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Feature Article 

Operations Research for Agricultural Pest 
Management 

RICHARD M. FELDMAN and GUY L. CURRY 
Texas A & M University, College Station, Texas 

(Received August 1981; accepted April 1982) 

It is increasingly important to maximize the productivity of our agricultural 
land. As concern for efficient food and fiber production increases, the impor- 
tance of the application of operations research to agricultural problems 
increases. During the past decade, there has been much effort to combine 
mathematics and agriculture. This paper presents the role that operations 
research has played in integrated pest management for the agricultural 
industry. An effort is made to present the state-of-the-art in biological modeling 
for agriculture pest management and to provide an understanding of the type 
of mathematical techniques utilized. 

O PERATIONS RESEARCH methodologies are now used in areas 
which traditionally have not taken advantage of quantitative man- 

agement techniques. The activity in some areas, like hospital administra- 
tion or criminal justice systems, has advanced to such an extent that it is 
not uncommon to see publications relating mathematical definitions for 
problems which 15 or 20 years ago would not have been considered in an 
analytical context. One of the newest frontiers for operations research is 
in agricultural pest control. Many complex interactions are present in 
these biological systems which can be fully understood only through 
mathematical modeling. Also, there is a wide range of potential control 
parameters that must be related mathematically to the underlying bio- 
logical processes. The obvious benefits of increased productivity and the 
intelligent use of pesticides make the agricultural applications of opera- 
tions research an exciting area for current and future research. 

Mathematical interest in biological populations has been apparent 
since Malthus [1798] described population growth as an exponential 
process. Since that time the interest in biological modeling has increased 
tremendously so that today there are excellent journals devoted solely to 
this subject. The range of applications for mathematical modeling and 
optimization in biology covers the entire biological field. Significant 
Subject classification: 163 ecosystem modeling, 292 modeling and control of agricultural pests, 551 
mathematical population dynamics. 
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602 Feldman and Curry 

mathematical progress has been made in such diverse areas as epide- 
miology (Bailey [1975]), fisheries (Clark [1976]), ecological assessment 
(Pielou [1977]), and tracer kinetics (Matis and Wehrly [1979]). There has 
also been considerable modeling work for pest control within forest 
systems (Clark et al. [1979], Feldman et al. [1981]). With such a broad 
spectrum of application areas for operations research, it is necessary to 
restrict this paper to one area: pest control for agricultural systems. The 
objective of this paper is to present operations research applications for 
pest control, especially in the agricultural industry, and to indicate the 
shortcomings and the need for future research. The paper also attempts 
to provide the reader with an understanding of the mathematics involved. 

The first step in utilizing operations research methodologies is to 
describe mathematically the underlying biological processes. Only after 
relevant responses have been described can control measures be investi- 
gated. This obvious first step is emphasized because it has so often been 
ignored. The literature abounds with theoretical studies of mathematical 
biology, especially the investigation of stability and steady-state ques- 
tions. For most agricultural control problems, such studies are irrelevant 
since pest control usually deals with growing populations. These popu- 
lations, if left uncontrolled, would approach an economically unacceptable 
steady-state. 

Another approach in past studies has been to take well-known models 
in operations research and change the names of the variables to biologi- 
cally meaningful terms. This leads to mathematical abstraction for the 
sake of mathematics and rarely results in applications. Jaquette ([1972], 
pp. 1144-1145) gives some examples of this in his survey article. During 
the 1970s, considerable effort went into developing models that were 
biologically realistic. However, in striving for biological realism, the 
models often became very complex and were intractable for optimization 
studies. Thus, it is necessary to simplify these models while retaining 
their realism to give accurate biological responses to control measures. 
One of the early characteristics of the field of operations research was its 
interdisciplinary nature. The interdisciplinary feature is vital in the pest 
management field where models must be developed in cooperation with 
an experimental program if results are to be put in practice. Much of the 
successful mathematical work during the recent decade has been the 
result of large multi-university research programs funded by the National 
Science Foundation, the Environmental Protection Agency and the 
United States Department of Agriculture (Huffaker [1980], Thatcher et 
al. [1981]). Successful applications of operations research to integrated 
pest management often involves extensive programming efforts in devel- 
oping software for a decision support system. Such programming prob- 
lems, although critical, are beyond the scope of this paper. 
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Agricultural Pest Management 603 

