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Abstract--This study focuses on the experimental analysis of transient-regime heat transfer with liquid- 
vapor phase change in a fluid as it flows through a porous media composed of small bronze spheres. Three 
distinct zones can be observed : liquid, two-phase and superheated vapor. The boundaries between these 
zones are determined using temperature and pressure fields. An N-shaped profile is observed for the 
temperature values along the main flow axis. The first local maximum value on the temperature curve 
corresponds to the boundary between the liquid zone and the two-phase zone. When a local minimum 
temperature exists, it corresponds to the boundary between the two-phase and the vapor zones. A finite- 
element numerical simulation is used to predict the saturation field, which is numerically determined from 
the boundaries of the two-phase zone and of the experimental temperature field. The liquid and vapor 
pressure fields are then deduced for all three phase zones of the porous medium. Copyright © 1996 Elsevier 

Science Ltd. 

1. INTRODUCTION 

During the last two decades, a great deal of research 
has been carried out on porous media. This field has 
gone through a rapid acceleration owing to wide- 
spread concern about issues such as energy con- 
servation and environmental pollution. The areas of 
application include insulation for buildings and equip- 
ment, energy storage and recovery, geothermal stor- 
age, nuclear waste disposal, chemical reactor design 
and the storage of heat-generating substances. 

Boiling in porous media differs from that observed 
in open containers, yet few experimental studies have 
been carried out on this field despite their practical 
and theoretical interest. Most previous studies have 
focused primarily on the boiling of a stagnant liquid. 
It was not until the 1980s that serious efforts were 
made to develop numerical models for these media, 
due to considerable progress in computing techniques. 
Most previous studies have been one-dimensional, 
dealing mainly with problems of thermal migration or 
phase change without forced flow [1]. 

The experiments in refs. [2, 3] have shown that 
the liquid regime temperature profile can be either 
conductive or convective. Liquid and vapor counter 
percolation carries heat across the two-phase zone 
(the liquid evaporates at the heating surface and the 
vapor condenses at the boundary between the liquid 
zone and two-phase zone). Experimental studies sug- 
gest that the thermal convection in the liquid region 
can occur either before or after the onset of boiling. 
Experiments on visualization [4] reveal that the 

streamlines of the liquid region penetrate the two- 
phase zone after the onset of convection. 

Schubert and Strauss [5] noted that convection can 
also be caused by an unstable phase-change mech- 
anism. If steam and liquid water are in thermal equi- 
librium, thermal disturbances will cause pressure vari- 
ations which, in turn, will tend to move the fluid 
against the frictional resistance of the medium. In 
accordance with the law of mass conservation, hori- 
zontal expansion must be accompanied by vertical 
contraction, implying that the phase change will occur 
so that vertical forces remain balanced. 

In ref. [6], they also studied the stability of vapor- 
dominant systems with a liquid region overlying a 
dry vapor region. Their analysis suggests that such 
systems will remain stable, provided that the per- 
meability is sufficiently slight. 

O'Sullivan [7, 8] described certain numerical exper- 
iments, after developing a model geothermal reservoir 
with a variable heat input at the base of a selected 
layer. As the heat input is increased, the flow type 
changes a number of times (simple conduction, single- 
phase convection, convection with an increasingly 
large boiling zone, and finally irregular oscillatory 
convection). 

The onset of two-dimensional roll convection was 
studied by Ramesh and Torrance [9] using linear stab- 
ility analysis. They assumed that the relative per- 
meabilities of liquid and vapor were linear functions 
of the liquid saturation S. Their analysis reveals that 
the most important parameters are the dimensionless 
heat flux at the lower boundary and the Rayleigh 
numbers for the liquid and two-phase zones. 
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NOMENCLATURE 

dp [m] Greek letters dh d. = ~ l _  : 
c porosity 

d e diameter of  the spheres [m] 4) diameter [m] 
g acceleration of  gravity [m s 2] ), thermal conductivity [ W m  ~ K '] 
K permeability [m 2] 

v cinematic viscosity [m 2 s t] 
rn phase change rate [kg m ~ s '] 
P pressure [Pal t 1 mass flow rate [kg m : s ~] 

Pc capillary pressure [Pal p density [kg m ~] 
surface tension [N m ~]. 

Re Reynolds number for porous medium: 

Ud,,, Subscripts R e = - -  
v c capillary 

S saturation d diphasic 
S~rr irreducible saturation eft effective 
T temperature [ C] irr irreducible 
t time Is] I liquid 
U average velocity of  the fluid in the s solid 

porous medium [m s ~] sat saturation 
x ,y ,  z Cartesian coordinates, v vapor. 

