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Abstract-The laminar and turbulent natural-convection flow in a two-dimensional square cavity heated 
from the vertical side is numerically calculated up to a Rayleigh number of lOI for air and up to lOI for 
water. Three different turbulence models are compared: the standard k-t model with logarithmic wall 
functions and the low-Reynolds-number models of Chien, and Jones and Launder. The position of the 
laminar-turbulent transition in the vertical boundary layer strongly depends on the turbulence model used. 
Moreover, multiple solutions for the transition position can occur for a fixed Rayleigh number at the same 
numerical grid. The thermal stratification in the core of the cavity breaks up when the flow becomes 
turbulent. Comparison of the averaged wall-heat transfer with experiments for the hot vertical plate and 
for tall vertical cavities shows that the standard k-8 model gives a too high prediction, whereas the low- 

Reynolds-number models are reasonably close to the experiment. 

1. INTRODUCTION 

A TEMPERATURE difference over the vertical sides of a 

cavity gives rise to the natural-convection flow of the 
fluid inside. If the Rayleigh number, which is a charac- 

teristic number of the problem, exceeds a critical value 
the laminar flow can become turbulent. Because the 
direct numerical simulation of the turbulent flow by 
solving the full unsteady, three-dimensional Navier- 
Stokes equations is beyond the possibilities of present- 
day computers, the turbulence has to be modelled. A 
well-known turbulence model is the k-c model. 

When the flow is turbulent the Rayleigh number is 
large (> lo9 for air). For these large Rayleigh numbers 

the flow has thin boundary layers along the vertical 
sides of the cavity. The core of the cavity is thermally 
stratified. In the part of the vertical boundary layer 
closest to the wall, gradients in the flow are very large 
and require the use of many computational grid 
points. In most turbulence calculations the solution 
in this part of the boundary layer is approximated by 
‘universal profiles’ : the logarithmic wall functions. 
These logarithmic wall functions were originally 
derived, and experimentally verified, for forced-con- 
vection flows (for example the boundary-layer flow 
along a plate in an oncoming velocity field). The log- 
arithmic wall functions do not hold for natural-con- 
vection boundary layers. However, because of lack of 
better wall functions, they still are often used in 
natural-convection problems. The search for the right 
wall functions for natural-convection boundary layers 
is going on [l-3]. 

Instead of using wall functions, it is also possible 
to solve the flow equations up to the wall. The large 
damping of the turbulence in the wall region requires 

a modification of the standard k-8 model. A lot of 

such modified models, the so-called low-Reynolds- 
number k--E models, have been proposed in the litera- 

ture. In ref. [4] all these models have been compared 
for the flow of air along an elemental natural- 
convection configuration, namely the hot vertical plate 
in an isothermal environment. The low-Reynolds- 

number models of Lam and Bremhorst, Chien, and 
Jones and Launder turned out to predict the wall-heat 
transfer closest to the experimental value. The use of 

the standard k-E model with logarithmic wall func- 
tions for k and E gives a 30% too high prediction. 

Another elemental natural-convection configur- 

ation is the square cavity heated from the vertical 
side. The boundary layer along the hot vertical side 
of the cavity shows a close resemblance with the 
boundary layer along a hot vertical plate in a stratified 

environment. In the present study we have calculated 
the flow of air and water in the two-dimensional, 
square cavity for a Rayleigh number up to 10 Is. The 
performance of the standard k-c model with (log- 
arithmic) wall functions, the low-Reynolds-number 
k--E model of Chien [5] and the low-Reynolds-number 

k--E model of Jones and Launder [6] are compared. 
Calculations in the square cavity with the standard k- 

E model with wall functions have also been made for 
air by Markatos and Pericleous [7] and for water by 
Ozoe et al. [8]. Ince and Launder [9] have recently 
used the Jones and Launder model to calculate the 
turbulent flow of air in tall vertical cavities. 

A difficulty is that accurate experiments for the 
turbulent flow in the square cavity do not exist. We 
have used the experimental wall-heat transfer for very 
tall cavities and for the hot vertical plate in an iso- 
thermal environment to make a guess of the exper- 
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NOMENCLATURE 
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coefficient in v,-equation 
low-Reynolds-number source term in k- 

equation 

low-Reynolds-number source term in E- 
equation 

frequency 
low-Reynolds-number correction for cl+, 

low-Reynolds-number correction for cZF 
low-Reynolds-number correction for c,, 
gravitational acceleration 
buoyancy production of turbulent kinetic 

energy 
height of the cavity 
turbulent kinetic energy 
Nusselt number at hot wall, 
- H/AT[dT/ax], 

averaged Nusselt number at hot wall, 

I:@ dty/H) 
pressure 
pressure correction in numerical iteration 
shear production of turbulent kinetic 

energy 
Prandtl number 
Rayleigh number, gpATH3 Prlv’ 

turbulent Reynolds number, k*/w 

gradient of thermal stratification in 
cavity centre, H/AT[dT/ay] 

time 

numerical time step 

temperature 
characteristic temperature difference, 

T,,-T, 

Til temperature of hot wall 

TC temperature of cold wall 
u horizontal velocity component 

u, velocity component tangential to closest 
fixed wall 

u, characteristic shear-stress velocity, 

J(v(a4/ay,)w) 
11 vertical velocity component 
X horizontal coordinate 

J vertical coordinate 

Yn distance to closest fixed wall 

YU position of transition for hot vertical 

boundary layer 
.+ 

L dimensionless coordinate, y+,/v. 

Greek symbols 

ai, a2 coefficients in function for grid-point 
distribution 

B coefficient of thermal expansion 
i: rate of dissipation of turbulent kinetic 

energy 
V molecular kinematic viscosity 
v 

l: 

turbulent kinematic viscosity 
density 

Ok turbulent Prandtl number for k 

CT turbulent Prandtl number for T 

or turbulent Prandtl number for E. 