World population growth and insufficient food and fiber production are 
creating severe shortages in many parts of the world. Although the field 
of operations research seems removed from agricultural production prob- 
lems, there are several areas where major contributions can be made. 
The training and orientation of operations research specialists will en- 
hance the descriptive modeling of these systems. Analytical descriptors 
of agricultural systems are essential for the accelerated refinement and 
improvement of yields. The use of optimization techniques and paramet- 
ric analysis will facilitate the improvement of integrated pest manage- 
ment procedures. The decade-plus lead time for experimental research 
along with the variability of field evaluation procedures makes it ex- 
tremely difficult to pursue promising avenues without the aid of mathe- 
matical guidance. Many alternatives need to be evaluated as to their 
possible impact both individually and cooperatively. Promising results 
can then be implemented in a timely fashion. 

The operations research analyst can make a major contribution to 
accelerated agricultural production research. A small start has been made 
but an increased effort is necessary before the contributions can have an 
appreciable effect. 

This paper begins with a cursory review of agricultural control tactics 
in Section 1. Section 2, dealing with the development of mathematical 
models, is the largest section because model development has been the 
focus of applied agricultural/mathematical research during the past dec- 
ade. Optimization techniques utilized for agricultural systems are dis- 
cussed in Section 3. At the end of each major topic discussion, indications 
are given as to future needs and open research questions. The convention 
of identifying insects and plants by their scientific names on first use and 
utilizing their common names subsequently is followed whenever a com- 
mon name is available. 

1. BACKGROUND 

Early in this century, agricultural scientists interested in pest control 
primarily studied cultural methods for control. With the advent of chem- 
ical insecticides, a dramatic shift in control practices occurred. In general, 
cultural practices were replaced by spraying strategies which eventually 
led to a very narrow crop genetic base. Agricultural systems were heavily 
energy subsidized and high yield varieties were emphasized along with 
their inherent increase in pest populations. Thus, an increasing spiral of 
more and more chemical controls became evident (Huffaker). 

In the last two decades the chemical buildup in soil, water, and 
nontarget species, along with increasing pest resistance, caused a recon- 
sideration of nonchemical control strategies. There have been some 
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604 Feldman and Curry 

studies investigating the buildup of pesticide resistance (Comins [1977], 
Regev et al. [1977], Plapp et al. [1979]) within a population; however, this 
work has not been fully incorporated into decision models. An integration 
of biological and cultural controls with insecticide usage is increasingly 
emphasized (Huffaker). This integrated pest management approach has 
the goal of maximizing producer profits while reducing the amount of 
toxic chemicals utilized. The major components of integrated pest man- 
agement include biological control agents (predators and parasites), ge- 
netic controls (plant breeding for pest resistance, crop timing, and damage 
tolerance), and cultural practices (row spacing, low inputs, and early 
harvest), as well as timely applications of pesticides. 

Operations research has considerable utility as a research component 
in pest management studies. Assuming that an adequate model can be 
developed, the effects of various strategies can be studied at the popula- 
tion level (Curry et al. [1980]). Population level studies are often not 
immediately applicable in the field environment. For example, the deci- 
sion to breed a specified trait into a production variety is a commitment 
of approximately 10 years. Only through a realistic modeling program can 
an accurate assessment of the effects of a new variety be made within the 
context of integrated controls. 

Biological Control 

The study of predator-prey models was one of the first areas to receive 
biological modeling emphasis (Lotka [1925], Volterra [1926]). Classical 
biological control involves the regulation of a pest species by an exotic 
(nonindigenous) natural enemy. There have been many successes, several 
of which are reported in Caltagirone [1981]. Although not as spectacular, 
biological control can also involve indigenous species, often in conjunction 
with pesticides. 