Naik and Dhir [10] started looking into the tem- 
perature and pressure evolutions of  a coolant that 
evaporates as it flows through a bed of  steel spheres 
(.~ 590M763/tm) volumically heated by induction. A 
theoretical model was then developed for the tem- 
perature profile in the two-phase liquid zone. Vapor 
channels were observed in the porous layers of  the 
bed ( ~  < 1600 #m) and semi-empirical models were 
suggested as models of  the pressure drop in the two- 
phase zone. 

Tung and Dhir [11] developed a resolution based on 
two-dimensional finite-element equations (mass and 
movement  equations) for two-phase flow through a 
heated porous medium. Solutions were also proposed 
for the cases in which the channels were heated or 
partially obstructed. The drying fluxes for the one- 
dimensional case were compared to the values found 
in previous studies. In the case of  a partially-heated 
axis-symmetrical channel, these authors showed that 
the behavior is very nearly one-dimensional for the 
vapor zone and that the liquid tends to move towards 
the two-phase zone. 

The purpose of  the present study is to gain a better 
understanding of  boiling mechanisms in porous media 
with forced flow. The heat transfer and boiling of  a 
liquid in a porous medium were studied using a ver- 
tical parellelepiped box filled with stacked spheres and 
heated on both sides, with a fluid flowing from bottom 
to top within which temperature, pressure and satu- 
ration parameters were analyzed. 

2. MATERIALS AND METHODS 

The porous medium used was composed of  small 
bronze spheres (~5 = 140-160 ktm) held inside a 
parallelepiped fluoride plastic (PVDF) enclosure 

with a low thickness-to-width ratio [Fig. l(a)]. The 
stacked spheres were held inside the enclosure by sin- 
tered consolidations formed of identical spheres 
and fitted on both ends of  the column. The large 
heating surfaces were formed of  bronze plates screwed 
into the P V D F  box and an O-joint to seal the box. 

The bronze plates were heated by electrical resist- 
ances embedded in a ceramic block. Copper  plates 
were inserted between the heaters and the bronze 
plates to ensure an even temperature distribution 
across the large surfaces. The entire enclosure is insu- 
lated with compressed asbestos. The energy balance 
is checked for each experiment. The overall losses were 
found to be negligible ( < 3 % )  and the heat flux is 
indeed transferred to the fluid [12]. 

The liquid (i.e. n-pentane) flows through the sin- 
tered porous media and then vertically from bottom 
to top. Average velocity of  the liquid, effective heat 
flux and temperature at the inlet were all monitored 
and held constant during the experiments. 

The average liquid velocity in this study does not 
exceed 2 x 10 3 m s ~. The Reynolds numbers in the 
porous medium are less than 1 for the liquid flow, and 
less than 5 for the vapor flow. In such conditions, the 
flow is laminar and Darcy's  law can be applied [13]. 

Inlet and outlet pressure values were recorded using 
two pressure sensors. The temperature values within 
the porous medium were measured using 130 thermo- 
electrical sensors (chromel-alumel:  ~ = 0.8 mm) 
arranged for an optimal coverage of  the enclosed vol- 
ume and connected to a data-acquisition system. 
Local temperature measurements and polynomial 
interpolation functions along the vertical and hori- 
zontal axes were then used to represent the isotherms 
and/or  the temperature field throughout the entire 
volume [12, 14]. 
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The origin of  the coordinate axes is placed at the 
center of  the median plane perpendicular to the heat- 
ing plates located 5 mm above the inlet sintered con- 
solidation [i.e. at the same height as the lowest ther- 
mocouples Fig. 1 (b)]. 

Once all noncondensable substances have been 
eliminated from the porous medium, the liquid flow 
is maintained at constant temperature and velocity for 
approximately 2 h. When the desired temperature has 
been reached throughout the column, the lateral plates 
are heated using electrical resistances of  which heat 
flux is maintained constant. Temperature, pressure 
and flow values are recorded during the whole exper- 
iment (i.e. 5 h). 

3. EXPERIMENTAL RESULTS 

A series of  experiments were carried out using an 
effective heat flux ranging from 2000 to I 0 000 W m : 
and liquid flow rates ranging from 0.55 to 3.33 cm ~ 
s ~. The temperature field for the porous medium can 
be determined at any moment  for a given heat flux 
and flow conditions. In all situations, a stationary 
regime was obtained after a delay ranging from 1 to 3 
h (this span of  time is proportionally shorter when the 
power-to-flow ratio is weak). 