Superscript 
n time level. 

Subscripts 
i grid point in the .x-direction 

j grid point in the y-direction 
max maximum of a quantity 
W wall condition. 

imental averaged wall-heat transfer through the 
vertical side of the square cavity. The prediction of the 
different models is compared with this experimental 

value. 
We will also discuss that the solution for the low- 

Reynolds-number k--E models can be nonunique. For 
a fixed Rayleigh number, both converged solutions 
with an early and a late transition from the laminar 
to the turbulent state in the boundary layer have been 
calculated. Besides the averaged wall-heat transfer as 
a function of the Rayleigh number, we also present 
the following quantities as a function of height : wall- 
heat transfer, wall-shear stress, maximum of the 
vertical velocity, maximum of the turbulent viscosity, 
horizontal velocity at half the cavity width and the 
thermal stratification at half the cavity width. 

2. MATHEMATICAL FORMULATION 

We consider a square cavity, with fixed walls, that 
is differentially heated over the vertical sides. The left 

hot wall has a temperature T,, and the right cold wall 
has a temperature T,. The horizontal floor and ceiling 
are both adiabatic. The height of the cavity is H. The 
x and y coordinates are chosen in the horizontal and 
vertical direction, respectively. 

The two-dimensional laminar and turbulent flow 
in this square cavity is described by the Reynolds 
equations. It is assumed that the fluid is incom- 
pressible and satisfies the Boussinesq approximation 

au au 
jj + 2; = O 
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+(c,~f.,(Pk+c)iGi)-~?~f-~)~ +E (1) 

Gk = -;&g; 
k’ 

vt = c,,.fp -;- 

These Reynolds equations are obtained by time-aver- 

aging the high-frequency turbulent fluctuations from 
the Navier-Stokes equations. It seems a bit strange 

that, despite the time-averaging, the unsteady terms 
remain in the formulation. However, the time-aver- 

aging is restricted to the broad-band spectrum of 
turbulence, whereas the remaining unsteady terms 
account for all weak unsteadiness that does not belong 
to the turbulence. We can also define that the unsteady 
terms represent all unsteadiness that is not modelled 

by the turbulence model. In this study we are inter- 
ested in the large-time behaviour of the flow ; we check 
whether all unsteadiness dies out and a steady final 
solution is reached. The Reynolds stresses appearing 
in the Reynolds equations have been modelled with 
the k--E model. Three versions of the k-c model are 
compared : 

(i) Standard k--E model with wall functions 

c,, = 0.09, clr = 1.44, czc = 1.92, or = 1.0, 

(T* = 1.0, or = 1.3, f, =f’, =,f2 = 1.0, D = E= 0 

wall functions at the first inner grid point: k = u?/ 

J(c,,), & = up/o.41vv+. 

(ii) Low-Reynolds-number k--E model of Chien [5] 

c, = 0.09, Clr = 1.35, cZr = 1.8, e7 = 1.0, 

a, = 1.0, or = 1.3, ,f; = 1 -exp (-O.O115y+), 

f’, = 1 .O, fi = 1 -S exp (- (ReJ6)‘). 

D= -2~2, E= -$exp(-O.Sy+) 

at the wall : k = E = 0. 

(iii) Low-Reynolds-number k--E model of Jones and 
Launder [6] 

c/a = 0.09, c,,. = 1.44, c?, = 1.92, cT = 0.9, 

ok = 1.0, fJ,: = 1.3, .h, = exp(*&), 

f, = 1.0, fZ = 1-0.3exp (-Re:). 

at the wall : k = c = 0. 

In these relations the following dimensionless vari- 

ables appear : u, = ,,/(v(au,/ay,)W), I’+ = y&v and 
Re, = k2/vE (y, is the distance to the closest fixed wall 

and u, the velocity component tangential to that wall). 
In model (i) the wall functions are only used to 

obtain boundary conditions for the k and E equations. 
These expressions are based on the logarithmic wall 
functions as originally derived for forced-convection 
boundary layers. No wall functions are applied to the 
velocity and temperature profiles. 

Rodi [IO] has suggested that the coefficient cXF is 

close to 1 in vertical boundary layers and close to 0 in 
horizontal boundary layers. An approximation that 

satisfies both limits is used in the present formulation 

c3,: = tanh In/u]. (2) 

In the literature there is still no consensus on the right 
formulation of cj, and Gk. For example, Fraikin et al. 

[l I] took cj, = 0.7/c,, and Ince and Launder [9] took 

c - 1 in their turbulent cavity calculations. If the Xt - 
Rayleigh number is increased to infinity, the turbulent 
solution in the cavity consists of natural-convection 

boundary layers along the vertical walls and an almost 
stagnant, stably stratified core region (see Fig. 1). 
The streamlines in the core are practically horizontal. 
Turbulence is concentrated in the boundary layer and 
is almost absent in the core. The stability analysis 
(see, e.g. Nachtsheim [12]) for the laminar natural- 
convection boundary layer along a heated vertical 
plate in an isothermal environment shows that the 
critical gradients in both the velocity profile and the 
temperature profile can initiate an instability and the 
transition to turbulence (giving a hydrodynamic and 
thermal instability, respectively). The hydrodynamic 
instability mechanism is represented by the P,-term in 
the k-equation, whereas the thermal instability mech- 
anism is represented by the G,-term. The stability 
analysis for the core (approximated as an inviscid, 
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I, Turbulent flow of air at Ru = 10" (Chien model): 
(a) streamlines; (b) isotherms. 

stagnant, thermally stratified environment ; see, e.g. 

