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The use of capillary gas chromatography (g.c.) coupled with principal components regression (PCR) is 
shown to be an effective predictive tool for determining the octane values of gasolines blended from a wide 
variety of refinery streams. The linear combination of fuel stream g.c. data to give calculated blended fuel 
gas chromatograms and their associated octanes offers much promise for refinery blending optimization. 
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Gas chromatographic data for gasolines and gasoline 
fractions have often been used to predict the physical 
and performance properties of these mixtures. The 
molecular structure and the volatility of gasoline 
components are both described precisely by the relative 
retention times observed in well controlled temperature 
programmed capillary g.c. runs. However, use of all the 
data captured by capillary g.c. to make octane predictions 
by a classical group additivity approach is extremely 
difficult, since complete characterization of up to 400 
components is needed and it is nearly impossible to 
determine the contribution of each of the components to 
research and motor octane. 

Assimilation of these components into ‘group types’ 
with proportionately different contributions to octane 
has been accomplished’-’ with varying degrees of 
success3. In this work, the use of principal components 
regression is described as a means of using all of the data 
in a g.c. run to predict research (RON), motor (MON) 
and pump ((RON + MON)/2) octane numbers. 

Clearly, a model constructed from multivariate 
capillary g.c. data using chemometric methodology 
would be advantageous and should be a better predictor 
of gasoline properties than similar approaches based on 
spectroscopic data alone. Both univariate (i.r.4 and 
n.m.r.‘) and multivariate (near i.r.6) regression techniques 
have been employed. Spectroscopic techniques address 
structural characteristics directly, but do not address 
volatility related parameters. Additionally, spectral shifts 
associated with matrix effects in both i.r. and n.m.r. data 
do not readily allow the calculation of mixture spectra 
from component spectra, for subsequent use in 
prediction of octanes. On the other hand, normalized g.c. 
data with good resolution can be combined linearly, to 
give a good representation of the mixture g.c. data, which 
can be used for prediction of octanes. Use of multivariate 
calibration techniques in model formation and prediction7 
allows all of the pertinent g.c. information to be used. 

This work describes the building of a capillary g.c. 
based model to effectively cover the range of compositions 
encountered in a typical refinery consisting of eight 
different refinery streams. Use of this model within its 
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design ranges is shown to accurately predict the octanes 
(RON, MON and (RON+ MON)/2) of blended 
gasolines. The gas chromatographs, after correcting for 
minor retention shifts by internal spiking, are shown to 
be additive. This allows the prediction of blended product 
octanes directly from the gas chromatograms of the 
streams used. 

EXPERIMENTAL 

Fuels used 

Eight gasoline streams were obtained from a single 
refinery, representing the individual components available 
for blending finished gasolines. These included light 
catalytically cracked gasoline, heavy aromatics, raffinate, 
light straight run gasoline, light alkylate, reformate, a 
toluene cut and a butanes fraction (Table 1). These 
streams were blended into 53 gasolines, regular, premium 
and super premium, to cover the range of typical and 
atypical compositions that would adequately define a 
reasonable data space and keep the stream variables 
(volume percentages) as independent as possible. A 
correlation matrix of the component volume percentages 
for both regular and combined premium/super premium 
fuels showed the absolute values of all pairwise 
correlations among fuels to be ~0.7. Further, the 
measured pump octanes of the centre points of regular 
fuels and of premium fuels were close to the specification 

Table 1 Blending stream properties 

RON MON Aromatics Oletins Saturates 
Stream (vol%) (vol%) (vol%) (vol%) (vol%) 

Light cat crk 89.3 19.1 10.5 28.8 60.7 
Heavy aromatics 93.9 82.8 19.3 70.5 10.2 
Raffrnate 66.5 65.3 3.3 3.0 93.7 
Lt str run 17.0 74.0 1.8 6.2 92.0 
Light alky 91.9 90.1 0.5 0.3 99.2 
Reformate 108.0 95.5 94.5 0.5 5.0 
Toluene fraction 108.5 107.0 99.2 0.8 0.0 
Butane fraction” 94.0 90.0 0.0 0.0 100.0 

a Butane values are estimates 
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Table 2 Summary of octane data for 53 fuels 

Measurement 
Octane Min 

Research 89.4 
Motor 81.1 
(RON + MON)/2 85.7 

Max Mean error 

loo.7 95.7 0.25 
90.0 85.2 0.30 
94.8 90.5 0.20 

values of 87.0 and 92.0, respectively. Research and motor 
octanes for the streams and blends were obtained in 
duplicate, and averaged using ASTM test procedures’. 
These data and pump octane values are summarized in 
Table 2 for the blended fuels. 

Gas chromatography 
Gas chromatographic data were obtained on an 

instrument fitted with a 50 m x 0.2 mm i.d. crosslinked 
methyl silicone column. Column conditions included: 
- 30°C start; heating programme of 5°C min-’ to 250°C; 
15 min purge. A flame ionization detector was used at 
35O”C, while the injector was held at 250°C. Helium 
carrier gas at 30 psi head pressure was used with a split 
flow rate of 385 ml min-’ using a 1 ~1 sample size. 