Previous studies have confirmed the two-dimen- 
sional nature of  such phenomena [15], thus only those 
results for the median plane perpendicular to the heat- 
ing plates are presented in this paper. 

3.1. Descriptton q / the  temperature [ieM 
Figure 2 shows the temperature variations T(.v,_-) 

at the beginning of the experiment (stationary state 
with a heat flux of  5000 W m -" and a fluid flow of 2 
l/h). At t = 30 rain, the temperature field reveals a 
liquid phase flow; and t = 2 1 1  rain (stationary 
regime) liquid, two-phase and vapor zones are 
observed. The temperature gradients of  each zone are 
represented using different-colored isothermal ranges 
and the temperature profiles along X X  and Z Z  axes 
using the "wire frame' grid representation. A station- 
ary regime is obtained after approximately 3 h, there- 
after the temperature fields remain the same. The inlet 
temperature and pressure values are T = 10 C and 
P = 1.025 bar. At  the outlet, the following values were 
measured : T = 37.5°C and P = 0.98 bar. 

When there is no phase change, the temperature 
increases rapidly in the inlet zone and then more 
slowly toward the outlet of  the column. When phase 
change does occur, the behavior remains roughly 
unchanged in the inlet zone. It is followed by a zone 
with decreasing temperatures and then by another 
zone in which the temperature increases once again, 
if the heat flux is high enough. 

Figure 3 shows the temperature profiles along the 
XX-axis for stationary conditions at different heights 
(Z). The profiles show a more or less pronounced 'U '  
shape, depending on the state of  the fluid in the 
column. These profiles reveal different types of  

behavior : single-phase liquid and vapor zones having 
high-amplitude profiles, and the two-phase zone a 
relatively flat profile. At the inlet, the temperature 
profile is flat. In the liquid zone, the temperature 
increases considerably along the XX-axis between the 
central axis and the wall ([T~ - T~] ~ 2 0 C ,  z = 1 cm) : 
the difference in temperature values between the wall 
and the central axis decreases considerably as a func- 
tion of  the distance Z. In the two-phase zone, a nearly 
flat profile is observed ([T~ T,.] ~ 2 " C ,  6 ~ Z < ~  l l  
cm). The profile starts to drop again in the single- 
phase zone as it approaches the outlet 
( T w - T O  ~ lO'C. 

When no boiling occurs, the velocity and pressure 
profiles are obtained directly tbr the entire porous 
medium applying Darcy's law to inlet and outlet pres- 
sure readings. When a phase change does occur, deter- 
mining the pressure and velocity fields requires the 
identification of  zone boundaries and of  their spatial 
and temporal evolution. Two different approaches 
were developed to identify these boundaries : one was 
based on the use of  the experimental temperature field 
and the other relied on pressure and thermodynamic 
data. 

3.2. Identification o f  zone boundaries using the tem- 
perature fields 

The longitudinal temperature profiles tbr the 
different abscissa (X = - 1, - 0.8, - 0.6, - 0.4, - 0.2, 
0, 0.2, 0.4, 0.6, 0.8, 1 cm relative to the median axis) are 
given in Fig. 4 at a stationary regime. The temperature 
profiles are nearly symmetrical in relation to the 
median plane (parallel to the heating plates [X = 0]). 
For  this reason the profiles are represented in pairs. 

The profiles for the different abscissa present 
roughly the same shape; three distinct zones defined 
by the distance Z are clearly visible : 

(1) A section with increasing values. This is the 
liquid zone Z~, in which the temperature increases 
continuously from the inlet and shows an asymptotic 
tendency. 

(2) A section with decreasing values, cor- 
responding to the two-phase zone Zd. The beginning 
of  the zone corresponds to the maximum profile at 
the liquid front and the end to a sharp change in slope, 
the local minimum temperature at the vapor front. 

(3) A third section with increasing values once 
again. This is the single-phase vapor zone Z,. This 
zone is not always present, depending on the exper- 
imental conditions (Fig. 5). 

The two-phase zone Zd increases in size as one 
moves towards the central axis of  the column. This 
can be attributed to the decrease in heat flux moving 
away from the heating plates. The flux at the walls is 
used up for the phase change and is then transported 
along the Z-axis. As a result, the flux decreases from 
the walls towards the central axis. So does the tem- 
perature. It decreases more and more sharply in the 
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Fig. 2. Temperature field in the median plane perpendicular to the heating plates. Single-phase (transient 
regime) and two-phase flow (stationary regime). Liquid: n-pentane (U = 0.69 10 -3 m s-I). Heat flux 

applied to the plates = 5000 W m -2. 

two-phase zone, most probably as a result of flow 
effects. 