Drazin and Reid [13]) shows that the thermal insta- 
bility is only damped if the stratification is stable, i.e 
if the density decreases with height. or (provided 
fi > 0) if the temperature mcreases with height. The 
present formulation for the thermal source Gk in the 
k-equation does not seem to be in line with these 

stability analyses. The source c,,!‘~~:C, has the right 
sign in the stably stratified core, namely iess than or 
equal to 0, but its value is everywhere close to zero. 
This is a consequence of the almost horizontal stream- 
lines in the core, giving cJE - 0 according to equation 
(2). Therefore, it might be better to use csi: = 1 in the 
core. Because the y-derivatives in the vertical bound- 
ary layers are small compared to the s-derivatives, the 
present formulation gives ]GII CC lPk ]. This implies 
that the thermal instability mechanism is not 
accounted for very realistically in the vertical bound- 
ary layer. Ince and Launder [9] have proposed the 
inclusion of a JT/& contribution in the GA-term. 

Actually the use of a Reynolds-stress model, instead 
of the k-c: model, automatically leads to such a con- 
tribution. Peeters and Henkes [14] have used the 
Reynolds-stress model for the turbulent natural-con- 
vection boundary layer along a heated vertical plate 
in an isothermal environment. In the inner layer (i.e. 
from the wall up to the velocity maximum) Gi, is close 
to zero, but in the outer layer (i.e. beyond the velocity 

maximum) it is roughly 30% of the total production 
of turbulent kinetic energy. Because the corrected G,,- 
term gives rise to both an increase of k and 8:. the 
overall influence on 18, turns out to be small. Therefore, 

the use of the old formulation for GA. as w: still do in 
the present study, will not lead to large differences 
in quantities like the wall-heat transfer, the vselocity 
maximum. the stratification. etc. 

After nondimensionalization of the dependent and 
independent variables (with the help of H, AT = 
Th- T,, gfl and v), the solution in the square cavity 
depends only on two characteristic numbers: the 
Prandtl number (Pr) and the Rayleigh number 

(Ra = gpA7X Pr,‘v’). The solution is centro-sym- 
metric with respect to the centre of the cavity. 

3. NUMERICAL PROCEDURE 

The spatial derivatives in the equations are dis- 
cretized with the finite-volume method on a staggered 
grid. The solution domain is covered with finite 
volumes, having a grid point for the u-velocity in the 
middle of the west and east side and a grid point for 
the I:-velocity in the middle of the north and south 

side of each volume. All other variables have their 
grid point in the centre of a volume. The equations 
are integrated over each volume, after which mass, 
momentum, T, k and E fluxes are discretized with finite 
differences. We have discretized these convection 
terms with the hybrid scheme. This implies that the 
second-order accurate central scheme for the con- 
vection is locally replaced by the first-order accurate 
upwind scheme as soon as the grid size exceeds a 
critical value. In comparison with the use of the central 
scheme for all grid points, the hybrid scheme is more 
stable during the iteration process to solve the dis- 
cretized system. We checked that continuation of the 
iteration process on the central scheme, after the solu- 
tion for the hybrid scheme has been obtained, only 

leads to very small differences. 
The appearance of boundary layers requires a non- 

equidistant grid that gives a strong grid refinement 
along the walls. The sides of the finite volumes are 
positioned according to 

tanh [a, (i/i,,, - l/2)] 

tanh (x,/2) I ’ (3a) 

i = 0, 1, , i,,,,, 

.i = 0, 1 1 ,.Lx 

(3b) 
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where LX, is derived from the expression c[? = 

cr,/sinh (c( ,), in which a2 is chosen close to zero : the 
smaller m2, the stronger the grid refinement along 

the vertical walls. The first inner grid point is approxi- 
mately positioned at x,/H = x,/i,,,,,. In most cal- 
culations we took CQ = 0.0015. 

The time dependence is treated implicitly ; the spa- 
tial derivatives are evaluated at the new time level 
n + 1, and the time derivatives are approximated with 
two time levels (B2 scheme) 

84 n+ I 

(-1 - 4 n+ I -4” 
at At 

+ O(At). (4) 

The discretized system at the new time level n+ I 
consists of non-linear, algebraic equations which are 

solved iteratively with a line Gauss-Seidel method. 
Alternating sweeps are made from the west to the 
east side and from the east to the west side of the 
computational domain. The updating of the iterative 

solution is such that only tridiagonal matrices have to 
be solved at a line. In each Gauss-Seidel sweep the 
variables u, u, T, k and E are updated one after the 

other at a line. After each sweep the pressure is 
updated with a pressure-correction method. This 
method determines a pressure correction as long as 
the continuity equation in the finite volume is not 
satisfied : the pressure is increased/decreased as long 
as there is a net inflow/outflow of mass. The pressure 
correction is described by a Poisson equation 

This equation is solved with a direct solver. Dis- 
cretization of equation (5) gives a symmetric band 
matrix for the Laplace operator, having fixed co- 
efficients which only depend on the geometry. The 
LU decomposition of this matrix has to be determined 
only once and can be stored. The sweep process at the 
new time level is stopped when the pressure correction 
in each finite volume and the heat flux through the 
boundaries are below a certain criterion. Typically 

5-10 sweeps at each time level are sufficient. 
The calculation is started with a certain initial field 

at t = 0 and we integrate in time until a steady final 
solution is reached. The time evolution in the cavity 
is dominated by three time scales : t, = HZ/v, t, = 
(H2/v)Ra- ‘I4 and t, = (H2/v)Ra-“’ (see ref. [15]). 
The conductive time scale t, determines the time to 
reach the steady state and t3 determines the required 
time step; roughly t,,/t, = Ra”’ time steps are 
required to calculate the steady solution. For example 
the solution for Ra14 should require of the order of 
IO’ time steps. This amount of time steps can con- 
siderably be reduced if we can get rid of the conductive 
time scale. This can be achieved by calculating an 
initial guess with the steady formulation. The 
unsteady terms are omitted and the transport vari- 
ables are solved by the same Gauss-Seidel procedure 
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FIG. 2. Typical time evolution to the steady state (Chien 
model, air at Ra = IO’ ‘). 

as previously described. The equation for the pressure 
correction is obtained by using the SIMPLE method 

of Patankar and Spalding [16]. This equation is also 
solved iteratively with the Gauss-Seidel solver. Some 
underrelaxation is required to prevent divergence 

of the iteration process. After approximately 3000 
Gauss-Seidel sweeps the speed of convergence has 
slowed down, and we switch over to the unsteady, 
more physical, formulation. The conductive time scale 
is already solved at the moment of switching and only 

the order of t,/t, = Ra ‘I4 time steps are required to 
reach the converged steady state. Indeed we find that 
for Ra = lOI roughly 4000 time steps are sufficient. 

