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SUMMARY

A boundary element method is developed for the analysis of contaminant migration in porous media. The
technique involves, "rstly, taking the Laplace transform with respect to time then followed by a co-ordinate
transform and a mathematical transform of the well-known advection}dispersion equation. The series of
transforms reduce the equation into the modi"ed Helmholz equation and this greatly facilitates the
formulation of the boundary integral equation and a system of approximating algebraic boundary element
equations. The algebraic equations are solved simultaneously in the transform space before being inverted
numerically to obtain the concentration of the contaminant in real time and space. The application of this
technique is demonstrated by some illustrative examples. Copyright ( 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, the Boundary Element Method (BEM) has been seen as an attractive numerical
technique. While less powerful than some domain methods (such as the "nite element method), it
nevertheless has certain advantages. One particular feature of the BEM is that a set of boundary
integral equations equivalent to the governing di!erential equations is formulated, instead of a set
of domain integral equations used in most other methods. It leads to the possibility of reducing
the dimensionability of the problem by one and in the number of approximating equations which
must be solved. In the BEM data input preparation and mesh generation are regarded as simpler
than domain methods, notwithstanding the availability of preprocessors nowadays for assisting
in these tasks. Another advantage of the BEM involves problems with in"nite boundaries; these
are treated naturally in which the in"nite boundaries are not formally included and so can result
in potential savings in computational e!ort.

In order to develop the boundary element method however, it is necessary "rst to formulate an
equivalent boundary integral equation to the governing equation. Di!erent approaches have



been adopted for the time-dependent advection}dispersion equation. The boundary integral
formulation of Taigbenu and Liggett,1 for instance, uses a "nite di!erence scheme to treat the
time derivative. This time discretization and the advection terms lead to a domain integral while
the dispersion terms are cast into the form of a boundary integral. As the evaluation of a domain
integral is required at each time step, this technique is potentially unattractive for problems with
large domains.

Khanbilvardi et al.2 studied the closely related problem of unsaturated moisture #ow by
formulating a boundary integral equation which employs the time-dependent fundamental
solutions. With this technique, the space}time domain is divided up into elements with prescribed
space and time interpolation functions. Since the approach requires that the temporal integration
be evaluated from the commencement of the process to the time of interest, it will demand the
storage and numerical integration of the complete solution history. For solutions at moderate or
large time, this method will inevitably be computationally expensive.

An approach used by Rahman et al.3 involves a Laplace transformation of the time variable
enabling a boundary integral equation formulation of problems with isotropic hydrodynamic
dispersion and uniformly zero initial background concentration while avoiding an undesirable
domain integral. The use of Laplace transform technique in boundary element formulation is not
new. For example, it was previously used by Cruse and Rizzo4 to formulate boundary integral
equations in transient thermoelasticity and by Smith5 and Smith and Booker6~9 in thermoelastic-
ity. This is the "rst of two papers which will use the Laplace transform technique to develop
a boundary element method for contaminant migration near a waste repository where hy-
drodynamic dispersion may or may not be anisotropic and the initial background concentration
may or may not be uniformly zero. In this paper, the porous medium surrounding the waste
source will be assumed to be homogeneous while the case in which the porous media is
non-homogeneous will be discussed in the second paper.

2. DEVELOPMENT OF 2D BEM FOR HOMOGENEOUS POROUS MEDIA

In many practical situations, the longitudinal dimension of the waste repository or source under
consideration is large relative to the dimensions of the other sides. For these cases, it is usually
su$cient, in practice, to formulate the physical problem to be solved as a problem of two-
dimensional plane contaminant transport. It will be assumed in this paper that the repository is
long in the y direction and that contaminant transport is occurring in the two-dimensional x}z
plane, that is, the BEM will be developed for problems in two spatial dimensions. As well, many of
the cases to be dealt with involve engineered waste repositories where the surrounding ground-
water #ow occurring near the repositories is likely to remain fairly uniform. Therefore, in this
discussion, the groundwater #ow will be assumed to remain constant spatially and temporally in
the porous media.

2.1. Governing equations

By considering a control area and applying the principle of conservation of mass, the governing
equation of contaminant transport of a single species in the x}z plane of the porous media may be
written as,10~12

$ ) f#n
Lc

Lt
#g"0 (1)
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where $"[L/Lx, L/Lz]T is the gradient operator, f"[ f
x
, f

z
]T the vector of mass #ux components

in the x, z directions, n the porosity of the porous media, c the concentration of the contaminant
in the pore #uid, and g the rate at which the contaminant is lost from the groundwater due to
adsorption onto the soil skeleton, radioactive decay, biodegradation and other sources and sinks
per unit volume of porous media.