Genetic Control 

Breeding programs have long been used in agriculture for improved 
productivity. Breeding for increased pest resistance can either be through 
systemic or physical changes. Modeling plant-insect systems that include 
the ability to predict the effects of breeding programs on agricultural 
productivity is difficult and has not been widespread. The reason is 
obvious: to reflect the effects of breeding studies, the mathematics must 
include the relationship between the plant's biological or physical char- 
acteristics and the insect's life processes. 

Cultural Control 

Cultural and physical control has historically been an effective pest 
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Agricultural Pest Management 605 

management tool. Time of planting and harvesting, crop rotation, and 
field sanitation have been major contributors throughout the history of 
crop cultivation. Although the availability of pesticides and chemical 
fertilizers caused a movement away from these standard measures, re- 
search is being redirected toward them. 

2. MODELING APPROACHES 

Development and Physiological Time Scales 

The physiological development of many organisms is through a se- 
quence of clearly defined stages (e.g., egg, larva, pupa, adult). Field 
populations often involve organisms in overlapping stages which cause 
difficulties in the statistical analysis of field data. Additional difficulties 
arise in establishing developmental times because there are two compet- 
ing causes of an organism leaving a stage: developmental completion and 
mortality. In a fashion reminiscent of traditional reliability, Read and 
Ashford [1968] and Kempton [1979] give details for some of the statistical 
problems and procedures involved in estimating life length distributions 
from field data. One problem not addressed by their statistical analysis 
is the dependence between temperature and developmental times. 

Most organisms within an agricultural system are poikilotherms (cold- 
blooded), thus their life processes (development, reproduction, mortality, 
etc.) depend on temperature. The magnitude of changes in the process 
rates caused by changing temperatures can be very large (Sharpe and 
DeMichele [1977]); this temperature dependency must be considered. 
One common procedure for incorporating temperature into a biological 
model is to use a degree-day time scale instead of chronological time 
(Candolle [1865], Gilbert et al. [1976]). The degree-day scale accumulates 
the number of degrees between upper and lower temperature thresholds. 
For example, if a plant takes 4 days to flower at constant 200C, then 
using a 10'C threshold it takes 40 degree-days to flower (because 4 X 
(20 - 10) = 40). Conceptually, this implies that it would take 2 days to 
flower at 30'C (because 2 x (30 - 10) = 40). Frequently the degree-day 
methodology does not yield acceptable accuracy due to its inherent 
linearity assumption. To overcome this inaccuracy, "physiological" time 
scales have been developed (Stinner et al. [1974], Campbell et al. [1974], 
Sharpe et al. [1977]) which are based on temperature-dependent rate 
integration methods. (See Equation 1 below.) 

Not only are developmental times nonlinear with respect to tempera- 
ture, they are probabilistic. Monte Carlo simulation is often used to 
incorporate the randomness into population models (Hardman [1976], 
Gilbert et al.). A preferred analytical approach is to superimpose a 
probability density function on the physiological time scale (Stinner et 
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606 Feldman and Curry 

al., Hardman, Sharpe et al.). The probability of emergence is determined 
by integrating this p.d.f. over the elapsed physiological time interval. To 
illustrate this mathematically, the physiological time scale must first be 
determined. Let r(k) denote the developmental rate (inverse of the length 
of time for the process) at constant temperature k, and let 4(t) denote 
the temperature at chronological time t. Physiological time, x, is then 
given by 

x(t) = f r(4(T))dT (1) 

where the process is assumed to start at time zero. Superimposed on this 
time scale is a distribution function F(.). The function F is related to the 
random variable TV, which denotes the time to complete development 
under temperature regime 4, by 

P {T < t} = F(x(t)). (2) 

The mathematical implications inherent in using Equations 1 and 2 are 
investigated in Curry et al. [1978a, b]. The utilization of these equations 
in predicting variable temperature responses is often through an iterative 
procedure where the temperature function 4 is approximated by a step 
function. 