As also found by Jones [17] and Thompson et al. 

[18], in the present calculations we revealed that the 

time scale t3 (which is proportional to H/J(g/IATH), 
. . . 

the Brunt-Vaisala time scale) determines the maxi- 
mum time step that still gives a stable numerical time 
integration. In all cases we used Atj(,qbATH)/H = 

0.25. A typical time evolution is shown in Fig. 2. In 
all calculations the damped oscillations are related to 
internal gravity waves in the core. For the turbulent 
solutions, almost irrespective of the Rayleigh number 

and Prandtl number, the frequency of the damped 
oscillations approximately isfH/,,/(g/IATH) = 0.087. 

Ozoe et al. [8] have also calculated the turbulent flow 
in the same square cavity with the unsteady approach, 
using the k--E model with wall functions. From their 
Fig. 13 we derive that the unsteady evolution shows 
oscillations with a frequency fH/J( g/IATH) = 0.083 

(Ra = 6.3x lo”), Pr = 67;24~60grid,AtJ(gpATH)/ 

H _ l/12). This value is close to our result. But in 
contrast with our results, the oscillations of Ozoe et 
crl., do not die out in the core for increasing time. We 

refined our time step up to AtJ(gPATH)/H = l/24, 
and switched over to the central scheme, but still did 
not find their periodic behaviour for t + co. In all 
cases the unsteadiness dies out and the turbulent solu- 

tion reaches a steady final state. Both the use of a 
slightly different turbulence model or an insufficient 
numerical accuracy can account for the difference. 

The use of low-Reynolds-number k--E models 
requires a sufficient number of grid points in the inner 



R. A. W. M 

;.Fi 

FIG. 3. Numerical accuracy of the wall-heat transfer (Chien 
model, air at Ru = 10”). 

part of the boundary layer. The different models lead 
to differences in the prediction of the wall-heat trans- 
fer of about 20%. Such differences can easily be lost 

if the number of grid points is too small and/or the grid 
points are not properly distributed. Figure 3 shows 
the wall-heat transfer for increasing grid refinement 

(40 x 40, 60 x 60, 80 x 80 grid). For example in the 
horizontal direction at half the cavity height, the 
80 x 80 grid for air at Ra = IO” has about 30 grid 
points in each vertical boundary layer and about 20 

grid points in the core. Within the vertical boundary 
layer 13 grid points are between the wall and the 
velocity maximum. For water at Ra > 10 I3 refining 

the constant a, in equation (3a) from 0.0015 to 
0.00015 increases the accuracy for a given number of 
grid points. All results which are presented in the 

sequel were obtained on the 80 x 80 grid. By repeating 
the calculations on the 60 x 60 grid, each result was 
checked to have only a small numerical error. 

4. EXISTING EXPERIMENTAL AND 

NUMERICAL DATA 

Accurate measurements for the turbulent natural- 
convection flow in the cavity are still difficult to 
obtain. For the comparison of the present numerical 
results with experiments, we have to rely on exper- 
iments performed in cavities with an aspect ratio 
(A = height/width) larger than I. Cheesewright et al. 

[I91 and Cheesewright and Ziai [20] obtained exper- 
imental data for air in the A = 5 cavity, MacGregor 
and Emery [21] measured a whole range of Prdndtl 
numbers in large-aspect-ratio cavities (up to A = 40), 
Cowan et al. [22] measured the flow of water in large 
aspect-ratio cavities (up to A = 60) and Betts and 
Dafa’Alla [23] measured air in the A = 30 cavity. 

At large Rayleigh numbers (> 106), boundary lay- 
ers develop along the vertical sides. If for a certain 
large, but fixed, Rayleigh,number the aspect ratio is 
increased, the rising boundary layer along the hot wall 
and the falling boundary layer along the cold wall will 
touch each other and the core region disappears. In 
the limit of A -+ co the flow becomes parallel (i.e. one- 
dimensional). Two-dimensional effects are restricted 
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to a thin region close to the horizontal walls. The 
turbulence in this case reaches its maximum at the 
vertical centreline of the cavity. The tlow in the large 
cavities as measured by MacGregor and Emery, 
Cowan at al. and Bctts and Dafa’Alla are nearly 
parallel, giving an averaged wall-heat transfer 