The raw data obtained from this chromatographic 
procedure were taken at the highest sensitivity and 
frequency of the equipment so that z 30 000 data points 
per run were collected. This file was then processed with 
HP Lab Automation System Rev A.85 to yield a data 
file of 15&400 components, with each peak area 
attributed to a single point on the retention time scale. 
The data were further reduced by summing all 
components into retention windows of 0.1 min. To 
correct for minor instrumental variations, two internal 
standards (methylethylketone and butyl cellosolve) were 
used. These standards appeared in the chromatographs 
at relatively unoccupied retention windows and were used 
to make minor linear adjustments of retention times. 
Subsequently, these materials were subtracted from the 
chromatographs and the remaining areas were normalized 
to 100%. After this data treatment, the 666 windows 
from 3.5 to 70.0 min were used for subsequent 
calculations. 

A single fuel (UP9, containing most of the refinery 
streams) was run 12 times over 10 days to assess g.c. 
repeatability. These repeat data showed that the time 
interval assigned to an individual component would vary 
by no more than +O.l min from run to run. This degree 
of precision (retention time associated with an individual 
component) greatly assisted in the factor analyses used 
to model octanes. 

The effect of actual sample size and split ratio was 
assessed by comparing the number of components 
detected and the variability of total area observed for the 
12 repeat runs. The number of individual components 
for fuel UP9 ranged from 167 to 196, and the total 
detector response varied from 3.2 to 4.8 million counts. 
Normalization to 100% and summation into 0.1 min 
retention windows provided data satisfactory for 
subsequent statistical assessment. 

Data analyses 
An excellent description of principle components 

regression (PCR) is provided by Fredericks et a1.7. The 
data matrix D contains all the g.c. data for the model 
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fuels. Each column is the complete chromatograph for a 
single fuel and each row represents the peak area 
associated with a fixed g.c. retention time. The 
product-moment matrix is: 

Z=D’D 

where D’ is the transpose of D. If L are eigenvectors of 
D, then unique factors of D can be determined as: 

F= DL 

and 

D=FL’ 

Thus the g.c. data matrix is factored into two matrices, 
F and Z. The dimensions of F are the same as D, the 
data matrix of chromatograms for all of the models fuels, 
and C is a square matrix, with the number of rows and 
columns equal to the number of fuels. The columns of 
F and the rows of L! can often be reduced to 
approximately half of the number of fuels and still contain 
all of the information, with the deleted rows representing 
random noise in the g.c.. L (the principal components of 
D) are the transpose of L’, and are used directly in multiple 
linear regression to predict the octanes of the model fuels. 
For validation fuels, the model factors F are used to 
determine the estimated L from g.c. data, and these values 
are then used to predict the octanes. 

The columns of each of the matrices F and L are 
mutually orthogonal (independent) and the above 
factorization can be used for problems where the 
independent variables are correlated, the problem of 
‘collinearity”. In this work the independence of the 
principal components L simplified the regression models 
and provided the means to use all of the g.c. data in 
octane prediction. All data processing and graphing were 
done using the SAS* system on an IBM 4381 computer. 

RESULTS AND DISCUSSION 

Assessment of any model should consider the inherent 
variability or noise that exists in all of the measurements. 
In this context both g.c. variability and octane 
measurement errors were estimated to provide measures 
of the adequacy of the models. Twelve repeat g.c. runs 
were made on a single fuel, and the level of g.c. variability 
was established. Duplicate research and motor octanes 
provided the estimates of octane variability and the 
average values for modelling. The measured octane 
variability is presented in Table 2. Direct calculation of 
all g.c. data from the chromatograms of the individual 
component streams and their volumetric blend compo- 
sitions were within the variability of the repeat g.c. runs 
on the same fuel. Thus, predicted g.c. values calculated 
from components are good approximations of the 
measured chromatograms on the final blends. This 
additivity implies that factor analysis is appropriate for 
the g.c. data. 

The g.c. data from the designed set of 53 fuels were 
mean centred and subjected to factor analysis. To 
determine how many orthogonal factors are necessary 
to represent the g.c. information in this fuel set, the array 
of 53 fuels by 666 retention windows was factored using 
the singular value decomposition procedure in SAS. It 

* SAS is a registered trademark of SAS Institute Inc., Cary, NC, USA 
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Figure 1 Gas chromatogram of fuel UP9 
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Figure 2 Segment of gas chromatogram of fuel UP9 

was found that 25 factors would reproduce the gas 
chromatogram of fuel UP9 within the limits of variability 
determined by repeat g.c. runs made on this fuel. Figure 1 
graphically displays a single observed chromatogram 
from UP9, the calculated chromatogram from 25 
orthogonal factors from the factor analysis of all 53 fuel 
blends, and the difference chromatogram (observed 
versus calculated) which is within the calculated 
variability observed by repeat g.c. measurements. For 
this reason, 25 factors were considered in modelling the 
g.c. data for predicting octanes. Figure 2 displays an 
expanded segment of retention times and shows size and 
direction of the deviations encountered. 