Several open questions regarding physiological time scales and the 
associated distribution functions remain. Many organisms experience 
thermal death when exposed to high or low temperatures for extended 
periods of time. Such thermal mortality is not incorporated in the above 
procedure. Another problem is that Equation 2 assumes that the proba- 
bility distribution functions from different temperature regimes when 
placed on the physiological time scale are identical. This "same shape" 
assumption has been shown to hold for many agricultural pests, but no 
theory has yet been established for pests for which this assumption does 
not hold. 

Utilizing a physiological time scale allows the modeling of populations 
on a consistent time axis. Many of the historical models for single species 
(Verhulst [1938], Pearl [1932])' and interacting species (Lotka, and Vol- 
terra) are frequently not applicable in agricultural systems because they 
ignore the age-dependent aspects of critical processes such as reproduc- 
tion and mortality. 

Single Species Models 

The incorporation of the age-dependent nature of the processes re- 
quires that a two-dimensional age-time scale be used. For single species 
populations, Lewis [1942] and Leslie [1945, 1948] pioneered a discrete 
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matrix approach which includes both time and age. They represent the 
population as a vector n(t), where n-(t) is the number of individuals alive 
at time t of age class i. The time dependent dynamics of the population 
are given by 

n(t + 1) =An(t) for t = O, 1,... (3) 

where 

Xo XI ... 0 n 

Po 0 ... 0 

o Pi ... 0 0 

o 0 .. Pn- 0 _j 

and Xi is the number of births (females occurring while the mother is in 
the ith age class) and pi is the conditional probability of surviving age 
class i given survival through age class i - 1. Leslie [1959] extended these 
matrix methods to include time-dependent parameters for birth rates and 
survival probabilities, while Pollard [1966] extended the approach for 
determining standard deviations as well as expected population sizes. 
Usher [1972] and Pielou give excellent summaries and indicate many of 
the extensions. 

An iterative-cohort methodology presented in Curry et al. [1978b] is 
conceptually similar to Leslie's approach, while being computationally 
oriented toward time-dependent rate parameters. The iterative-cohort 
methodology biologically aggregates similar organisms into groups called 
cohorts. (For example, all eggs oviposited within the same day would be 
a cohort.) Each cohort is followed through its developmental processes. 
The procedure describes iteratively the evolution of each cohort, the 
generation of new cohorts, and the interactions between cohorts and the 
physical and environmental parameters. 

In developing the iterative-cohort approach, the probabilistic aspects 
and the temperature effects on individual life processes are studied. For 
example, the developmental completion time distribution function (2) 
commonly used for emergence times is actually a conditional probability 
given live emergence. Equation 2 can be applied directly to the final life 
stage (adult) to predict longevity, but to describe the joint distribution of 
survival and emergence from one stage to the next (e.g. egg to larvae) (2) 
should be modified. The modification is necessary because temperature 
affects the proportion of ultimate survival and thus the effects of tem- 
perature cannot be totally incorporated into a physiological time scale. 
To illustrate these concepts, let the proportion of survival at a fixed 
temperature k be c(k), let TV denote developmental completion time, and 
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608 Feldman and Curry 

let Uf denote time of death, then 
rt 

P{ TTA ' t, U4> t} = f c(A(T))dF(x(T)). (4) 

The assumptions underlying Equations 1-4 are not valid for all poikilo- 
therms. Curry et al. [1978a, b] explicitly give assumptions sufficient for 
many of the commonly used mathematical procedures and demonstrate 
their utility. Unlike emergence, reproduction has not been adequately 
studied as a stochastic process. Current approaches for modeling repro- 
duction are deterministic. 