Nu=cRu” (6) 

with the constant c = 0.046, 0.043 and 0.053, rc- 

spcctively. The Nusselt number (Nu) is the dimen- 
sionless heat transfer through the hot wall: 
Nzd = - N/AT[ijTji.r],. The avcrdged Nussclt num- 
ber according to equation (6) is independent of the 

aspect ratio. However, the boundary layers in the 
square cavity are not mixed up; the turbulence is 
concentrated in the boundary layers and is almost 

absent at the vertical centreline of the core. Therefore, 
the averaged wall-heat transfer in the square cavity 
might differ from equation (6). Cheesewright et d. [ 191 
have measured velocity profiles for air as a function of 
height along both the hot and cold wall in an A = 5 
cavity. In contrast with what follows under the Bous- 
sinesq assumption, the deviation from the centro-sym- 
metric state in the experiments is relatively large. 
Cheesewright et al. contribute this deviation to heat 
losses through the horizontal walls, which were not 

perfectly adiabatic. Also three-dimensional effects 
might have influenced the experiment. The heat losses 
cause the horizontal boundary layer along the ceiling 
to become turbulent. The boundary layer along the 
floor is relaminarized, as in our calculations. The 
aspect ratio 5 is still small enough to have separated 

vertical boundary layers. 
Comparison of different existing wall-heat transfer 

experiments for the vertical hot plate in an isothermal 

environment up to about Ra = lo’* lcads to (see ref. 
[4]) Nu, = 0.1 18Ra,‘,’ (NM and Ra are based on the 
coordinate ,v along the plate and on the temperature 
difference between the wall and the environment). 
Under the approximation that the core in the square 
cavity is also isothermal. this result can be rewritten 
as 

Nrl = 0.047Ra’ ‘. (7) 

Here Nu and Ra arc based on the cavity height H and 
twice the temperature difference between the hot wall 
and the isothermal core. But actually the core of the 
square cavity is stratified. which might give an aver- 
aged wall-heat transfer that differs from equation (7). 
For example, laminar calculations show that the 
stratification in the core leads to a 40% higher aver- 
aged wall-heat transfer for the cavity compared to the 
hot plate in an isothermal environment (see ref. [24]), 
Nu = 0.304Ra’ a and 0.218Ru’ 4 respectively for air. 
However, we will show that in the turbulent case the 
stratification in the core is more isothermal than in 
the laminar case. It is remarkable that the measured 
averaged wall-heat transfer for the plate (7) is close to 
the experimental relation for large-aspect-ratio cavi- 
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ties (6) ; equation (7) will be used for comparison with 
the numerical results in the square cavity. 

Betts and Dafa’Alla calculated the cavity for an 
infinite aspect ratio, comparing different Iow-Reyn- 
olds-number k-r: models. In general, all these models 
predict a too high wall-heat transfer and a too low 
velocity maximum. In order to improve the per- 
formance of the Jones and Launder model, Ince and 
Launder [9] modified the E-term in the &-equation 
with the Yap correction. This correction accounts for 
the large turbulent diffusion from the centreline of the 
tall cavity towards the wall. With the Yap correction, 
Ince and Launder calcuIated that Nu = 0.051 Ra”’ 
for A = 00. Further they used this modified model to 
calculate the cases with A = 10, 5 and I. The Yap 
correction does not influence the results in the cases 
with A = 5 or 1, where the vertical boundary layers 
are not mixed up at the centreline. They fitted their 
numerical results for these finite aspect ratios to 
Ntr = 0.047Ra"'. As shown in Fig. 4(a), their Ray- 
leigh number in the case of the square cavity was 
too small to get a turbulent solution : their wall-heat 
transfer in this case is practically equal to our laminar 
result. 

Markatos and Pericleous [7] and Ozoe et a/. [S] 
calculated the turbulent flow in the square cavity, 
using the k--.? model with (logarithmic) wall functions. 
Ozoe ct al. calculated the flow of water on a 24 x 60 
grid. The distribution of grid points is such that only 
one grid point falls between the wall and the velocity 
maximum in the vertical boundary layer. Therefore, 
they do not claim that their results are grid inde- 
pendent. Their averaged wall-heat transfer at Ra = 
6.3 x 10” (Pr = 6.7) is indicated in Fig. 4(b). Mark- 
atos and Pericleous calculated air on a 60 x 120 grid. 
The distribution of grid points is such that IO-15 
points fall in the vertical boundary layer, and care 
was taken that several of these points fall between the 
wall and the velocity maximum. They checked that 
grid refinement up to 100 x 160 points leads to small 
changes. Comparison of their wall-heat transfer 
results with the present results for the k-8 model with 
wall functions in Fig. 4(a) shows that our results are 
about 20% lower. Maybe this difference is a conse- 
quence of the slightly different fo~ulation of the wall 
functions. 

5. NUMERICAL RESULTS FOR 

AIR AND WATER 

Laminar and turbulent solutions have been 
obtained for air (Pr = 0.71) up to Ra = 1Ol4 and for 
water (Pr = 7.0) up to Ra = 10”. For the low-Reyn- 
olds-number models of Chien, and Jones and 
Launder, the solution in which k, E and vI vanish 
everywhere satisfies equations (1) with its boundary 
conditions. This solution defines the laminar velocity 
and tem~rature field. As long as the Rayleigh number 
is below a certain critical value this Iaminar solution 
is steady and forms a unique solution of equations 

.l _T ---NV =*.047Ra”“----/ e>erimental: 

x Chien model 
* Jones & taundcr model 
Q Ma:karos & Periclcour (1984) 
0 Ince &Launder (1988) 

.‘A I 
numerical: 

2 D standard k-c model with w.f. 
, x Chien model 
2 + loner & Launder model 

1; A Ozoc et al. (1985) 
0 2 

~Os::I-,I-:: 
FIG. 4. Averaged wall-heat transfer : (a) air; (b) water. 

(1). We switched off the turbulence model and cal- 
culated this laminar branch of solutions. For increas- 
ing Rayleigh number (> IO’) the averaged wall-heat 
transfer for the laminar solution in Fig. 4 follows the 
asymptote % = 0.30Ra’:4 for air and NM = 0.32Ra'!4 
for water. If the turbulence model is included, the 
solution can leave the laminar branch for Ra > Ra,, 
and follows the turbulent branch : Ra,, is a so-called 
bifurcation point of the equations. The averaged wall- 
heat transfer in Fig. 4 shows that Rat, depends on 
the turbulence model used. For air, the Chien model 
bifurcates at Ra,, - IO '* and the Jones and Launder 
model at Rat, - 10”. Increasing the Prandtl number 
delays the bifurcation: for water, the Chien model 
bifurcates at Ra,, - IO'" and the Jones and Launder 
model at Ra,, - 10t3. The standard k-c model with 
wall functions shows the earliest t~dnsition to tur- 
bulence, namely at Ra,, - IO9 for air and at 
Ra,, - 10' ’ for water. 