The mass #ux is often assumed to be governed by a Fickian relationship given by

f"nVc!nD$c (2)

where V"[<
x
, <

z
]T is the vector of the components of the average groundwater velocity in the

x, z directions, and D the tensor of hydrodynamic dispersion.
In isotropic porous media, the coe$cients of hydrodynamic dispersion are commonly ex-

pressed in the form as,10

D
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where a
L
, a

T
are the longitudinal and tranverse dispersivities, D

0
is the coe$cient of isotropic

molecular di!usion, d
kl

is the Kronecker's delta and k, l range over the index set (x, z). In source or
sink-free porous media, the quantity g can often be thought of as the sum of components, g

A
(due

to adsorption), g
D

(due to radioactive decay) and g
B

(due to biodegradation), i.e.

g"g
A
#g

D
#g

B
(3)

A number of commonly occurring chemical reactions in groundwater may be approximated by
either a linear equilibrium or a "rst-order non-equilibrium adsorption}desorption model.13,14 In
the case of linear equilibrium isotherm, the rate of adsorption onto the soil skeleton can be
expressed as 15~17

g
A
"oK

$

Lc

Lt
(4)

where o is the dry density of the soil. The relationship of equation (4) is applicable to sorption
processes in which the contaminant concentrations are low.18,19 The ratio at which contaminant
is lost due to both biodegradation and radioactive decay is usually proportional to the concentra-
tion, thus

g
D
#g

B
"ncc (5)

where c is the sum of the radioactive decay constant c
D

and the biodegradation constant c
B
, viz.

c"c
D
#c

B

Using the Fickian-type relationship between mass #ux and concentration in equation (2) and
combining with equations (1) and (3)}(5), it then follows that under isothermal conditions and
assuming a steady advective #ow "eld is occurring in a homogeneous saturated porous media, the
equation of contaminant transport is given by

n(D$) )$c!nV )$c"(n#oK
$
)
Lc

Lt
#ncc (6)
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In developing solutions of contaminant transport, it is sometimes preferred by investigators and
also in this paper to de"ne

D
a
"nD the &e!ective' tensor of hydrodynamic dispersion (7)

V
a
"nV the Darcy velocity vector (8)

so that the mass #ux may be written as

f"V
a
c!D

a
$c (9)

and an alternative form to equation (6) may be represented as

(D
a
$ ) )$c!V

a
)$c"(n#oK

$
) A

Lc

Lt
#c*cB (10)

where c*"c/(1#oK
$
/n).

2.1.1. Laplace transform. The boundary element solution techniques developed in this paper
involve the use of a Laplace transform to eliminate the time variable. Thus, assuming that the
initial background concentrations is c

0
, a Laplace transform,

cN"P
=

0

ce~st dt (11)

of equation (10) yields

(D
a
$) )$cN!V

a
)$cN"(n#oK

$
) (s#c*) AcN!

c
0

s#c*B (12)

The Laplace transform equation of 2D plane contaminant migration for a single contaminant
species in an in"nite homogeneous saturated porous media, assuming that the principal direc-
tions of hydrodynamic dispersion are parallel to the x}z co-ordinate axes, reduces from equation
(12) to the following form;

D
axx

L2cN
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#D
azz
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ax
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"(n#oK
$
) (s#c*)cN (13)

where in the "rst instance the background concentration in the domain, c
0
, is assumed to be

identically zero everywhere and D
axx

, D
azz

are the &e!ective' coe$cients of hydrodynamic disper-
sion in the x and z directions respectively, <

ax
, <

az
are the components of Darcy velocity in the

x and z directions, respectively.
A more general case where the initial contaminant distribution is not identically zero every-

where will be discussed in a later subsection.