The Leslie matrix and iterative cohort approaches are essentially 
equivalent to the numerical solution of a continuous description of 
population dynamics. A continuous time representation of an age-de- 
pendent population was formulated by Von Foerster [1959]. His model 
utilizes a number density function for the population size. Denoting the 
population density by n(t, a) for t, a>- 0, the population size alive at time 
t within the age interval (al, a2) is given by fa n(t, a)da. Von Foerster 
assumes that organism age and the time axis are measured on identical 
scales, i.e. da/dt = 1. Additionally, he defined an age-dependent birth 
rate X(.) and an age-dependent cumulative probability distribution func- 
tion for life length F(.). An age-dependent mortality rate function, p(4.), 
is obtained from the distribution function by 

gt(a) = (dF/da)/(1 - F(a)), for a ? 0. (5) 

Utilizing the rates X and At, the population dynamics are described, for a 
given initial population size n(O, .), by 

an/at + dn/da = -[(a)n(t, a), for t, a > 0 (6a) 

with new births being the boundary condition on the time axis 
rw 

n(t, 0) = f X(s)n(t, s)ds, for t > 0. (6b) 

The left-hand side of Equation 6a is the directional derivative along the 
time-age trajectory of the organism (characteristic line). 

It is sometimes convenient to express the system (6a, 6b) as integral 
equations; that is, integrating along characteristics, 

[n(t - a, O)exp{- { t(s)ds} for 0 < a < t, 

n(t, a) = (7) 

n(O, a- t)exp{- f (s)ds} for 0 < t < a, 
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00 

n(t, 0) = x (s)n(t, s)ds for t>O. (8) 

Equations 7 and 8 can now be combined to form a renewal type equation. 
To see this, let the birth rate function b(.) be defined by b(t) = n(t, 0). 
Then by substituting (7) into (8), 

b(t) = f X(a)n(O, a - t)exp{- Li(s)ds da 
t Stat 

(g)t 

+ - (a)b(t-a)exp {- { (s) ds da, 

where n(O, a) for a > 0 is the known initial population density function. 
Solutions for renewal type equations are well known (e.g., Feller [1971], 
p. 468) and thus b(.) can be found, which in turn gives a solution for (7). 
The Von Foerster equations represented in (5-9) provide a mathematical 
structure for realistic agricultural models. These systems also provide a 
rich area for theoretical studies. Some of the basic background is pre- 
sented in Hoppensteadt [1975] and Oster [1976]. Gurten and MacCamy 
[1979] consider density dependent mortality and births by extending the 
theory to nonlinear structures where the birth and death rates are 
functions of the total population. 

One of the first applications of Von Foerster's technique to an agricul- 
tural system was the modeling of a cotton crop by Wang et al. [1977]. In 
this application the time and age scales are both based on day-degrees. 
The number of fruit and the masses of leaves, stems, and roots are 
modeled as simultaneous equations. Thus, four separate density functions- 
are defined plus a carbohydrate availability pool is described which links 
the four components. Using the Von Foerster methodology, Wang et al. 
were able to present concisely a mathematical model containing a high 
level of biological realism. To implement their system a finite difference 
scheme is used to numerically solve the partial differential equation 
system. Such a scheme is very similar to Leslie's discrete approach (Wang 
et al., p. 1371). 

Although a reasonable level of realism can be mathematically described 
via Von Foerster's approach, the solution methods for such systems of 
equations is not advanced. A contractive mapping procedure is utilized in 
Curry et al. [1981] that obtains an approximate fruiting rate function 
(b(.) in Eq. 9) for a nonlinear system describing cotton fruiting dynamics. 
Except for a few cases (Gutierrez et al. [1979]), Von Foerster's equations 
have not been used for optimization studies, thus the solution procedures 
have not been developed from an optimization perspective. 

From a mathematical modeling perspective, time-dependency as well 
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as age-dependency is an important consideration for reproduction and 
mortality. A mathematical formulation using time dependent parameters 
for these processes is presented in Hoppensteadt. Although time-depend- 
ent parameters are implicit in many simulations, the mathematical struc- 
ture of Hoppensteadt is not utilized in describing actual systems. Thus 
research directed toward the utilization and numerical solution of nonlin- 
ear Von Foerster systems containing time- and age-dependent parameters 
is necessary. 

Multiple Species Models 

It is sometimes possible to obtain valuable insight using a single species 
model. For example, Conway et al. [1975] described the sugarcane frog- 
hopper (Aenolamia var. saccharine Distant) as a single species popula- 
tion. Optimal strategies are then based on the cost of spraying, and the 
pesticide's effect on insect numbers. However, it is usually necessary to 
model the plant and insect populations simultaneously. Sometimes the 
pest populations involve multiple species and these must also be modeled. 