When the standard k-c model is used, the laminar 
solution (with zero turbulent viscosity) is not a solu- 
tion of equations (l), because it does not satisfy the 
boundary condition (wall function) for the kinetic 
energy at the first inner grid point. We calculate that 
below a critical Rayleigh number the standard k-e 
model gives a turbulent viscosity which is close to zero 
everywhere. This solution can be interpreted as an 
approximation of the laminar flow. Above the critical 
value the turbulent viscosity suddenly increases and a 
turbuIent solution is found. This sudden increase is 
also seen in the wall-heat transfer for the standard k- 



Fro. 5. Non-uniqueness of the turbulent solution (Jones and 
Launder model. air at Ru = IO". 80 x 80 grid). 

(-: model in Fig. 4. Because we cannot prove that the 

(nearly) laminar branch in the standard k--E model 
still exists for Ra > Ru,,, as is trivial for the low- 
Reynolds-number models, it is not certain that the 

standard k--E model contains a bifurcation point. 
Examining the development of the wall-heat trans- 

fer along the hot vertical side of the cavity in Fig. 5 
shows a sudden increase beyond a critical height (J>,~). 

This increase represents the laminar-turbulent tran- 
sition. Some of our calculations show that the position 
of the turbulent transition is not uniquely given as a 
function of Pr and Ru. The position depends OIL the 
initial solution at / = 0 with which the evolution to 
the steady state is started. For example at the same 
80 x 80 grid we calculate two different solutions for 
air at Ra = 10 ’ 3 with the Jones and Launder model 

(see Fig. 5): the one with an early and the other 
with a late transition. We have carefully checked the 
convergence to the steady state for both solutions. The 
difference between the laminar part of both solutions 

is related to a difference in the core stratification. The 
non-uniqueness of the transition region is also found 
in the experiments of Jaluria and Gebhart [25] (and 
private communication with Gebhart) for the hot ver- 

tical plate in an isothermal environment. We expect 
that for a fixed Rayleigh number even more than the 
two partly turbulent solutions we found can exist: 
probably _rir can be anywhere between a minimum 
distance (below which the solution is always laminar) 
and a maximum distance (beyond which the solution 
is always turbulent). The minimum distance equals 

H if the Rayleigh number is below Ru,, and the 
maximum distance reaches zero if the Rayleigh num- 
ber is sufficiently far beyond Ra,,. Hence, for very 
large Rayleigh numbers the boundary layer is fully 
turbulent. A late transition decreases the averaged 
wall-heat transfer: for each Rayleigh number in Fig. 
4 we have selected the averaged wall-heat transfer of 
the solution with the lowest position of transition, in 
casts where multiple solutions were calculated. It is 
interesting to note that also for the standard k--E model 
non-uniqueness was found : for example two solutions 
were calculated for air at Ra = 10’ ” using the 
60 x 60 grid. The non-uniqueness of the turbulent 

The gradient of the vertical temperature profile in 

the centre of the cavity (S = H/AT[dT/iiy]) is shown 
in Fig. 6 as a function of the Rayleigh number. The 

laminar branch is calculated by switching off the tur- 
bulence model. For completeness we have also cal- 
culated the solution for small Rayleigh numbers. 

When the Rayleigh number is close to zero there is 
only conduction. giving a zero vertical temperature 
gradient. Beyond Ru = IOh the temperature in the 

core becomes stratified, and the gradient in the centre 
follows the asymptote S = 1 .O (for air). If the standard 
k--F: model is used, the stratification leaves the laminar 

branch at about Ra = 109. In the transition region 
the stratification increases sharply, after which it falls 
back to values below the laminar solution. For 
increasing Rayleigh number the stratification for the 

turbulent so!ution is broken up. Extrapolation sug- 
gests that it totally vanishes for infinitely large Ray- 
leigh numbers. according to the asymptote (for air) 

or 

Ra-‘i’h WI 

Figure 6 also gives an experimental value of the strati- 
fication as found by Cheesewright et al. [ 191 for air in 
the A = 5 cavity. This value is close to that of the 
calculation. The stratification for water is roughly a 
factor 2 smaller than for air. Deviations in the strati- 
fication between the different turbulence models are 
small. 

The small stratification in the turbulent case motiv- 

ates a comparison with the hot vertical plate in an 
isothermal environment. As already mentioned in the 
previous paragraph. @U = 0.047Ra” fits both the 
experiment for the hot vertical plate and for the tall 
vertical cavity. For air (see Fig. 4(a)) the Jones and 

FIG. 6. Thermal stratification in the centre of the core (stan- 
dard k--E model with wall functions is used in the turbulent 

case). 

solution in the transition regime for the standard k--E 
model supports the suggestion that also this model, 
like the low-Reynolds-number models, has a bifur- 
cation point at Ra,,. 
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o standard k-r model 

x Chicn model 

+ Jones & Launder model 

,“_ 
10 lOI lOI Ra 10’5 

FIG. 7. Comparison of the averaged wall-heat transfer 
between the cavity and the plate. 