Figure 5 shows the evolution over time of the tem- 
perature profiles along the central axis (X = 0) for 
several experimental flow rate and heat flux 
conditions. Depending on the flow rate and the heat 
flux, a stationary regime was obtained with or without 
phase change and with or without superheating. The 
different zones tended to keep a similar behavior when 
experimental conditions were changed. 

The detailed representation shows a decreasing tem- 
perature profile in the two-phase zone at different 

moments. This behavior is roughly the same, regard- 
less of the presence or absence of a vapor zone. The 
two-phase zone decreases in length and temperature 
until a stationary regime is reached. Along the central 
axis, the temperature decrease between the liquid t¥ont 
and the vapor front is found to vary under different 
experimental conditions, and the length of the two- 
phase zone is proportional to the flow rate. 

The heat flux entering the two-phase zone is used 
up for the phase change. Flow effects cause a pressure 
drop which in turn induces a temperature decrease, 
allowing the fluid to remain saturated (Ps,,, T~a0. This 
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plates for several values ofz at stationary regime. Liquid: n-pentane (U= 0.69 l0 ) m s ~). Heat flux 

applied to the plates : 5000 W m -'. 

phenomenon causes saturation variations which lead to 
an increased pressure drop, which lasts until a single- 
phase vapor zone is reached. The pressure gradient 
increases continuously in the two-phase zone (from 
the value for the single-phase liquid zone to that of 
the single-phase vapor zone). This corroborates the 
behavior shown in Fig. 6, in which the pressure of the 
liquid and vapor phase are plotted for the entire 
porous medium. Agreement is found both for inter- 
section points and for slope at these points. 

Three distinct zones are observed in stationary 

state: a liquid zone, a two-phase zone and a vapor 
zone. Each of these zones can be characterized by a 
different type of behavior (in terms of both tem- 
perature and pressure). The shape of the profiles is 
largely affected by the combined influence of different 
phenomena, especially in the two-phase zone where 
the pressure and temperature profiles are imposed by 
combined flow and thermal effects. 

The results based on the temperature field were 
completed by thermodynamic and hydrodynamic 
considerations using the measured pressures. 
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3.3. Identification of  zone boundaries using pressure 
data 

In the liquid and vapor  zones, pressure values are 
not dependent  on temperature and there is no vari- 
ation in saturation. If  the flow is assumed to be one- 

dimensional in these zones, the pressure field can be 
obtained by applying Darcy 's  law. The inlet pressure 
for the liquid zone and the outlet pressure for the 
vapor  zone serve as reference values. 

The flow is assumed to be one-dimensional (in the 



3966 O. RAHLI et al. 

7 (o(j) . . . . .  

40 ! . . . .  _ .. . . .  _ 

i 
II . . . .  - - - -  t V I / 10 Minutes I [] , ZOOM I . . . . .  ~ • 

30 1 , - -  ~ - - L ,  ~ _  --- - i 2 0 M i n u t e s  
25 Minutes 

25 + _ . l l j l l u l l i l l l l l l l l l l U l l l l i l l i m l l M I m  50 Minutes 

i I I  mmmnmnmm rnu 70 Minutes ! 
20 + + + + + + + + + + + + + + + + + + + + +  ]ram 90 Minutes 

110 Minutes ! nun + + + +  ] :  151 Minutes 
15-il  ~ m++++ I'!O 181 Minutes] 

1 0 m m .  + ~ 1  + X211Minutesj  

5 +  • • O O • • O  ~ -  

• o  

0 2 4 6 8 10 12 14 16 18 
Z (era) 

i . . . .  

T (°C) . . . . . .  
36.5 

20 

* * * * * A  
36 ~ A • A v O  

I * A - A ~ o e A - * *  i 
i o 6  w "  o ~  ~ o  t I &A . . . . .  
i II . o e • • o • • •  j • 50 Minutes ! 