2.1.2. Co-ordinate transformation. Now, if the following co-ordinate transformation is intro-
duced in the x}z plane.20

x"uX (14)

z"wZ (15)
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where
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D
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D
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B
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(16)
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It is found that
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The component of the contaminant #ux normal to the boundary of the natural x}z space is given
by

fM
/
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an
cN!ADaxx

LcN
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l
x
#D
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LcN
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l
zB (23)

where l
x

and l
z

are the direction cosines of the normal to the natural boundary and <
a/

is the
component of groundwater #ow in the direction of the normal. This equation is transformed into

fM
N
"<
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cN!D

a

LcN
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(24)

where fM
N
, <

aN
are, respectively, the component of the mass #ux and groundwater velocity normal

to the transformed boundary. It is shown in Leo and Booker20 that this is related to fM
n
by
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N
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and that

<
aN
"<

aX
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¸
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where ¸
X
, ¸

Z
are the direction cosines of the normal to the transformed boundary. Since the

groundwater velocity is constant both spatially and temporally in the domain, the introduction of
the second transform,

cN"cN *e(-X`jZ) (27)
where

-"

<
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2D
a

(28)
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(29)
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leads to a mathematically convenient transformed form of the contaminant transport equation in
the X}Z space, viz. the Helmholtz equation

D
a
+2cN *"ScN * (30)

where

S"##D
a
(-2#j2) (31)

with

fM
N
"fM *

N
e(-X`jZ) (32)
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N
"
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2

cN *!D
a
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(33)

2.2. Boundary integral equation

Equation (30) may be expressed more simply as

LcN"0 (34)

where L is the modi"ed Helmholtz operator which appears in equation (30). Suppose now that cN A
is a test function which satis"es the following adjoint equation in the presence of a singularity:

LAcN A#d (r!r
0
)"0 (35)

where LA is the adjoint di!erential operator, d is the Dirac delta function, r
0

is the position vector
of the singularity and r is the position vector of the "eld point.
Since the modi"ed Helmholtz operator is self-adjoint, the operators L and LA are identical. By
integrating the inner product of cN A and LcN * by parts over the domain ), it is found that

P)
cN ALcN * d)"P!

D
a AcN A

LcN *
LN

!cN *
LcN A

LNB d!#P)
cN ALAcN A d) (36)

where LcN */LN, LcN A/LN are the derivatives of cN * and cN A respectively along the boundary normal.
Combining equations (34)}(36) leads to

P)
cN *d(r!r

0
) d)"P!

D
a AcN A

LcN *
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!cN *
LcN A

LNB d! (37)

It follows from the properties of the Dirac delta function that

e (r
0
)cN *(r

0
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D
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where e(r
0
) is found to be

e(r
0
)"G

1 if r
0

is within domain )
0 if r

0
is outside domain )

1
2

if r
0

lies on a smooth boundary or
the subtended angle 2n if the boundary is not smooth

(39)
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The solution of the adjoint equation (35) is variously known as the fundamental solution,
principal solution, elementary solution or free-space Green's function. Hence for the modi"ed
Helmholtz operator of equation (30), the solution of the adjoint equation (35) yields the
fundamental solution in two spatial dimensions as

cN A (rA)"
1

2nD
a

K
0
(.rA)

where rA
"Dr !r

0
D is the distance of the "eld point from the singularity, K

0
the modi"ed Bessel

function of the second kind, zero order, ."JS/D
a
denotes the branch with the positive real part.

An alternative and equivalent boundary integral equation to (38) may be obtained by introduc-
ing the normal component of the transformed #ux which is de"ned by equation (33) and it is
found that

c(r
0
)cN * (r

0
)"P!

(cN * fM A

N
!cN A fM *

N
) d! (40)

where
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3. BOUNDARY ELEMENT APPROXIMATION

In the boundary element method, it is aimed to reduce equation (40) into a set of simultaneous
algebraic equations by discretizing the boundary of the domain into a discrete number of
elements 1,2, N

e
. It will be necessary to adopt some approximating interpolation functions for

the dependent variable cN * or fM *
N

on the boundary surface. The boundary to the domain may also
be approximated by elements in the form of straight line segments, quadratic, cubic polynomial
curves (for 2D) or triangles, quadrilaterals (for 3D) and so forth. In the simplest case for
a two-dimensional space problem, it is usually assumed that the boundary is approximated by
straight line elements while the dependent variable remains a piecewise constant value over the
length of the element. Thus in this case the position vector r

j
on the jth element of the boundary

may be de"ned in terms of nodal position vectors r1
j
, r2

j
as follows (see Figure 1),

r
j
(f)"NI 1(f)r1

j
(f)#NI 2 (f)r2

j
(f)

NI 1 (f)"1
2
(1!f)

NI 2 (f)"1
2
(1#f) (41)

where NI 1 and NI 2 are the shape functions for the straight line elements and the variable
f represents the parametric distance measured from the local origin, usually located at the centre
of the element. As the point moves from one end of the element to the other, its value ranges from
!1 to 1. Since the continuous functions of cN * and fM *