Launder model is closest to this experiment, the Chien 
model is a bit too high and the standard k--E model is 
much too high. Also for water (see Fig. 4(b)) the 
standard k-c model gives a too high wall-heat transfer, 
whereas the Chien model and the Jones and Launder 
model are reasonably close to the experiment. Indeed, 
the agreement for none of the models is extremely 
well. However, there is both an error in the experiment 
itself as an error due to the comparison with exper- 
iments in related configurations instead of the square 
cavity itself. It is clear that there is a strong need for 
accurate measurements in the square cavity for the 
high-Rayleigh-number fully turbulent regime. In Fig. 
7 we have compared the calculated averaged wall-heat 
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FIG. 8. Comparison of different turbulence models for air 
at Ra = 10’3: (a) wall-heat transfer; (b) wall-shear stress; 
(c) vertical velocity maximum; (d) turbulent viscosity 
maximum; (e) horizontal velocity at x = H/2; (f) thermal 

.^ 
stratlhcatlon at x = H/2. FIGS. 8(a) and (b). 
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transfer for each model in the cavity with the result 
for the same model at the hot vertical plate [4]. The 
characteristic temperature for the plate is taken as 

2( r, - T, ), in which T, is the environment tempera- 
ture. For air the agreement between the cavity and 
plate result for each model is close, but for water the 

deviation is larger. in particular for the standard k-l: 

model. One should expect the opposite, because for a 
given Rayleigh number the stratification for water is 
closer near the isothermal state than for air. However, 

a nearly isothermal core does not guarantee that the 
wall-heat transfer for the cavity is the same as for the 
plate: also the horizontal walls influence the devel- 

opment of the vertical boundary layer. 
In Fig. 8 we have compared several quantities, as 

calculated by the different turbulence models, as a 
function of height for air at Ru = IO”: wall-heat 

transfer, wall-shear stress, maximum of the vertical 
velocity, maximum of the turbulent viscosity, hori- 
zontal velocity at half the cavity width and the thermal 
stratitication at half the cavity width. In this figure the 

dimensionless wall-shear stress is defined as 

All the quantities are scaled such that the turbulent 
solution is almost independent of the Rayleigh 
number. These scalings are consistent with those WC 
formulated in ref. [3] for the hot vertical plate. Figure 

8 shows that the differences between the turbulence 
models are largest for the wall-heat transfer and the 
wall-shear stress. These quantities belong to the inner 
layer of the vertical boundary layer, i.e. the layer from 
the wall up to the velocity maximum. Differences for 

the vertical velocity maximum are small. The cal- 
culated velocity maximum is reasonably close to the 
experiment of Cheesewright et al. [I91 for air at 
RLI = 5 x 10’” in the A = 5 cavity. Differences between 
the models for quantities in the outer layer of the 
vertical boundary layer are small. For example the 

small diff‘erence in the maximum of the turbulent vis- 
cosity as calculated by the Jones and Launder model 
is due to the slightly later transition of this model. The 
later transition of the Jones and Launder model is 
also recognizable in the horizontal velocity at half the 
cavity width as shown in Fig. S(e). For increasing 

height in this figure we find (modulus value of the 
horizontal velocity is considered): (i) a thin high- 
speed horizontal boundary layer close to the floor. (ii) 
the velocity falls back to an almost zero value directly 
outside the horizontal boundary layer. and (iii) at 
the height of the transition the horizontal velocity 
suddenly increases, reaches a maximum and becomes 
zero in the centre. The increase of the horizontal vel- 
ocity is related to the sudden thickening of the bound- 
ary layer at the laminar-turbulent transition position 
demanding a larger inflow of fluid from the environ- 
ment. The thermal stratification in the core (Fig. S(f)) 
is linear. except close to the horizontal walls. Figure 
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FIG. 9. Comparison of different turbulence models for water 
at Ra = 10”; (a) wall-heat transfer; (b) vertical velocity 

maximum. 

9 compares the wall-heat transfer and velocity 
maximum for water. Differences between the wall- 
heat transfer are largest. 

6. CONCLUSION 

Fine grids (up to 80 x 80 points) and a proper dis- 

tribution of the grid points (with a strong con- 
centration in the vertical boundary layers) are 
required to get an accurate numerical solution for the 
high-Rayleigh-number laminar and turbulent natural- 
convection flow in the square cavity heated from the 
vertical side. 

Below a critical Rayleigh number (Ra,,) the solution 

is laminar everywhere. Increasing the Prandtl number 
increases Ru,,: the standard k--F. model finds 
Ra,, - 10” for air and Racr - 10 ’ ’ for water. The low- 

Reynolds-number k-c models find higher values. The 
Jones and Launder model remains laminar even to 
Ra,, - IO ’ ’ for air and to Ra,, - 10 ’ 3 for water. Ra,, 

is a bifurcation point of the flow equations using a 
low-Reynolds-number k--E model. For all turbulence 
models used (standard k--E model, Chien model and 
Jones and Launder model) multiple (partly) turbulent 
solutions were calculated on the same grid and at a 
fixed Rayleigh number above Ra,,. This refers to 
the non-uniqueness of the position of the laminar- 
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turbulent transition in the vertical boundary layer. 
All the models uniquely determine the fully turbu- 
lent solution at the highest Rayleigh numbers we 
considered. 

The laminar solution at high Rayleigh numbers 
(> 106) shows a thermal stratification in the core 
which is almost independent of the Rayleigh number. 
When the flow becomes turbulent, the stratification 
decreases with increasing Rayleigh number and seems 
to vanish totally for infinitely large Rayleigh numbers. 
The nearly isothermal core suggests a comparison of 
the averaged wall-heat transfer for the turbulent flow 
in the cavity with the wall-heat transfer for the hot 
vertical plate in an isothermal environment. Indeed 
deviations are small for air, but they are larger for 
water. Comparison with both the experiment for the 
plate and for tall vertical cavities shows that the pre- 
diction for the averaged wall-heat transfer by the stan- 
dard k--E model is too high, whereas the low-Reynolds 
number models of Chien, and Jones and Launder are 
reasonably close to the experiment. A more definitive 
conclusion about the accuracy of the different models 
requires the availability of-accurate measurements in 
the square cavity at Ra > 1012. 