Graphical representation of the mean gas chromatogram 
for the 53 fuels modelled and the first six factors is shown 
in Figure 3. The symmetrical positive and negative 
deviations in adjacent 0.1 min retention windows are 
associated with peak shifting from one window to the 
next, due to instrumental inability to consistently assign 
the same retention time to a specific component. This 
shows how minor g.c. deviations can be accommodated 
by the factor analysis calculations. 

Regressions of the first 25 principal components 
(eigenvectors) associated with the largest factors of the 
53 fuels g.c. data and the average octane values overfit 
the data with many nonsignificant principal components. 
Only the significant principal components were retained 
in the models. 

Table 3 shows the calculated range, degree of 
relationship, and errors associated with the models. The 
observed and predicted pump octane data for the 53 
model fuels are shown in Figure 4. The error associated 
with predicted octanes is comparable with the error 
observed among the 12 repeat g.c. runs of fuel UP9 when 
the g.c. variability is projected into the octane space. 
Octane error measured in the study, reported ASTM 
octane measurement error, and error estimates for the 
same data based upon octane predictions employing an 
industry accepted method (generally referred to as the 
ethyl RT-70 linear octane blending method”) are 
included in Table 4. Obviously, predictability from PCR 
of g.c. data is good when allowing for the octane data 
repeatability and g.c. repeatability normally encountered. 

Validation of the g.c./PCR model was accomplished 
by using 13 additional finished gasolines blended from 
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Figure 3 Mean and first six factors (factor analysis of 53 model fuels) 

Table 3 Octane predictions from PCR models 

Octane Min 

Research 89.6 
Motor 81.2 
(RON + MON)/2 85.4 

Max R2 

101.3 0.98 
89.8 0.98 
95.4 0.98 

RMS error 

0.48 
0.32 
0.35 
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Table 4 Octane variability (standard deviation of an individual measurement) 

Linear blend 
Octane Measure” calculation* PCR model 

Research 0.25 0.43 0.48 

Motor 0.30 0.31 0.32 

(RON + MON)/2 0.20 0.27 0.29” 

a Duplicate measurements 
b Calculated using method described in Ref. 10 
‘G.c. variability projected into octane factor space 
d Reported by ASTM, r=repeatability standard deviation; R = reproducibility standard deviation 
‘Computed from RON and MON predictions 

ASTM” 

G.C.’ I R 

0.42 0.07 0.21 

0.19 0.11 0.32 

0.23 0.07 0.20 

97 

85 

85 87 a9 91 93 95 97 a5 a7 a9 91 93 95 97 

Measured Measured 

Figure 4 (RON + MON)/2 octane prediction for 53 model fuels: 0, 
premium range fuels; + , regular range fuels 

Figure 5 (RON+ MON)/2 octane prediction for 13 validation fuels: 
0, premium range fuels; + , regular range fuels 

the retained refinery streams. However, two important 
criteria must be met before predicting properties of an 
unknown sample. First, the unknown gas chromatogram 
must be represented by the chromatograms used in the 
model, and second, the magnitude of the principal 
components representing the sample fuel must be similar 
to those used in developing the prediction models. The 
chromatograms of the 13 validation fuels were each 
centred to the mean chromatogram of the model fuels, 
and the principal components were estimated by ordinary 
least squares using the 25 model factors. 

The deviations (measured minus estimated peak areas) 
for each chromatogram and the magnitude of the 
estimated principal components indicated that all 13 
validation blends were chromatograhically similar to the 
gas chromatograms used in modelling. Figure 5 shows 
how well the pump octanes (RON+ MON)/2 are 
predicted from their chromatograms, and validates this 
model for predicting pump octanes for the eight refinery 
stream system studied. The predicted values in Figure 5 
indicate a slight bias (over prediction of (RON + MON)/2). 
Individual RON and MON models of the premium and 
regular grade fuels indicate that the measured MON 
values are slightly low for the regular grade fuels. 
Substitution of other refinery streams for those modelled 
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may or may not necessitate model recalculation, 
depending upon the chemical similarity between the 
resultant blends and the blends used in model 
development. However, as indicated in the validation 
study, the chemical similarity between an unknown 
and the model fuel set can be directly assessed with the 
gc. model factors before predicting any fuel properties. 
Analogous models and validations completed for RON 
and MON independently were equally as good as the 
pump octane. 

CONCLUSIONS 

PCR applied to g.c. data is an ideal way of predicting 
the octanes of gasolines from the chemical compositions 
of the component streams. It is a simple method to apply 
since no attempt is made to interpret the g.c. data or to 
assign specific octane contribution factors for different 
compositional species. This approach should allow ready 
updating to include new gasoline streams or those of 
different chemical distributions, and has statistical 
controls that define the range for valid application. 
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