• A  II _ • • • •  • •  _~, • llOMinutes i 
o e  35.5 ~ • ~ • • • lh, • l J  • 151Minutes]i 

! t _O~ ~pe'" " ~  • • A •  ,~ I O ¶  ;: 181Minutes]' 
i ~ ~ .  • _ t  211Minutesj 

• t o • Stationary profile - O 
. q  

34.5 L- ~ ~ ~ ~ , ~ ~ 
4 6 8 10 12 14 16 18 20 i 

(a) _ Z (era) I 

Fig. 5. Temporal evolution of the temperature profiles on the centerline along the vertical axis. Global view and detailed 
view around saturation temperature values. (a) Liquid: n-pentane (U = 0.69 10 ~ m s ~). Heat flux applied to the plates: 
5000 W m 2. (b) Liquid: n-pentane (U = 1.03 10 ~ m s ~). Heat flux applied to the plates: 5000 W m -2. (c) Liquid: n- 

pentane (U = 1.38 10 3 m s ~). Heat flux applied to the plates: 10000 W m 2. (Continued opposite andoverleaJl) 

case of two-dimensional flow, the results obtained are 
quite similar), and the physical values are assumed to 
be constant for each of these single-phase zones. The 
saturation in the two-phase zone is variable and the 
pressure values of the liquid and vapor zones are 
linked by capillary pressure. In this case the general 
expression for the vapor pressure is 

Pv(S, T) = Pv~.,(T)f2~(S, T). 

~ '(S,  T) is given by Kelvin's law and to develop a 

model of the pressure drop at the surface of the menis- 
cus. An evaluation of this function shows that this 
decrease appears to be very slight for S greater than S,.r 
(S ~ 0.01 = > ~(0.01,  T) ~ 0.9). In the two-phase 
zone the saturation is always greater than S,r, and the 
vapor pressure is dependent only on the temperature 

Pv(T) = P,.~t(T). (1) 

A capillary pressure discontinuity must exist in the 
two-phase zone between the liquid and the vapor 
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Fig. 5--Continued. 

phases. The liquid pressure is given by the following 
relation : 

e~ (S, T) = Pv(T)-Pc(S), (2) 

where Pv is the pressure of the saturated vapor and Pc 
the capillary pressure as determined by Leverett's law 
(Appendix I). 

The pressure values at the liquid front, defined pre- 
viously, are the same when calculated from the liquid 
zone or from the two-phase zone. As there are no 
capillary effects at the front (S = 1), the liquid pres- 
sure is equal to that of the saturated vapor. This pres- 

sure is also equal to the value deduced applying Dar- 
cy's law to a liquid zone. A similar approach can be 
applied to the vapor front. 

The boundaries of the different zones are defined 
by the intersections of surface Pvsat(X, z) [pressure of 
saturated vapor at local temperature] and planes 
Pl(x, z) and Pv(x, z) [hydrodynamic pressure in single- 
phase zones]. Pl(x,z)= Pvsa~(x,z) represents the 
liquid front and Pv(x, z) = evsat(X, Z) the vapor front. 

The pressure profiles along the central axis for each 
zone are plotted on Fig. 6. The hydrodynamic pressure 
of liquid is linear in the liquid zone. 
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Fig. 5 Continued. 

Both vapor and liquid hydrodynamic pressures pro- 
file on the center axis are plotted on Fig. 6, along with 
the pressure of the saturated vapor (thermodynamic 
pressure of vapor) and the calculated pressure. 

Figure 6 shows the variations of the different pres- 
sures along the central axis. The pressure of saturated 
vapor is plotted all along the porous medium (curve : 
"thermodynamic pressure of vapor'). In the liquid and 
vapor zone are plotted the hydrodynamic pressures 
deduced from Darcy's law. In the two-phase zone, the 
liquid pressure is calculated using the model (curve: 
'calculated pressure of liquid'). 

This approach shows that the pressure curve inter- 
section points correspond to the local maximum 
(liquid front) and minimum (vapor front) tem- 
perature values of the longitudinal temperature 
profiles, thus confirming the identification of the 
boundaries, as determined by the temperature profiles 
alone. 