N
are assumed to be piecewise constant values

on each of the line element, then an approximation of equation (40) is given by

e(r
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)cN (r
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Ne
+
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GcN *j P
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~1

fM A

N
(r
j
(f)!r
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0
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jH (42)
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Figure 1. Straight line boundary element

where d!
j
"J

j
df (J

j
is the Jacobian of the &jth' element), J

j
"[(X

j`1
!X

j
)2#(Z

j`1
!Z

j
)2]1@2,

X
j
, Z

j
, X

j`1
, Z

j`1
are the co-ordinates of the end points of the &jth', element in the X}Z

co-ordinate space, and cN *
j
, fM *

Nj
represent the known and unknown nodal values of the variables, at

the centre of the boundary element j.
There is a conceptual advantage to now imagine that the singularity is &applied' successively at

each of the &i1 nodes, r
0i

, i"1,2 , N
e
, located at the centre of each boundary element, then the

resulting system of simultaneous equations will develop into the matrix equation

H*c6 *"G*f1 *
N

(43)

where c6 *, f1 *
N

are the vectors of cN *
j

and fM *
Nj

, H*, G* are N
e
]N

e
in#uence matrices in which the

general in#uence coe$cients h*
ij

and g*
ij

for straight line elements are given by

h*
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"!P

1

~1

fM A

N
(r
j
(f)!r

0i
)J

j
df if iOj

h*
ii
"!P

1

~1

fM A
N
(r
i
(f)!r

0i
)J

i
df#

1

2
if i"j

g*
ij
"!P

1

~1

cN A(r
j
(f)!r

0i
)J

j
df (44)

In contaminant transport problems, the boundary conditions which occur are usually that
either the values of the contaminant concentration or the contaminant mass #ux normal to the
boundary are speci"ed. These values are generally known in the original x}z space but in order to
utilize them in equation (43), it is necessary to transform these values in an appropriate way. The
values of the concentration are relatively straightforward to deal with since the transformed
values can be found immediate by applying equation (27), viz.,

cN *"cN e~(-X`jZ) (45)
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so that if cN is known on the natural boundary then cN * is also known. The relationship for the
normal mass #ux follows from equations (25) and (32), viz.

fM *
N
"(wl

x
¸
X
#ul

z
¸
Z
) fM

n
e~(-X`jZ) (46)

and so if the mass #ux on the natural boundary, fM
n
, is known then, fM *

N
, will also be known on the

transformed boundary.
A problem is well opposed if either cN * or fM *

N
(or a linear combination of both) is known at each

node on the boundary. Thus there are only N
e
unknown nodal values of either cN * or fM *

N
which can

be found by solving equation (43). Once the nodal values on the boundary are completely known,
equation (40) can be used to evaluate cN * at any internal point in the domain. The value of cN is
found using the relationship in equation (40) and "nally the concentration in the time domain is
obtained using the Laplace inversion algorithm of Talbot.21

The value of the fundamental solution cN A will depend on the relative positions of the point of
singularity and the "eld point. As the "eld point approaches the singularity point of the
fundamental solution, some care needs to be taken in evaluating the boundary integral. The
overall accuracy of the numerical technique is contingent upon how accurately the various
boundary integrals could be evaluated, particularly those involving singular or near singular
fundamental solutions. Singular integrals occur when the "eld point coincides with the singularity
point. Nearly singular integrals may also occur for the thin-body problem, for the case where the
mesh contains a large element and a small element adjacent to each other, or for the case where
the concentration is taken at a domain point which is very close to the boundary.22 An e$cient
and accurate integration technique developed by Smith5 is used in this paper.

3.1. Non-zero initial background concentration

Suppose, however, that the initial contaminant distribution is not zero, then the governing
equation is

D
axx

L2cN
Lx2

#D
azz

L2cN
Lz2

!<
ax

LcN
Lx

!<
az

LcN
Lz

"#AcN!
c
0

KB (47)

where

K"s#c* (48)

and thus the presence of the initial concentration could lead to the necessity of evaluating
a domain integral. One way of avoiding this undesirable integral is to "nd a particular solution of
equation (47). Let such a particular solution be

cN
p
"p (49)

Thus, if *cN"cN!p is the value of concentration above p then it satis"es the equation

D
axx

L2*cN
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#D
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L2*cN
Lz2