The original approach for interacting pest populations of the predator- 
prey type (Lotka, and Volterra) assumed simple proportional removal 
rates of the prey as a function of predator numbers. Holding [1959, 1966] 
analyzed the individual predation components of searching, catching, 
handling, and digestive pause in obtaining the response of a predator to 
prey density. 

Many subsequent studies have investigated parasitism (Royama 
[1971], Rogers [1972]) and there has been some work on the application 
of queueing theory to these systems (Taylor [1976], Curry and DeMichele 
[1977]). Although there have been many theoretical and ecologically 
oriented studies, effort still needs to be directed toward stochastic mod- 
eling of predator-prey systems. Current deterministic approaches have 
been shown sometimes to yield inexact models of these processes (Oaten 
[1977], Curry and Feldman [1979]). In a study of the effects of the green 
rice leafhopper (Nephotettix cincticeps Uhler), Kiritani [1977] modeled 
both the leafhopper and its major predator, a wolf spider (Lycosa pseu- 
doannulata Boes). Kiritani's approach is similar to the Lotka-Volterra 
equations except that mortality of the predator and predation of the prey 
are functions (via regression) of the predator and prey densities. 

Most of the interactions that have been modeled between populations 
involve the plant-pest interactions. The study by Shoemaker [1982] 
includes population models of the alfalfa weevil (Hyperapostica (Gyllen- 
hal)), its parasite (Bathyplectes curculionis (Thomson)), and the alfalfa 
plant (Medicago sativa L.). In her work, the plant-insect interactions are 
primarily in one direction. The plant does not influence the insect's 
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population dynamics (except harvesting of alfalfa removes eggs and small 
larvae) but the weevil has a significant effect on the plant. 

For the cotton-insect pest system, realistic models include two-way 
interactions. Wang et al. adjust the mortality rate of cotton fruit as a 
function of the adult boll weevil population and in turn they adjust the 
weevil's fecundity and mortality rates according to the density of cotton 
fruit forms. 

Two of the major research problems to be addressed are: (1) efficient 
numerical solution procedures, and (2) mathematical simplification for 
optimization studies. General computer software for solving two-dimen- 
sional nonlinear partial differential equation systems has been developed 
(Melgaard and Sincovec [1981]). However, it remains to be shown how 
applicable such general packages are for systems arising from the agri- 
cultural setting. As an alternative, research developing specialized nu- 
merical procedures for nonlinear Von Foerster systems is needed. In the 
area of systems optimization, there is a need to obtain simpler mathe- 
matical expressions while maintaining the essence of the biology to ensure 
sufficient responsiveness for decision-making. 

3. OPTIMIZATION 

Recognition of the need to use realistic biological models together with 
mathematical and computer based optimization techniques for pest con- 
trol is often attributed to K. E. F. Watt. Conway [1973] summarizes 
Watt's early works and contributions. Dynamic programming was first 
suggested by Watt [1963] as a powerful technique for pest management. 
One of the first optimization studies was reported by Watt in 1964. Much 
of his work found immediate application in the research of a Canadian 
forest pest, the spruce budworm (Choristoneura fumiferana (Clemens)), 
which has been under intensive study for years (Clark et al.). 

One of the first applications of dynamic programming in agriculture 
was by Shoemaker [1973, 1982] for alfalfa harvesting. Alfalfa is a perennial 
crop which is usually harvested three times per year in New York. 
Control policies carried out in one year greatly influence the yield in 
succeeding years. In her study the planning horizon is several years, with 
each dynamic programming stage representing one year. The two decision 
variables each year are the timing of the first harvest within the year, h, 
and a zero-one variable, i, representing whether or not insecticide is 
applied at harvest time. The state variables in the dynamic programming 
formulation represent the number of overwintering adult alfalfa weevils, 
w, and the number of overwintering adult parasites, p. 