4. CALCULATION OF SATURATION FIELD 

4.1. Equat ions  

These experimental data allow us to describe the 
thermal behavior in single-phase liquid and vapor 



Heat transfer with liquid-vapor phase change 3969 

P (Bars)  

1.08 

1.07 

1.06 

1.05 

1.04 

1.03 

1.02 

1.01 

1 

0.99 

0.98 

I I I 
Hydrodynamic pressure of liquid ....... / I I 

Thermodynamic Pressure of vapor 

1 H y d r o d y n i c  pressure of v a p o / i  

I Calcilatedpresiure°fhqild 'I"" " ! .  : 
0 2 4 6 8 10 12 14 16 18 20 

Z (cm)  

Fig. 6. Pressure profiles on the centerline along the vertical axis. The thermodynamic pressure of vapor is 
the saturating vapor pressure at the local temperature ; the hydrodynamic pressure of both liquid and 
vapor zone are obtained using Darcy's law and the inlet and outlet pressure values. Liquid: n-pentane 

(U = 0.69 1 0  - 3  m s-~). Heat flux applied to the plates: 5000 W m 2. 

zones [12]. In the two-phase zone on the other hand, 
although a fine description of the temperature field is 
obtained, other parameters are not accessible (e.g. 
saturation, pressure.. .) .  

In order to describe this latter zone in detail, a 
numerical model was developed based on the estab- 
lished formalisms and hypotheses in this field. The 
following hypotheses were used : 

(1) Heat and mass transfer in the porous medium 
can be described using a macroscopic approach. At 
the scale of a representative elementary volume 
(R.E.V.) the porous medium is considered as a con- 
solidated medium. 

(2) In a R.E.V. all phases are in local ther- 
modynamic equilibrium. 

(3) The solid phase is nondeformable and homo- 
geneous. 

(4) The vapor and liquid pressures are given by 
expressions (1) and (2). 

(5) Due to the weak temperature variations 
observed in the two-phase zone, the temperature- 
related variations in the physical values were neglec- 
ted. 

The equations used are as follows : 
The generalized Darcy law for the expression of 

fluid motion 

kv 
qv = -- ~(VPv -- p~g) (3) 

Vv 

k, 
Ot = - ~ ( V P i  - Pig) .  (4)  

Using equations (1) and (2), the pressure gradients 
of the liquid and vapor zones can be expressed as a 
function of temperature and of saturation. 

The mass velocity of the vapor phase is deduced 
from equations (1) and (3) 

kv/OPv ~Pv \ 
qv = -- --[--VT+vv\0T -~VS-pvg). (5) 

The same holds true for the mass velocity of the 
liquid phase [equation (2) and (4)] 

~ h = - v , \ \ O T  ~ )  VT+fOPv\oS 

(6) 

For an elementary representative volume, the vari- 
ation in the quantity of liquid is the result of transport 
and production terms. 

c~p~S 
a ~  = - v . ~t, + m, (7) 

the same holds true for the quantity of vapor 

apv(1 - s )  
St - -V'qv+mv. (8) 

By adding equations (7) and (8), we obtain 
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~?(p~S+ p,(1 - S)) 
c (~t = - V  "(q~ + q , }  +tizl  + piT,. 

(9) 

The production terms tbr the liquid and the vapor 
are necessarily opposite, as the formation of  a certain 
quantity of  vapor corresponds to the disappearance 
of  an equal quantity of  liquid: thus 

til~ = - r/l,. (10) 

The mass equation is expressed as follows : 

~?S 
e ( p l - p , ) ~  = - V ' 0 / l + q , ) .  (11) 

Replacing the mass fluxes by their expressions, we 
obtain 

~?S 
~:(Pl -P, . )  ~ = V "((KMvr + KMI T)V T 

+ (KMps + KMLs)VS+ KM(~sg) (12) 

where 

KMpT = (k, + k, ~(?Pg: 

KMps = vr + v , ] g S  

k] ~P~. 
KMLs - 

v~ ?S 

kl ?P~. 
KMLT - 

v~ ?T 

klpl k,p, 
KMGs . . . . . . . . .  • 

V I V~ 

In reality, saturation-related pressure variations 
(P~) are negligible for saturation levels above the irre- 
ducible saturation level (1). The mass equation can 
thus be reduced to 

~S 
e(pl--p,) ~t = V' (KMpTVT)+ V'(KMt,sVS) 

~? KMGs + ~ g . V S .  (13) 

This equation reveals two independent variables (7' 
and 5). In order to simplify the overall equation, the 
temperature then is treated as a known source term QT 
(calculated from the experimental temperature field). 
The mass equation that is used takes the following 
form for stationary regime : 

?KMGs 
V "(KMLsVS) + ~ g "  VS = QT. (14) 

4.2. Numerical method and results 
Equation (14) is resolved using a finite-element 

method that is particularly well suited for the descrip- 

lion of  the two-phase zone's complex shape [Fig. 7(a)]. 
This method actually consists of  dividing the space 
under study into elements which form a grid. The 
elements are adjusted locally to the shape of  the zone 
[171. 