Differences between the turbulence models are Iarg- 
est for quantities that are determined in the inner layer 
of the vertical boundary layer, for example the wall- 
heat transfer and the wall-shear stress. Differences for 
the vertical velocity maximum, the turbulent viscosity 
maximum, the horizontal velocity at half the cavity 
width and the thermal stratification in the core are 
small. Differences between the models are larger for 
water than for air. 
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CONVECTION NATURELLE DANS UNE CAVITE CARREE, CALCULEE AVEC DES 
MODELES DE TURBULENCE A FAIBLE NOMBRE DE REYNOLDS 

Rhmb-La convection naturelle laminaire et turbulente dans une cavite bidimensionnelle carree chauflee 
sur un coti vertical est calculie numeriquement jusqu’a lOI pour le nombre de Rayleigh sur l’air et 10“ 
sur l’eau. Trois differems modeles de turbulence sont compares : le modele classique k-c avec fonction de 
paroi logarithmique et les modeles a faible nombre de Reynolds de Chien et Jones ct de Launder. La 
position de la transition lalninaire-turbulent dans la couche limite verticale depend fvrtement du mod& 
de turbulence utilise. Les solutions multiples pour la position de transition peuvent apparaitre pour un 
nombre de Rayleigh don&, avec la meme grille numerique. La strati~cation thermiqae dans le coeur de 
la cavite se rompt quand I’ecoulcment devient turbulent. Une comparaison, avec l’epaisseur, du transfert 
moyen sur la paroi chaude pour des cavites verticales hautes montre que le modele standard k--i: donne 
une p&diction trop forte. tandis que les modeles a faible nombre de Reynolds sont raisonnablement 

proches de I'expCrience. 

BERECHNUNG DER NATURLICHEN KONVEKTION IN EINEM QUADRATISCHEN 
HOHLRAUM MIT HILFE VON TURBULENZMODELLEN FtfR KLEINE 

REYNOLDS-ZAHLEN 

Zusammenfasung-Die laminare und turbulente natiirliche Konvektionsstromung in einem zwei- 
dimensionalen quadratischen, seitiich beheizten Hohlraum wird numerisch fiir Rayleigh-~hlen bis zu lOi 
(fur Luft) bzw. lOl5 (fiir Wasser) berechnet. Es werden drei unter~hi~liche Turbulenzmodeli~ verglichen : 
das Standard k-s-Model1 mit Ioga~t~mischen Wandfunktionen sowie die Mod&e fur kleine Reynolds- 
Zahlen von Chien nnd Jones/Launder. Die Stelle des Ubergangs zwischen faminarer und turbulenter 
Striimung der senkrechten Grenzschicht hlngt stark von dem verwendeten Turbulenzmodell ab. AuBerdem 
kdnnen bei der Berechnung der Stelle des Obergangs fiir eine bestimmte Rayleigh-Zahl in ein und demselben 
numerischen Gitter Mehrfachltisungen auftreten. Die thermische Schichtung im Kern des Hohlraums wird 
zerstort, sobald die Stromung turbulent wird. Ein Vergleich des mittleren Wiirmeiibergangs an der Wand 
mit Versuchsergebnissen fiir einc heiDe senkrechte Platte und fiir schlanke senkrechte Hohlraume zeigt, 
dal3 das Standard k--a-Model1 zu grof.$e Werte liefert, w2hrend die Modelle fur kleine Reynolds-Zahlen die 

Versuchsergebnisse recht gut wiedergeben. 

PACHET EC~CTB~HHOKO~B~KT~BHOrO TEYEHMR B KBAMATHOH I-IOJIOCTH C 
~CHO~b~BAH~~M MOANED ~~Y~EH~~~ C HMBKHM YHCJIOM 

PE~HO~bACA 

A5sora~*JIaMxsriapHoe u Typ6JtnetiTrioe e~e~e~Ho~oH~e~~BHoe Tevemie B nsyhfepiio~ rnanpaz- 
~0% no~~ocrs,~arpeeaeMoii co croponbt sepTsixanbHoii creHmi,paccwrbisaeTc~ 9icneHIio n.m 3Hwe- 
H&i YHcen P3nea BILnOTb no IO'* &WI Bosnyxa w 10’5-~n BOLeI. CpaBHHBaIOTC9i ~pi pa3JmSHbIe 
MOfleJni Ty6yJXHTHoCTii: CTaIiAapTHar k-6 MOReJIb C JIOrapH+MHWKHM5l ~)‘IiKIJFUMH CTeHKB, MOAUIK 

Ymxa, a Tare AXOHC~ H JIowepa c HBJKHM SHCJIOM PeiiHonbwa. Pacnonoateme nepexona OT nam- 
HapHOrO Te4eHHII K Typ6yneHTHOM)' B BCpTHKWIbHOM IIOQaHHvHOM CJIW B 6onbuofi CTUIeHH 3BBHCBT 

OT ncnonb3yeMoii Monemi Typ6ymiTHOCTIi. KpoMe TOTO, JWI ~HKCB~OBUIHOTO wcna kmen II~H om- 
HaKoBofi nsicnetmoii ceTKe MoryT cywecTeosaTb MwoxcecweHHbIe peuxemfn pacnonoxewn nepexoxa. 
Ilpw Typ6ynH3amH TeqeHHa Tennon- crpam@ixauir B ape nonocrt4 napymaercn. Conocraenetine 
YCpemeHHOrO TelLIlOllepeHOCa OT CTfXiKU C 3KCIICpHMeHTilJSHbIMH AZlHHblME% llOKa3blBET, ST0 CWH- 
AiiJ?THaS k--E MOAenb AaeT BeCbMa 3aBbIUZeliHble 3HiVfeHHR, B TO B&h?MR KaK MOiWUi C HH3KliM =iHCJlOM 