Shoemaker decomposed the dynamic programming problem into two 
coupled models: a decision model and a population model. For the 
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decision model, ym is the yield function in year m with fm* representing 
the optimal return from year m through the end of the planning horizon. 
Furthermore, vm is the value per ton of alfalfa in year m, cm is the cost of 
an insecticide treatment in year m, and g1 and g2 are state transition 
functions. The yearly dependence of the variables is indicated by the 
subscript. Then, the decision problem is given by 

fm*(Wm, Pm) = maxhmim{vmym(wm, Pm, hm, im) 

- Cmim + f m-1i(Wm-1, PM-) (10) 

where Wm- = gi(wm, Pm, hm, im) 

Pm-I = g2(wm, Pm, hm, im). (11) 

Equations 10 and 11 define the decision model. Detailed population 
models are used to evaluate the function yin, gi, and g2. The yield function 
ym is an extensive simulation of plant growth based on the work of Fick 
[1975]. The pest and parasite population model (Shoemaker [1982]), 
mentioned briefly in Section 2, is similar to a Von Foerster formulation 
and involves age-dependent oviposition, mortality, and parasitism. The 
many population model variables need not be treated as state variables 
in the dynamic programming process, since the decision is made only 
once each year. The intervening winter effectively reduces the insect 
populations to single aged adults between decisions. Although the popu- 
lation model contains a significant degree of biological realism, the 
complexity of mathematics does not increase the dimensionality of the 
decision model. The overwintering population sizes are all that is needed 
to initiate each year's population growth. 

The Shoemaker application of dynamic programming with biological 
submodels for the state transformations yields a high degree of effective- 
ness. The method addresses optimal pest management in a dynamic and 
stochastic environment. For problems with the mathematical structure 
considered in this analysis (single generation and single pesticide appli- 
cation per year), the computational effort can be reduced by many orders 
of magnitude. 

Many systems require several decisions throughout a single growing 
season. Shoemaker [1979] applies dynamic programming to the control 
of the Egyptian alfalfa weevil (Hypera brunneipennis (Boheman)) in 
California. In this control problem there can be several applications of 
pesticide within one year although the pest population has a single 
generation. The usual approach in utilizing dynamic programming is to 
let the state-space represent the pest population discretized by age 
intervals. Such an approach results in severe dimensionality problems. 
Shoemaker's approach is to let the timings of the two most recent 
sprayings be the state space. By observing that few weevils live beyond 
two pesticide applications (less than 0.25% do so), a two-dimensional 
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state space is maintained and the computations are tractable. An exten- 
sion of this problem to stochastic environments is found in Shoemaker 
[1981b]. 

When there are both multiple treatments and multiple generations, the 
optimization problem becomes much more difficult. Yu [1978] formulates 
a dynamic programming problem to optimize sprayings for a cotton-boll 
weevil system. However, the state space is too large for practical utiliza- 
tion of his methodology. So far, the best applications of dynamic pro- 
gramming have been cases where advantage is taken of the structure of 
the population process. A survey article by Shoemaker [1981a] discusses 
in more detail dynamic programming applied to pest management. 

Conway et al. avoid the problem of dimensionality of the state space 
by simplifying the relationships between generations. The sugarcane 
froghopper has four generations within one growing season. The popu- 
lation growth of the first brood is modeled in detail and the effects on the 
first brood of insecticide are analyzed. Using a simple relationship be- 
tween broods, Conway et al. utilize dynamic programming to obtain 
optimal timing for pesticide applications. 

Another approach for optimizing multiple treatments is that of Talpaz 
et al. [1978]. They consider a large population model of the cotton-boll 
weevil system with time measured in discrete 4-day intervals. Each time 
period has an associated variable denoting the amount of pesticide used 
(possibly equal to zero). For a fixed treatment pattern, the seasonal profit 
is determined. This optimal control problem is treated as a multidimen- 
sional optimization problem with profit as the objective function. The 
difficulty, of course, is that each evaluation of the objective function is 
time-consuming and no analytical derivatives are possible. A modified 
version of the Davidon-Fletcher-Powell method is used for optimization. 
The Talpaz et al. approach has the same drawbacks as the direct dynamic 
programming methodology in that the number of functional evaluations 
required by the procedure is large. For this method each functional 
evaluation is a numerical solution of the model for the complete growing 
season. 