The differential equation (14) is then integrated into 
each of  the zones and the solution is approximated 
using interpolation functions defined for each element 
(see Appendix 11). After dividing the space into dis- 
crete elements, a nonlinear algebraic system is 
obtained and then resolved using the Newton Raph- 
son method. 

Figure 7 shows an example of  the shape of a two- 
phase zone obtained experimentally and the grid 
which was used in this case. The grid is composed of  
443 isoparametric linear elements (Q4: four nodes 
quadrilateral and T3: three nodes triangle) and 448 
nodes. The QT term is calculated for each of  the nodes 
in the grid using the experimental temperature field 
[Fig. 8(b)]. The following saturation boundary con- 
ditions are used (Fig. 7) : 

{ I) for the liquid front, the saturation is equal to 
I:  

(2) at the wall, the saturation varies in a linear 
manner from 1 to the irreducible saturation value 

(S,r,) ; 
(3) at the vapor front, the saturation value used is 

equal to S~,. 

The equation (14) is strongly nonlinear:  the 
coefficients are a function of saturation, varying by 
several orders of  magnitude. In order to obtain a rapid 
convergence, the Newton-Raphson  method was used 
as it is particularly well adapted to this sort of  equa- 
tion, but it does require an initial solution close to the 
solution. To obtain such a point, the expression is 
made linear using constant coefficients corresponding 
to an average saturation value (S = 0.5). This equa- 
tion system is resolved using a Gaussian-elimination 
direct method [18] ; from this initial solution, the non- 
linear equation set is then resolved; convergence is 
obtained after approximately 20 iterations. 

The experimental temperature field used to cal- 
culate the heat source term and the corresponding 
calculated saturation field are shown in Fig. 8. 

The iso-saturation lines are clearly stretched in the 
main flow axis direction. Consequently, the saturation 
variations are straight in the heat flux direction. There 
is a decrease from 1 down to S~rr on I cm, while in the 
ZZ-direction the saturation decreases progressively 
for about 10 cm. 

The saturation profiles in the XX-direction do not 
present any notable inflection ; they resemble one ano- 
ther regardless of  the distance and are straighter as 
the distance to the liquid front decreases (Fig. 9). In 
the ZZ-direction, the profiles show a flattening of  the 
saturation profile. This trend is all the more pro- 
nounced (occurring at higher saturation values) as we 
move away from the wall (Fig. 10). 
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Fig. 7. Liquid : n-pentane (U = 0.69 10 -3 m s-~). Heat flux applied to the plates : 5000 W m -2. (a) Shape 
of two phase zone at steady state regime. (b) Finite-element grid for the two-phase zone and boundary 

conditions. This grid is composed of 443 linear elements (Q4 and T3) and 448 nodes. 

The complexity of the phenomena induced by the 
combined thermal, capillary and phase-change effects 
makes it difficult to interpret the distribution of satu- 
ration values with precision. Several qualitative expla- 
nations can, however, be advanced. The selected 
experimental configuration produces two distinct 
effects of primary importance ; along the XX-axis, the 
thermal effects due to the imposed heat flux are pri- 
mordial, whereas along the ZZ-axis, the forced flow 
effects are dominant. 

Along the ZZ-axis, the fluid flow is determined 
by thermal, capillary and forced convection effects 
coupling; in the two-phase flow both phases flow in 

the same direction, whereas along the XX-axis they 
flow in opposite directions. 

The saturation field is used to calculate the pressure 
field for the liquid zone. This field is shown in Fig. 6, 
which also represents the evolution of pressure loss 
along the central axis of the apparatus. This combined 
experimental and numerical approach makes it poss- 
ible to describe with precision the values charac- 
terizing this phenomenon on a macroscopic scale. 

5. CONCLUSION 

The experimental analysis based on the evaluation 
of temperature over space and time revealed three 
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Fig. 8. Representation of the calculated saturation field and the experimental temperature field in the 
median plane perpendicular to the heating plates. (a) Saturation field (numerical). (b) Temperature field 
(experimental). These temperatures are obtained with the following conditions : liquid, n-pentane (U = 0 . 6 9  

10 -3  m s L). Heat flux applied to the plates: 5000 W m 2. 

distinct zones, corresponding to the different states of  
the fluid : 

(1) a liquid zone Z~ near the column inlet; 
(2) a two-phase zone Zd : 
(3) a vapor zone Z,. near the outlet. 

The temperature in the two-phase zone is seen to 
decrease, forming an N-shaped curve, probably result- 
ing from combined flow and phase-change effects. 