!<
ax

L*cN
Lx

!<
az

L*cN
Lz

"#*cN (50)
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and the corresponding initial distribution of the normal mass #ux, fM
np , arising from the particular

solution p is

fM
np"<anp!ADaxx

Lp
Lx

l
x
#D

azz

Lp
Lz

l
zB (51)

so that the normal component of the mass #ux above the initial distribution fM
np is given by

* fM
n
"fM

n
!fM

np (52)

Equation (50), *cN and * fM
n
transform in the same way as before into

D
a
+2*cN *"S*cN * (53)

*cN *"*cN e~(-X`jZ) (54)

* fM *
N
"(wl

x
¸
X
#ul

z
¸

Z
)* fM

n
e~(-X`jZ) (55)

Once again it is possible to develop the boundary integral equation using equation (53) and the
corresponding system of algebraic equations is

H**cN *"G**f1 *
N

(56)

where *cN * and * f1 *
N

are the vectors of the nodal values of *cN * and * fM *
N

, respectively. The solutions
may thus be obtained by proceeding formally in the same way as before. In the simplest case,
when the background concentration, cN

0
, is uniform then

p"
c
0

K
(57)

is clearly a particular solution of the governing equation (47) and so for this case,

*cN *"AcN!
c
0

KB e~(-X`jZ) (58)

* fM *
N
"(wl

x
¸

x
#ul

z
¸

z
) Afn!<an

c
0

KB e~(-X`jZ) (59)

3.2. Specixcation of boundary conditions for a waste repository

The presence of a waste repository in the porous media may be simulated by prescribing
appropriate boundary conditions at the soil}repository interface. This is a matter which requires
careful consideration. One possibility is to assume that the concentration in the repository
remains constant spatially and temporally. This is however not very realistic since the mass of
contaminant in a repository is "nite and the concentration will diminish with time as the
contaminant mass is transported outwards into the surrounding soil. A more realistic option is to
use a lumped-parameter model, this has been applied successfully in other areas of water research
(see e.g. Reference 23). In such a model, the concentration in the repository is assumed to be
spatially constant but diminishing with time as the contaminant migrates into the surrounding
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soil. It may also be assumed that the contaminant undergoes radioactive decay and biodegrada-
tion, and adsorption but it is not sorbed. Thus, for a repository with spatially constant
concentration, it follows from equation (5) that the repository mass change due to decay and
biodegradation at time t is given by

mc"n
R
;

R P
t

0

c
R
c
R

dq (60)

where n
R

is the porosity of the repository,;
R

is the true volume of the repository, c
R

is the sum of
the biodegradation and decay constants in the repository and c

R
is the repository concentration

and mass change due to adsorption is

m
A
"o

R
K

$R
(c

R
!c

R0
);

R
(61)

where o
R

is dry density of the material in the repository, K
$R

is the distribution coe$cient in the
repository, and c

R0
is the initial uniform background repository concentration.

From consideration of the principle of conservation of mass in the natural untransformed
domain, the total mass change in the repository is the sum of mass loss due to decay, biodegrada-
tion, adsorption and outward mass #ux into the porous media, thus it follows that

n
R
;
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R
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dq!P
t

0
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R

f
n
d! dq (62)

where !
R

is the repository boundary in the natural x}z space and f
/

is the outward mass #ux
normal to the surface of the repository.
Taking the Laplace transform of equation (62) yields
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This leads to
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Equation (64) will be applied in this paper at the boundary of the soil}waste repository interface
to simulate the presence of the repository.

4. APPLICATION

4.1. Verixcation

In the test problem, a cylindrical contaminant source of 1 m radius is buried deeply in the
porous medium (Figure 2(a)). The cases of in"nite and "nite contaminant mass in the cylinder
are both considered. Initially (t"0), it is assumed that the concentration of the contaminant
in the cylinder has a spatially uniform concentration of 1000 mg/l and the concentration outside
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Figure 2. (a) Deeply buried cylindrical source; (b) Boundary element representation of deeply buried cylindrical source

Table I. Soil properties in Test Problem

n oK
$

D
axx

(m2/a) D
azz

(m2/a) <
az

(m/a) c (c0 (mg/l)

0)4 0 0)002 0)002 0)002 0 0

the cylinder is uniformly zero. A general groundwater Darcy velocity of 0)002 m2/a #ows in the
z-direction. Other relevant contaminant and soil properties are given in Table I. Semi-analytic
solutions for this problem are given by Rahman and Booker.25