In an optimization study involving a similar cotton-boll weevil model, 
Gutierrez et al. utilize the nonderivative Powell's method. The objective 
is to maximize the total mass of mature fruit at a fixed harvest time. The 
Gutierrez et al. study is concerned with obtaining optimal values for 
various plant and insect population parameters. Their results indicate 
that for the combined system, the optimal parameter values are very 
close to field measured values. However, the observed value for the rate 
of fruit production is not optimal for cotton grown independent of the 
weevil. From this analysis they infer that the two systems evolved jointly 
to an optimal cohabitation. Thus, their study might have an impact on a 
plant breeding program, but not on short-term treatment tactics. 
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Marsolan and Rudd [1976] take a slightly different approach to the 
problem of optimally determining annual pesticide treatment tactics. 
They are interested in the control of the southern green stinkbug (Nezara 
viridula L.) in soybean (Glycine max L.) fields. Instead of investigating 
several discrete applications, Marsolan and Rudd consider control policies 
where pesticide is applied continuously throughout the growing season. 
They structured the optimization problem using classical control theory 
and then utilized Pontryagin's maximum principle. The numerical 
method used to find the optimal control trajectories is referred to as a 
first-variation gradient technique with a penalty function (Marsolan and 
Rudd, p. 235). Their study of the soybean/green-stinkbug system is based 
on actual data and is useful in the general examination of current 
insecticide treatment tactics. However, because of the unrealistic as- 
sumption of continuous control, their procedure does not aid in deter- 
mining the specific times and quantities of actual pesticide applications. 
Thus, this approach cannot be directly utilized in an insect pest manage- 
ment program. A review of the general control theory approach for pest 
problems is in Wickwire [1977]. (See Clark for an extensive treatment of 
control theory applied to optimal harvesting in fisheries.) Although it has 
not yet found much practical use in agriculture, control theory does have 
potential for direct utilization in such "continuous" control areas as 
trickle irrigation and fertilization. 

Another area in which Pontryagin's maximum principle has been 
utilized is in region-wide pesticide policies where the buildup of pesticide 
resistance is important. Regev et al. consider pesticide resistance of the 
Egyptian alfalfa weevil which is the major alfalfa pest in California. In 
their study, the objective function is total discounted profit. Profit is a 
function of the number of pesticide applications and the buildup of 
resistance. Both pesticide application levels and switch-over times to new 
control technology are variables. The main results of their study are 
general policy statements. Specifically, they conclude that too much 
pesticide is used since an individual farmer has negligible effect on 
buildup of pesticidal resistance. Thus, cooperative control procedures on 
a regional basis are necessary before individuals can benefit from reduced 
pesticide utilization. 

The need for further research in developing usable optimization tech- 
niques for integrated pest management is tremendous. To do this, an 
understanding of both the biological processes and the mathematics is 
necessary. Most integrated pest management optimization studies for- 
mulate the objective function in such a way that the population model 
becomes part of its functional evaluation. The major computational time 
is in the functional evaluations which involve large scale population 
models. Thus, the studies are not structured as programming problems 
with constraints. For this reason, techniques using penalty functions or 
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relaxation methods have not been employed. It might be fruitful to 
consider restructuring the optimization problem, so advanced techniques 
can be applied. The most promising approach thus far has been in cases 
where advantages in the biological structure are utilized to simplify the 
mathematical formulation (as in Shoemaker's dynamic programming 
examples). The need to include stochastic features in biological models 
favors dynamic programming, since it can incorporate stochastic features 
as well as on-line observations of the state of the system. This is not 
within the capabilities of gradient-based methods. As yet there have been 
no attempts to provide an overall theoretical framework for optimization 
of realistic population processes. 
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