The boundaries of  the zones were determined with 
great precision by associating two approaches. The 
first relies on the use of  the temperature fields and the 
second uses the pressure data to validate these first 
results. 

In the liquid and vapor zones, the pressure profiles 
are established by applying Darcy's  law to inlet and 

outlet pressure readings. In the two-phase zone, the 
vapor pressure is considered equal to that of  the satu- 
rated vapor. The different temperature measurements 
were completed using a numerical simulation of  heat 
and mass transfer with phase change. This allows the 
saturation to be calculated from the mass equation 
(taking into account capillary effects and temperature 
variations). The pressure of  the liquid phase is then 
deduced using Leverett 's law (which gives the capil- 
lary pressure as a function of  the calculated saturation 
values). 

This work will be continued by carrying out pres- 
sure and saturation measurement in the two-phase 
zone. The numerical model will be extended to the 
resolution of  the combined mass-energy equation. 
This will allow the different parameters characterizing 
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boiling mechanism in porous media with forced flow 
to be described. 
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APPENDIX I 
PHYSICAL VALUES 

Using correlations based on experimental data, Leverett 's 
law is expressed [13, 16, 19, 20] as 

p~(s) = ~ ~ F ( S ) ,  

where F(S) = 1.417 ( l - s )  - 2 . 1 2  ( I - s ) 2 + 1 . 2 6 3  ( t - s )  ~ to 
express P~ in Pascal. 

The permeabilities of  the liquid and vapor phases were 
obtained using conventional expressions [21] 

/ S - S , ~ \  ~ / 1 - S  \~ 

where K,,t is the intrinsic permeability of  the medium. 
The following thermo-physical properties were used for 

the bed of  bronze spheres through which pentane flows : 

kinematics viscosity of  the liquid v~ 
kinematics viscosity of  the vapor v~ 
density of  the liquid PL 
density of  the vapor p, 
permeability K,,, 
porosity ~: 
interface tension a 
irreducible saturation S., 
saturating vapor pressure P~,, 

4.0910 7m 2s ' 
2.37 10 ~ m -~ s 
606 kg m ; 
3.1 k g m  ~ 
21 10 ': m 2 
0.3975 
13.1210 3 N m  i 
0.084 
14.718+74.814 
T -  30.785 T2+ 5.769 
T ~ bars 
with T in  C. 

APPENDIX II 
FINITE-ELEMENT FORMULATION OF THE 

PROBLEM 

An S function was sought in study zone fL such that it 
would match equation (14) and boundary conditions at the 
F boundary. 

The total f~ zone is discretized by dividing it into a grid of  
finite elements. Each element is connected at several points 
called nodes. At each node, the saturation value is treated 
as the unknown nodal value. Within an element (e), the 
variations of  S(x, y) are expressed in terms of its nodal values 
S ~ as follows : 

m w [  

S~(x,y) = ~ N(x,v)S ¢i = (N(x,y)){S¢}, (AI) 
i I 

where superscript e denotes quantities pertaining to an 
element ; nnel is the number  of  nodes in the element ; N, is a 
polynomial function (called the shape function) expressed 
of  spatial coordinates (x,y) and formulated such that, if 
evaluated at the ith node, it gives a unity value and a zero 
value at the other nodes ; and S °' denotes the nodal saturation 
value at the ith node. 

R(S) is called the residual quantity 

R(S) = V ' (KMLsV{N) IS~  ) +  ~ g "  V{N~{S~}--QT. 

(A2) 
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The pondered residue method consists in seeking S func- 
tions that cancel out the integral form 

I = fn <~,'>{R(S)} dn = 0. (A3) 

The polynomial approximation introduced in the weak 
integral formulation I of the problem gives 

I =  ~, <~P*>{N} V'(KMLsV(N){S~}) 
c = l  ¢ 

~3 KMos ~ \ 
+ - ~ g ' V < N ) { S  } --QT)df~. (A4) 

Integrating by parts gives 

/<~P*>[K] • {S} - { VV}, (A5) 

where 

[K] = ~ ([K d] + [K~]) (A6) 
e - i  

and 

ONe T ON, 

~3 KM~s 
(A7) 

nel 

{VF) = Z ({~}  + {V:'}) (A8) 
e - - I  

{Vc°} = fn {Ne}QTdfl,, (A9) 

where 

(A9) 

At this point, we resolve the nonlinear 1 = 0 system using 
the Newton-Raphson method. 