For the boundary element analysis, a total of 40 straight line constant-valued elements have
been used to approximate the source as shown schematically in Figure 2(b). The interface between
the source and porous medium is considered as an external boundary for which the boundary
technique developed in Section 3.2 for a source with either a "nite or in"nite amount of
contaminant mass is applied. At in"nity, the contaminant concentration and concentration
gradient vanish, thus the in"nite boundary can be formally ignored whereas it must be approxim-
ated by a boundary far enough from the source in a domain method.
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Figure 3. BEM vs. semi-analytic solutions for deeply buried cylindrical source with constant concentration

The concentrations in the radial direction of the advection velocity for various times are shown
in Figure 3 (in"nite contaminant mass in source) and Figure 4 ("nite contaminant mass in source).
The results show that there is excellent agreement between the boundary element solutions and
the semi-analytic solutions.

4.2. Simulation of contaminant transport from waste repository

The solutions of the BEM are further illustrated in the following examples where concentration
contours in the porous media due to the presence of a source are determined. Concentration may
be evaluated at selected internal points within the domain at speci"ed times of interest. The
spacings between, and number of, selected observation points are entirely up to the discretion of
the analyst hence there is considerable #exibility in applying the technique. When a high
concentration gradient is found or is anticipated, a great number of points may be used to capture
the rapid change in concentration. Conversely, the points need only be used sparsely at the
locations where little change in concentration is expected to save on processing time. In the
following analysis, concentration contours have been found for a hypothetical 20 m]5 m
rectangular repository at 500, 1000 and 2000 years. The two di!erent situations which have been
examined are:

Simulation case 1 (Figure 5). A repository with initial concentration 1000 mg/l is buried at 2 m
in a homogeneous half-space with z-direction advection and zero concentration boundary
condition at the ground surface. The initial background concentration in the porous media is
zero.

TRANSPORTATION IN POROUS MEDIA I. 1693

Copyright ( 1999 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech., 23, 1681}1699 (1999)



Figure 4. BEM vs semi-analytic solutions for deeply buried cylindrical source with diminishing concentration

Figure 5. Schematic of simulation case 1

Simulation case 2 (Figure 6). A repository embedded in an 8 m clay layer with x-direction
advection, zero #ux boundary condition at the ground surface and at the 8 m interface (i.e. the
underlying layer is assumed to be much more impermeable). The background concentration is
100 mg/l.
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Figure 6. Schematic of simulation case 2

Figure 7. Simulation case 1: contaminant distribution at 500 years, advection in z direction

The contaminant is assumed to be conservative, the dispersion coe$cients are
D

axx
"D

azz
"0)004 m2/a, and the porosity of the porous medium is 0)4. The simulation results

for this case are presented in Figures 7}9.
In case 2, the average groundwater velocity of magnitude 0)01 m/a is #owing in the x direction,

D
axx

"0)004 m2/a, D
azz

"0)0008 m2/a, n"0)4, oK
$
"0, c"0. In this problem, the coe$cients

of dispersion have been assumed to be anisotropic. The concentration contours are shown in
Figures 10}12.
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Figure 8. Simulation case 1: contaminant distribution at 1000 years, advection in z direction

Figure 9. Simulation case 1: contaminant distribution at 2000 years, advection in z direction
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Figure 10. Simulation case 2: contaminant distribution at 500 years, advection in x direction

Figure 11. Simulation case 2: contaminant distribution at 1000 years, advection in x direction
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Figure 12. Simulation case 2: contaminant distribution at 5000 years, advection in x direction

Finally, it may be noted that in the above examples since no time discretization is used in the
method, the solutions for large times can just as easily be obtained with the same computational
e!ort as for smaller times of interest.

5. CONCLUSIONS

The boundary element method presented in this paper is found to be an e$cient and accurate
method for solving the advection}dispersion equation governing contaminant transport espe-
cially where problems of in"nite or semi-in"nite space are involved. One of the main advantages
of using the BEM is of course its ability to potentially deal with such problems with ease since the
fundamental solutions satisfy the boundary conditions at in"nity naturally. This advantage can
be maintained in this method as it is possible to avoid dealing with an undesirable domain
integral. Essentially therefore, this method treats a problem as if its dimension is reduced by one.
Illustrative examples have been used to demonstrate how the method can be applied to evaluate
concentration contours of contaminant at speci"ed times of interest.
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