement jusqu’a 10'* pour le nombre de Rayleigh sur I'air et 10'*
sur I'ean. Trois différents modéles de turbulence sont comparés: le modéle classique k-¢ avec fonction de
paroi logarithmique et les modéles a faible nombre de Reynolds de Chien et Jones ¢t de Launder. La
position de la transition laminaire-turbulent dans la couche limite verticale dépend fortement du modele
de turbulence utilisé. Les solutions multiples pour la position de transition peuvent apparaitre pour un
nombre de Rayleigh donné, avec la méme grille numérique. La stratification thermique dans le coeur de
la cavité se rompt quand Pécoulement devient turbulent. Une comparaison, avec 'épaisseur, du transfert
moyen sur la paroi chaude pour des cavités verticales hautes montre que le modéle standard k— donne
une prédiction trop forte, tandis que les modéles a faible nombre de Reynolds sont raisonnablement
proches de 'expérience.

BERECHNUNG DER NATURLICHEN KONVEKTION IN EINEM QUADRATISCHEN
HOHLRAUM MIT HILFE VON TURBULENZMODELLEN FUR KLEINE
REYNOLDS-ZAHLEN

Zusammenfassung—Die laminare und turbulente natiirliche Konvektionsstrdmung in einem zwei-
dimensionalen quadratischen, seitlich beheizten Hohlraum wird numerisch fiir Rayleigh-Zahlen bis zu 10**
(fiir Luft) bzw. 10'° (fiir Wasser) berechnet. Es werden drei unterschiedliche Turbulenzmodelle verglichen:

das Standard k-e-Modell mit logarithmischen Wandfunktionen sowie die Modelle fiir kleine Reynoids-
Zahlen von Chien und Jones/Launder. Die Stelle des Ubergangs zwischen laminarer und turbulenter
Strémung der senkrechten Grenzschicht hingt stark von dem verwendeten Turbulenzmodell ab. AuBerdem
kénnen bei der Berechnung der Stelle des Ubergangs fiir eine bestimmte Rayleigh-Zahl in ein und demselben
numerischen Gitter Mehrfachldsungen auftreten. Die thermische Schichtung im Kern des Hohlraums wird
zerstort, sobald die Stromung turbulent wird. Ein Vergleich des mittleren Wirmeiibergangs an der Wand
mit Versuchsergebnissen fiir eine heille senkrechte Platte und fiir schlanke senkrechte Hohlrdume zeigt,
daB das Standard k-s-Modell zu grofie Werte liefert, wihrend die Modelle fiir kleine Reynolds-Zahlen die

Versuchsergebnisse recht gut wiedergeben.

PACYET ECTECTBEHHOKOHBEKTHBHOI'O TEYEHHS B KBAJIPATHOH TOJIOCTH C
HCIIOAB30BAHMEM MOJIEJIEY TYPEYJEHTHOCTH C HU3KUM YHCIIOM
PEHOJBACA

Amnorames—JTaMurapHOe B TYpOY/ICHTHOE €CTECTBCHHOKOHBEKTHBHOC TEYCHHC B JBYMEDHOI KBaIpaT-
BO#t TIOJIOCTH, HATPEBAEMOMN CO CTOPOHE! BEPTHKAILHOH CTEHKH, DACCYHTHIBACTCH YHCICHHO Ul 3HaYe-
Huil yucen Panes smioTs go 10'* ans sosmyxa u 10'°—mus somsl. CpaBRHBAIOTCS TPH DalJIHUHEIE
Mo TypOyIeHTHOCTH : CTaHAapTHAas k—& MOZenb ¢ JorapHpMuueCKHMH GYHKIMAME CTEHKH, MOJEIR
Ynna, a Taxxke xonca u Jlonnepa ¢ HuskumM wucioM Pelinonbaca. Pacnionokenne nepexona oT JaMa-
HAPHOTO TeYeHHs K TYPOYJIEHTHOMY B BEPTHKILHOM MOTPAHUYHOM cioe B GoNbuIoH CTEMEeHH 3aBHCHT
OT ucnoab3yemoii Moaenu Typbynenriocta. Kpome toro, ans ¢puxcuposanroro #ucna Panes npa onu-
HAKOBOH YHCIEHHOH CETKE MOTYT CYINECTBOBAThH MHOXCCTBCHHBIC DEIUCHMN DPACIIOIOKEHHS NEpexona.
[pa TypGyim3anuu TeuyeHHA TeIIOBas CTpaTHHMKANHA B sape MOJOCTH Hapymaerca. Comocrasinenne
YCPEOHEHHOrO TEILIONEPEHOCA OT CTEHKH C JKCICPHMEHTAIBHBIMA NaHHLIMM NOKAa3LBaeT, YTO CTaH-
naprHas k-g MOnENb aeT BEChMA 3aBLILICHHEIC 3HAYCHHA, B TO BPEMS Kax MOJCAH ¢ HU3KHM YHCIOM
PelinoNbACa TO3BOAKIOT TONYYHTH PE3Y/ILTATH, OJIHAKAE K SKCICPAMEHTAILHBIM AaHHBIM.



